1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
|
# stats
`import "github.com/montanaflynn/stats"`
* [Overview](#pkg-overview)
* [Index](#pkg-index)
* [Examples](#pkg-examples)
* [Subdirectories](#pkg-subdirectories)
## <a name="pkg-overview">Overview</a>
Package stats is a well tested and comprehensive
statistics library package with no dependencies.
Example Usage:
// start with some source data to use
data := []float64{1.0, 2.1, 3.2, 4.823, 4.1, 5.8}
// you could also use different types like this
// data := stats.LoadRawData([]int{1, 2, 3, 4, 5})
// data := stats.LoadRawData([]interface{}{1.1, "2", 3})
// etc...
median, _ := stats.Median(data)
fmt.Println(median) // 3.65
roundedMedian, _ := stats.Round(median, 0)
fmt.Println(roundedMedian) // 4
MIT License Copyright (c) 2014-2020 Montana Flynn (<a href="https://montanaflynn.com">https://montanaflynn.com</a>)
## <a name="pkg-index">Index</a>
* [Variables](#pkg-variables)
* [func AutoCorrelation(data Float64Data, lags int) (float64, error)](#AutoCorrelation)
* [func ChebyshevDistance(dataPointX, dataPointY Float64Data) (distance float64, err error)](#ChebyshevDistance)
* [func Correlation(data1, data2 Float64Data) (float64, error)](#Correlation)
* [func Covariance(data1, data2 Float64Data) (float64, error)](#Covariance)
* [func CovariancePopulation(data1, data2 Float64Data) (float64, error)](#CovariancePopulation)
* [func CumulativeSum(input Float64Data) ([]float64, error)](#CumulativeSum)
* [func Entropy(input Float64Data) (float64, error)](#Entropy)
* [func EuclideanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error)](#EuclideanDistance)
* [func ExpGeom(p float64) (exp float64, err error)](#ExpGeom)
* [func GeometricMean(input Float64Data) (float64, error)](#GeometricMean)
* [func HarmonicMean(input Float64Data) (float64, error)](#HarmonicMean)
* [func InterQuartileRange(input Float64Data) (float64, error)](#InterQuartileRange)
* [func ManhattanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error)](#ManhattanDistance)
* [func Max(input Float64Data) (max float64, err error)](#Max)
* [func Mean(input Float64Data) (float64, error)](#Mean)
* [func Median(input Float64Data) (median float64, err error)](#Median)
* [func MedianAbsoluteDeviation(input Float64Data) (mad float64, err error)](#MedianAbsoluteDeviation)
* [func MedianAbsoluteDeviationPopulation(input Float64Data) (mad float64, err error)](#MedianAbsoluteDeviationPopulation)
* [func Midhinge(input Float64Data) (float64, error)](#Midhinge)
* [func Min(input Float64Data) (min float64, err error)](#Min)
* [func MinkowskiDistance(dataPointX, dataPointY Float64Data, lambda float64) (distance float64, err error)](#MinkowskiDistance)
* [func Mode(input Float64Data) (mode []float64, err error)](#Mode)
* [func Ncr(n, r int) int](#Ncr)
* [func NormBoxMullerRvs(loc float64, scale float64, size int) []float64](#NormBoxMullerRvs)
* [func NormCdf(x float64, loc float64, scale float64) float64](#NormCdf)
* [func NormEntropy(loc float64, scale float64) float64](#NormEntropy)
* [func NormFit(data []float64) [2]float64](#NormFit)
* [func NormInterval(alpha float64, loc float64, scale float64) [2]float64](#NormInterval)
* [func NormIsf(p float64, loc float64, scale float64) (x float64)](#NormIsf)
* [func NormLogCdf(x float64, loc float64, scale float64) float64](#NormLogCdf)
* [func NormLogPdf(x float64, loc float64, scale float64) float64](#NormLogPdf)
* [func NormLogSf(x float64, loc float64, scale float64) float64](#NormLogSf)
* [func NormMean(loc float64, scale float64) float64](#NormMean)
* [func NormMedian(loc float64, scale float64) float64](#NormMedian)
* [func NormMoment(n int, loc float64, scale float64) float64](#NormMoment)
* [func NormPdf(x float64, loc float64, scale float64) float64](#NormPdf)
* [func NormPpf(p float64, loc float64, scale float64) (x float64)](#NormPpf)
* [func NormPpfRvs(loc float64, scale float64, size int) []float64](#NormPpfRvs)
* [func NormSf(x float64, loc float64, scale float64) float64](#NormSf)
* [func NormStats(loc float64, scale float64, moments string) []float64](#NormStats)
* [func NormStd(loc float64, scale float64) float64](#NormStd)
* [func NormVar(loc float64, scale float64) float64](#NormVar)
* [func Pearson(data1, data2 Float64Data) (float64, error)](#Pearson)
* [func Percentile(input Float64Data, percent float64) (percentile float64, err error)](#Percentile)
* [func PercentileNearestRank(input Float64Data, percent float64) (percentile float64, err error)](#PercentileNearestRank)
* [func PopulationVariance(input Float64Data) (pvar float64, err error)](#PopulationVariance)
* [func ProbGeom(a int, b int, p float64) (prob float64, err error)](#ProbGeom)
* [func Round(input float64, places int) (rounded float64, err error)](#Round)
* [func Sample(input Float64Data, takenum int, replacement bool) ([]float64, error)](#Sample)
* [func SampleVariance(input Float64Data) (svar float64, err error)](#SampleVariance)
* [func Sigmoid(input Float64Data) ([]float64, error)](#Sigmoid)
* [func SoftMax(input Float64Data) ([]float64, error)](#SoftMax)
* [func StableSample(input Float64Data, takenum int) ([]float64, error)](#StableSample)
* [func StandardDeviation(input Float64Data) (sdev float64, err error)](#StandardDeviation)
* [func StandardDeviationPopulation(input Float64Data) (sdev float64, err error)](#StandardDeviationPopulation)
* [func StandardDeviationSample(input Float64Data) (sdev float64, err error)](#StandardDeviationSample)
* [func StdDevP(input Float64Data) (sdev float64, err error)](#StdDevP)
* [func StdDevS(input Float64Data) (sdev float64, err error)](#StdDevS)
* [func Sum(input Float64Data) (sum float64, err error)](#Sum)
* [func Trimean(input Float64Data) (float64, error)](#Trimean)
* [func VarGeom(p float64) (exp float64, err error)](#VarGeom)
* [func VarP(input Float64Data) (sdev float64, err error)](#VarP)
* [func VarS(input Float64Data) (sdev float64, err error)](#VarS)
* [func Variance(input Float64Data) (sdev float64, err error)](#Variance)
* [type Coordinate](#Coordinate)
* [func ExpReg(s []Coordinate) (regressions []Coordinate, err error)](#ExpReg)
* [func LinReg(s []Coordinate) (regressions []Coordinate, err error)](#LinReg)
* [func LogReg(s []Coordinate) (regressions []Coordinate, err error)](#LogReg)
* [type Float64Data](#Float64Data)
* [func LoadRawData(raw interface{}) (f Float64Data)](#LoadRawData)
* [func (f Float64Data) AutoCorrelation(lags int) (float64, error)](#Float64Data.AutoCorrelation)
* [func (f Float64Data) Correlation(d Float64Data) (float64, error)](#Float64Data.Correlation)
* [func (f Float64Data) Covariance(d Float64Data) (float64, error)](#Float64Data.Covariance)
* [func (f Float64Data) CovariancePopulation(d Float64Data) (float64, error)](#Float64Data.CovariancePopulation)
* [func (f Float64Data) CumulativeSum() ([]float64, error)](#Float64Data.CumulativeSum)
* [func (f Float64Data) Entropy() (float64, error)](#Float64Data.Entropy)
* [func (f Float64Data) GeometricMean() (float64, error)](#Float64Data.GeometricMean)
* [func (f Float64Data) Get(i int) float64](#Float64Data.Get)
* [func (f Float64Data) HarmonicMean() (float64, error)](#Float64Data.HarmonicMean)
* [func (f Float64Data) InterQuartileRange() (float64, error)](#Float64Data.InterQuartileRange)
* [func (f Float64Data) Len() int](#Float64Data.Len)
* [func (f Float64Data) Less(i, j int) bool](#Float64Data.Less)
* [func (f Float64Data) Max() (float64, error)](#Float64Data.Max)
* [func (f Float64Data) Mean() (float64, error)](#Float64Data.Mean)
* [func (f Float64Data) Median() (float64, error)](#Float64Data.Median)
* [func (f Float64Data) MedianAbsoluteDeviation() (float64, error)](#Float64Data.MedianAbsoluteDeviation)
* [func (f Float64Data) MedianAbsoluteDeviationPopulation() (float64, error)](#Float64Data.MedianAbsoluteDeviationPopulation)
* [func (f Float64Data) Midhinge(d Float64Data) (float64, error)](#Float64Data.Midhinge)
* [func (f Float64Data) Min() (float64, error)](#Float64Data.Min)
* [func (f Float64Data) Mode() ([]float64, error)](#Float64Data.Mode)
* [func (f Float64Data) Pearson(d Float64Data) (float64, error)](#Float64Data.Pearson)
* [func (f Float64Data) Percentile(p float64) (float64, error)](#Float64Data.Percentile)
* [func (f Float64Data) PercentileNearestRank(p float64) (float64, error)](#Float64Data.PercentileNearestRank)
* [func (f Float64Data) PopulationVariance() (float64, error)](#Float64Data.PopulationVariance)
* [func (f Float64Data) Quartile(d Float64Data) (Quartiles, error)](#Float64Data.Quartile)
* [func (f Float64Data) QuartileOutliers() (Outliers, error)](#Float64Data.QuartileOutliers)
* [func (f Float64Data) Quartiles() (Quartiles, error)](#Float64Data.Quartiles)
* [func (f Float64Data) Sample(n int, r bool) ([]float64, error)](#Float64Data.Sample)
* [func (f Float64Data) SampleVariance() (float64, error)](#Float64Data.SampleVariance)
* [func (f Float64Data) Sigmoid() ([]float64, error)](#Float64Data.Sigmoid)
* [func (f Float64Data) SoftMax() ([]float64, error)](#Float64Data.SoftMax)
* [func (f Float64Data) StandardDeviation() (float64, error)](#Float64Data.StandardDeviation)
* [func (f Float64Data) StandardDeviationPopulation() (float64, error)](#Float64Data.StandardDeviationPopulation)
* [func (f Float64Data) StandardDeviationSample() (float64, error)](#Float64Data.StandardDeviationSample)
* [func (f Float64Data) Sum() (float64, error)](#Float64Data.Sum)
* [func (f Float64Data) Swap(i, j int)](#Float64Data.Swap)
* [func (f Float64Data) Trimean(d Float64Data) (float64, error)](#Float64Data.Trimean)
* [func (f Float64Data) Variance() (float64, error)](#Float64Data.Variance)
* [type Outliers](#Outliers)
* [func QuartileOutliers(input Float64Data) (Outliers, error)](#QuartileOutliers)
* [type Quartiles](#Quartiles)
* [func Quartile(input Float64Data) (Quartiles, error)](#Quartile)
* [type Series](#Series)
* [func ExponentialRegression(s Series) (regressions Series, err error)](#ExponentialRegression)
* [func LinearRegression(s Series) (regressions Series, err error)](#LinearRegression)
* [func LogarithmicRegression(s Series) (regressions Series, err error)](#LogarithmicRegression)
#### <a name="pkg-examples">Examples</a>
* [AutoCorrelation](#example_AutoCorrelation)
* [ChebyshevDistance](#example_ChebyshevDistance)
* [Correlation](#example_Correlation)
* [CumulativeSum](#example_CumulativeSum)
* [Entropy](#example_Entropy)
* [ExpGeom](#example_ExpGeom)
* [LinearRegression](#example_LinearRegression)
* [LoadRawData](#example_LoadRawData)
* [Max](#example_Max)
* [Median](#example_Median)
* [Min](#example_Min)
* [ProbGeom](#example_ProbGeom)
* [Round](#example_Round)
* [Sigmoid](#example_Sigmoid)
* [SoftMax](#example_SoftMax)
* [Sum](#example_Sum)
* [VarGeom](#example_VarGeom)
#### <a name="pkg-files">Package files</a>
[correlation.go](/src/github.com/montanaflynn/stats/correlation.go) [cumulative_sum.go](/src/github.com/montanaflynn/stats/cumulative_sum.go) [data.go](/src/github.com/montanaflynn/stats/data.go) [deviation.go](/src/github.com/montanaflynn/stats/deviation.go) [distances.go](/src/github.com/montanaflynn/stats/distances.go) [doc.go](/src/github.com/montanaflynn/stats/doc.go) [entropy.go](/src/github.com/montanaflynn/stats/entropy.go) [errors.go](/src/github.com/montanaflynn/stats/errors.go) [geometric_distribution.go](/src/github.com/montanaflynn/stats/geometric_distribution.go) [legacy.go](/src/github.com/montanaflynn/stats/legacy.go) [load.go](/src/github.com/montanaflynn/stats/load.go) [max.go](/src/github.com/montanaflynn/stats/max.go) [mean.go](/src/github.com/montanaflynn/stats/mean.go) [median.go](/src/github.com/montanaflynn/stats/median.go) [min.go](/src/github.com/montanaflynn/stats/min.go) [mode.go](/src/github.com/montanaflynn/stats/mode.go) [norm.go](/src/github.com/montanaflynn/stats/norm.go) [outlier.go](/src/github.com/montanaflynn/stats/outlier.go) [percentile.go](/src/github.com/montanaflynn/stats/percentile.go) [quartile.go](/src/github.com/montanaflynn/stats/quartile.go) [ranksum.go](/src/github.com/montanaflynn/stats/ranksum.go) [regression.go](/src/github.com/montanaflynn/stats/regression.go) [round.go](/src/github.com/montanaflynn/stats/round.go) [sample.go](/src/github.com/montanaflynn/stats/sample.go) [sigmoid.go](/src/github.com/montanaflynn/stats/sigmoid.go) [softmax.go](/src/github.com/montanaflynn/stats/softmax.go) [sum.go](/src/github.com/montanaflynn/stats/sum.go) [util.go](/src/github.com/montanaflynn/stats/util.go) [variance.go](/src/github.com/montanaflynn/stats/variance.go)
## <a name="pkg-variables">Variables</a>
``` go
var (
// ErrEmptyInput Input must not be empty
ErrEmptyInput = statsError{"Input must not be empty."}
// ErrNaN Not a number
ErrNaN = statsError{"Not a number."}
// ErrNegative Must not contain negative values
ErrNegative = statsError{"Must not contain negative values."}
// ErrZero Must not contain zero values
ErrZero = statsError{"Must not contain zero values."}
// ErrBounds Input is outside of range
ErrBounds = statsError{"Input is outside of range."}
// ErrSize Must be the same length
ErrSize = statsError{"Must be the same length."}
// ErrInfValue Value is infinite
ErrInfValue = statsError{"Value is infinite."}
// ErrYCoord Y Value must be greater than zero
ErrYCoord = statsError{"Y Value must be greater than zero."}
)
```
These are the package-wide error values.
All error identification should use these values.
<a href="https://github.com/golang/go/wiki/Errors#naming">https://github.com/golang/go/wiki/Errors#naming</a>
``` go
var (
EmptyInputErr = ErrEmptyInput
NaNErr = ErrNaN
NegativeErr = ErrNegative
ZeroErr = ErrZero
BoundsErr = ErrBounds
SizeErr = ErrSize
InfValue = ErrInfValue
YCoordErr = ErrYCoord
EmptyInput = ErrEmptyInput
)
```
Legacy error names that didn't start with Err
## <a name="AutoCorrelation">func</a> [AutoCorrelation](/correlation.go?s=853:918#L38)
``` go
func AutoCorrelation(data Float64Data, lags int) (float64, error)
```
AutoCorrelation is the correlation of a signal with a delayed copy of itself as a function of delay
## <a name="ChebyshevDistance">func</a> [ChebyshevDistance](/distances.go?s=368:456#L20)
``` go
func ChebyshevDistance(dataPointX, dataPointY Float64Data) (distance float64, err error)
```
ChebyshevDistance computes the Chebyshev distance between two data sets
## <a name="Correlation">func</a> [Correlation](/correlation.go?s=112:171#L8)
``` go
func Correlation(data1, data2 Float64Data) (float64, error)
```
Correlation describes the degree of relationship between two sets of data
## <a name="Covariance">func</a> [Covariance](/variance.go?s=1284:1342#L53)
``` go
func Covariance(data1, data2 Float64Data) (float64, error)
```
Covariance is a measure of how much two sets of data change
## <a name="CovariancePopulation">func</a> [CovariancePopulation](/variance.go?s=1864:1932#L81)
``` go
func CovariancePopulation(data1, data2 Float64Data) (float64, error)
```
CovariancePopulation computes covariance for entire population between two variables.
## <a name="CumulativeSum">func</a> [CumulativeSum](/cumulative_sum.go?s=81:137#L4)
``` go
func CumulativeSum(input Float64Data) ([]float64, error)
```
CumulativeSum calculates the cumulative sum of the input slice
## <a name="Entropy">func</a> [Entropy](/entropy.go?s=77:125#L6)
``` go
func Entropy(input Float64Data) (float64, error)
```
Entropy provides calculation of the entropy
## <a name="EuclideanDistance">func</a> [EuclideanDistance](/distances.go?s=836:924#L36)
``` go
func EuclideanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error)
```
EuclideanDistance computes the Euclidean distance between two data sets
## <a name="ExpGeom">func</a> [ExpGeom](/geometric_distribution.go?s=652:700#L27)
``` go
func ExpGeom(p float64) (exp float64, err error)
```
ProbGeom generates the expectation or average number of trials
for a geometric random variable with parameter p
## <a name="GeometricMean">func</a> [GeometricMean](/mean.go?s=319:373#L18)
``` go
func GeometricMean(input Float64Data) (float64, error)
```
GeometricMean gets the geometric mean for a slice of numbers
## <a name="HarmonicMean">func</a> [HarmonicMean](/mean.go?s=717:770#L40)
``` go
func HarmonicMean(input Float64Data) (float64, error)
```
HarmonicMean gets the harmonic mean for a slice of numbers
## <a name="InterQuartileRange">func</a> [InterQuartileRange](/quartile.go?s=821:880#L45)
``` go
func InterQuartileRange(input Float64Data) (float64, error)
```
InterQuartileRange finds the range between Q1 and Q3
## <a name="ManhattanDistance">func</a> [ManhattanDistance](/distances.go?s=1277:1365#L50)
``` go
func ManhattanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error)
```
ManhattanDistance computes the Manhattan distance between two data sets
## <a name="Max">func</a> [Max](/max.go?s=78:130#L8)
``` go
func Max(input Float64Data) (max float64, err error)
```
Max finds the highest number in a slice
## <a name="Mean">func</a> [Mean](/mean.go?s=77:122#L6)
``` go
func Mean(input Float64Data) (float64, error)
```
Mean gets the average of a slice of numbers
## <a name="Median">func</a> [Median](/median.go?s=85:143#L6)
``` go
func Median(input Float64Data) (median float64, err error)
```
Median gets the median number in a slice of numbers
## <a name="MedianAbsoluteDeviation">func</a> [MedianAbsoluteDeviation](/deviation.go?s=125:197#L6)
``` go
func MedianAbsoluteDeviation(input Float64Data) (mad float64, err error)
```
MedianAbsoluteDeviation finds the median of the absolute deviations from the dataset median
## <a name="MedianAbsoluteDeviationPopulation">func</a> [MedianAbsoluteDeviationPopulation](/deviation.go?s=360:442#L11)
``` go
func MedianAbsoluteDeviationPopulation(input Float64Data) (mad float64, err error)
```
MedianAbsoluteDeviationPopulation finds the median of the absolute deviations from the population median
## <a name="Midhinge">func</a> [Midhinge](/quartile.go?s=1075:1124#L55)
``` go
func Midhinge(input Float64Data) (float64, error)
```
Midhinge finds the average of the first and third quartiles
## <a name="Min">func</a> [Min](/min.go?s=78:130#L6)
``` go
func Min(input Float64Data) (min float64, err error)
```
Min finds the lowest number in a set of data
## <a name="MinkowskiDistance">func</a> [MinkowskiDistance](/distances.go?s=2152:2256#L75)
``` go
func MinkowskiDistance(dataPointX, dataPointY Float64Data, lambda float64) (distance float64, err error)
```
MinkowskiDistance computes the Minkowski distance between two data sets
Arguments:
dataPointX: First set of data points
dataPointY: Second set of data points. Length of both data
sets must be equal.
lambda: aka p or city blocks; With lambda = 1
returned distance is manhattan distance and
lambda = 2; it is euclidean distance. Lambda
reaching to infinite - distance would be chebysev
distance.
Return:
Distance or error
## <a name="Mode">func</a> [Mode](/mode.go?s=85:141#L4)
``` go
func Mode(input Float64Data) (mode []float64, err error)
```
Mode gets the mode [most frequent value(s)] of a slice of float64s
## <a name="Ncr">func</a> [Ncr](/norm.go?s=7384:7406#L239)
``` go
func Ncr(n, r int) int
```
Ncr is an N choose R algorithm.
Aaron Cannon's algorithm.
## <a name="NormBoxMullerRvs">func</a> [NormBoxMullerRvs](/norm.go?s=667:736#L23)
``` go
func NormBoxMullerRvs(loc float64, scale float64, size int) []float64
```
NormBoxMullerRvs generates random variates using the Box–Muller transform.
For more information please visit: <a href="http://mathworld.wolfram.com/Box-MullerTransformation.html">http://mathworld.wolfram.com/Box-MullerTransformation.html</a>
## <a name="NormCdf">func</a> [NormCdf](/norm.go?s=1826:1885#L52)
``` go
func NormCdf(x float64, loc float64, scale float64) float64
```
NormCdf is the cumulative distribution function.
## <a name="NormEntropy">func</a> [NormEntropy](/norm.go?s=5773:5825#L180)
``` go
func NormEntropy(loc float64, scale float64) float64
```
NormEntropy is the differential entropy of the RV.
## <a name="NormFit">func</a> [NormFit](/norm.go?s=6058:6097#L187)
``` go
func NormFit(data []float64) [2]float64
```
NormFit returns the maximum likelihood estimators for the Normal Distribution.
Takes array of float64 values.
Returns array of Mean followed by Standard Deviation.
## <a name="NormInterval">func</a> [NormInterval](/norm.go?s=6976:7047#L221)
``` go
func NormInterval(alpha float64, loc float64, scale float64) [2]float64
```
NormInterval finds endpoints of the range that contains alpha percent of the distribution.
## <a name="NormIsf">func</a> [NormIsf](/norm.go?s=4330:4393#L137)
``` go
func NormIsf(p float64, loc float64, scale float64) (x float64)
```
NormIsf is the inverse survival function (inverse of sf).
## <a name="NormLogCdf">func</a> [NormLogCdf](/norm.go?s=2016:2078#L57)
``` go
func NormLogCdf(x float64, loc float64, scale float64) float64
```
NormLogCdf is the log of the cumulative distribution function.
## <a name="NormLogPdf">func</a> [NormLogPdf](/norm.go?s=1590:1652#L47)
``` go
func NormLogPdf(x float64, loc float64, scale float64) float64
```
NormLogPdf is the log of the probability density function.
## <a name="NormLogSf">func</a> [NormLogSf](/norm.go?s=2423:2484#L67)
``` go
func NormLogSf(x float64, loc float64, scale float64) float64
```
NormLogSf is the log of the survival function.
## <a name="NormMean">func</a> [NormMean](/norm.go?s=6560:6609#L206)
``` go
func NormMean(loc float64, scale float64) float64
```
NormMean is the mean/expected value of the distribution.
## <a name="NormMedian">func</a> [NormMedian](/norm.go?s=6431:6482#L201)
``` go
func NormMedian(loc float64, scale float64) float64
```
NormMedian is the median of the distribution.
## <a name="NormMoment">func</a> [NormMoment](/norm.go?s=4694:4752#L146)
``` go
func NormMoment(n int, loc float64, scale float64) float64
```
NormMoment approximates the non-central (raw) moment of order n.
For more information please visit: <a href="https://math.stackexchange.com/questions/1945448/methods-for-finding-raw-moments-of-the-normal-distribution">https://math.stackexchange.com/questions/1945448/methods-for-finding-raw-moments-of-the-normal-distribution</a>
## <a name="NormPdf">func</a> [NormPdf](/norm.go?s=1357:1416#L42)
``` go
func NormPdf(x float64, loc float64, scale float64) float64
```
NormPdf is the probability density function.
## <a name="NormPpf">func</a> [NormPpf](/norm.go?s=2854:2917#L75)
``` go
func NormPpf(p float64, loc float64, scale float64) (x float64)
```
NormPpf is the point percentile function.
This is based on Peter John Acklam's inverse normal CDF.
algorithm: <a href="http://home.online.no/~pjacklam/notes/invnorm/">http://home.online.no/~pjacklam/notes/invnorm/</a> (no longer visible).
For more information please visit: <a href="https://stackedboxes.org/2017/05/01/acklams-normal-quantile-function/">https://stackedboxes.org/2017/05/01/acklams-normal-quantile-function/</a>
## <a name="NormPpfRvs">func</a> [NormPpfRvs](/norm.go?s=247:310#L12)
``` go
func NormPpfRvs(loc float64, scale float64, size int) []float64
```
NormPpfRvs generates random variates using the Point Percentile Function.
For more information please visit: <a href="https://demonstrations.wolfram.com/TheMethodOfInverseTransforms/">https://demonstrations.wolfram.com/TheMethodOfInverseTransforms/</a>
## <a name="NormSf">func</a> [NormSf](/norm.go?s=2250:2308#L62)
``` go
func NormSf(x float64, loc float64, scale float64) float64
```
NormSf is the survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
## <a name="NormStats">func</a> [NormStats](/norm.go?s=5277:5345#L162)
``` go
func NormStats(loc float64, scale float64, moments string) []float64
```
NormStats returns the mean, variance, skew, and/or kurtosis.
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
Takes string containing any of 'mvsk'.
Returns array of m v s k in that order.
## <a name="NormStd">func</a> [NormStd](/norm.go?s=6814:6862#L216)
``` go
func NormStd(loc float64, scale float64) float64
```
NormStd is the standard deviation of the distribution.
## <a name="NormVar">func</a> [NormVar](/norm.go?s=6675:6723#L211)
``` go
func NormVar(loc float64, scale float64) float64
```
NormVar is the variance of the distribution.
## <a name="Pearson">func</a> [Pearson](/correlation.go?s=655:710#L33)
``` go
func Pearson(data1, data2 Float64Data) (float64, error)
```
Pearson calculates the Pearson product-moment correlation coefficient between two variables
## <a name="Percentile">func</a> [Percentile](/percentile.go?s=98:181#L8)
``` go
func Percentile(input Float64Data, percent float64) (percentile float64, err error)
```
Percentile finds the relative standing in a slice of floats
## <a name="PercentileNearestRank">func</a> [PercentileNearestRank](/percentile.go?s=1079:1173#L54)
``` go
func PercentileNearestRank(input Float64Data, percent float64) (percentile float64, err error)
```
PercentileNearestRank finds the relative standing in a slice of floats using the Nearest Rank method
## <a name="PopulationVariance">func</a> [PopulationVariance](/variance.go?s=828:896#L31)
``` go
func PopulationVariance(input Float64Data) (pvar float64, err error)
```
PopulationVariance finds the amount of variance within a population
## <a name="ProbGeom">func</a> [ProbGeom](/geometric_distribution.go?s=258:322#L10)
``` go
func ProbGeom(a int, b int, p float64) (prob float64, err error)
```
ProbGeom generates the probability for a geometric random variable
with parameter p to achieve success in the interval of [a, b] trials
See <a href="https://en.wikipedia.org/wiki/Geometric_distribution">https://en.wikipedia.org/wiki/Geometric_distribution</a> for more information
## <a name="Round">func</a> [Round](/round.go?s=88:154#L6)
``` go
func Round(input float64, places int) (rounded float64, err error)
```
Round a float to a specific decimal place or precision
## <a name="Sample">func</a> [Sample](/sample.go?s=112:192#L9)
``` go
func Sample(input Float64Data, takenum int, replacement bool) ([]float64, error)
```
Sample returns sample from input with replacement or without
## <a name="SampleVariance">func</a> [SampleVariance](/variance.go?s=1058:1122#L42)
``` go
func SampleVariance(input Float64Data) (svar float64, err error)
```
SampleVariance finds the amount of variance within a sample
## <a name="Sigmoid">func</a> [Sigmoid](/sigmoid.go?s=228:278#L9)
``` go
func Sigmoid(input Float64Data) ([]float64, error)
```
Sigmoid returns the input values in the range of -1 to 1
along the sigmoid or s-shaped curve, commonly used in
machine learning while training neural networks as an
activation function.
## <a name="SoftMax">func</a> [SoftMax](/softmax.go?s=206:256#L8)
``` go
func SoftMax(input Float64Data) ([]float64, error)
```
SoftMax returns the input values in the range of 0 to 1
with sum of all the probabilities being equal to one. It
is commonly used in machine learning neural networks.
## <a name="StableSample">func</a> [StableSample](/sample.go?s=974:1042#L50)
``` go
func StableSample(input Float64Data, takenum int) ([]float64, error)
```
StableSample like stable sort, it returns samples from input while keeps the order of original data.
## <a name="StandardDeviation">func</a> [StandardDeviation](/deviation.go?s=695:762#L27)
``` go
func StandardDeviation(input Float64Data) (sdev float64, err error)
```
StandardDeviation the amount of variation in the dataset
## <a name="StandardDeviationPopulation">func</a> [StandardDeviationPopulation](/deviation.go?s=892:969#L32)
``` go
func StandardDeviationPopulation(input Float64Data) (sdev float64, err error)
```
StandardDeviationPopulation finds the amount of variation from the population
## <a name="StandardDeviationSample">func</a> [StandardDeviationSample](/deviation.go?s=1250:1323#L46)
``` go
func StandardDeviationSample(input Float64Data) (sdev float64, err error)
```
StandardDeviationSample finds the amount of variation from a sample
## <a name="StdDevP">func</a> [StdDevP](/legacy.go?s=339:396#L14)
``` go
func StdDevP(input Float64Data) (sdev float64, err error)
```
StdDevP is a shortcut to StandardDeviationPopulation
## <a name="StdDevS">func</a> [StdDevS](/legacy.go?s=497:554#L19)
``` go
func StdDevS(input Float64Data) (sdev float64, err error)
```
StdDevS is a shortcut to StandardDeviationSample
## <a name="Sum">func</a> [Sum](/sum.go?s=78:130#L6)
``` go
func Sum(input Float64Data) (sum float64, err error)
```
Sum adds all the numbers of a slice together
## <a name="Trimean">func</a> [Trimean](/quartile.go?s=1320:1368#L65)
``` go
func Trimean(input Float64Data) (float64, error)
```
Trimean finds the average of the median and the midhinge
## <a name="VarGeom">func</a> [VarGeom](/geometric_distribution.go?s=885:933#L37)
``` go
func VarGeom(p float64) (exp float64, err error)
```
ProbGeom generates the variance for number for a
geometric random variable with parameter p
## <a name="VarP">func</a> [VarP](/legacy.go?s=59:113#L4)
``` go
func VarP(input Float64Data) (sdev float64, err error)
```
VarP is a shortcut to PopulationVariance
## <a name="VarS">func</a> [VarS](/legacy.go?s=193:247#L9)
``` go
func VarS(input Float64Data) (sdev float64, err error)
```
VarS is a shortcut to SampleVariance
## <a name="Variance">func</a> [Variance](/variance.go?s=659:717#L26)
``` go
func Variance(input Float64Data) (sdev float64, err error)
```
Variance the amount of variation in the dataset
## <a name="Coordinate">type</a> [Coordinate](/regression.go?s=143:183#L9)
``` go
type Coordinate struct {
X, Y float64
}
```
Coordinate holds the data in a series
### <a name="ExpReg">func</a> [ExpReg](/legacy.go?s=791:856#L29)
``` go
func ExpReg(s []Coordinate) (regressions []Coordinate, err error)
```
ExpReg is a shortcut to ExponentialRegression
### <a name="LinReg">func</a> [LinReg](/legacy.go?s=643:708#L24)
``` go
func LinReg(s []Coordinate) (regressions []Coordinate, err error)
```
LinReg is a shortcut to LinearRegression
### <a name="LogReg">func</a> [LogReg](/legacy.go?s=944:1009#L34)
``` go
func LogReg(s []Coordinate) (regressions []Coordinate, err error)
```
LogReg is a shortcut to LogarithmicRegression
## <a name="Float64Data">type</a> [Float64Data](/data.go?s=80:106#L4)
``` go
type Float64Data []float64
```
Float64Data is a named type for []float64 with helper methods
### <a name="LoadRawData">func</a> [LoadRawData](/load.go?s=145:194#L12)
``` go
func LoadRawData(raw interface{}) (f Float64Data)
```
LoadRawData parses and converts a slice of mixed data types to floats
### <a name="Float64Data.AutoCorrelation">func</a> (Float64Data) [AutoCorrelation](/data.go?s=3257:3320#L91)
``` go
func (f Float64Data) AutoCorrelation(lags int) (float64, error)
```
AutoCorrelation is the correlation of a signal with a delayed copy of itself as a function of delay
### <a name="Float64Data.Correlation">func</a> (Float64Data) [Correlation](/data.go?s=3058:3122#L86)
``` go
func (f Float64Data) Correlation(d Float64Data) (float64, error)
```
Correlation describes the degree of relationship between two sets of data
### <a name="Float64Data.Covariance">func</a> (Float64Data) [Covariance](/data.go?s=4801:4864#L141)
``` go
func (f Float64Data) Covariance(d Float64Data) (float64, error)
```
Covariance is a measure of how much two sets of data change
### <a name="Float64Data.CovariancePopulation">func</a> (Float64Data) [CovariancePopulation](/data.go?s=4983:5056#L146)
``` go
func (f Float64Data) CovariancePopulation(d Float64Data) (float64, error)
```
CovariancePopulation computes covariance for entire population between two variables
### <a name="Float64Data.CumulativeSum">func</a> (Float64Data) [CumulativeSum](/data.go?s=883:938#L28)
``` go
func (f Float64Data) CumulativeSum() ([]float64, error)
```
CumulativeSum returns the cumulative sum of the data
### <a name="Float64Data.Entropy">func</a> (Float64Data) [Entropy](/data.go?s=5480:5527#L162)
``` go
func (f Float64Data) Entropy() (float64, error)
```
Entropy provides calculation of the entropy
### <a name="Float64Data.GeometricMean">func</a> (Float64Data) [GeometricMean](/data.go?s=1332:1385#L40)
``` go
func (f Float64Data) GeometricMean() (float64, error)
```
GeometricMean returns the median of the data
### <a name="Float64Data.Get">func</a> (Float64Data) [Get](/data.go?s=129:168#L7)
``` go
func (f Float64Data) Get(i int) float64
```
Get item in slice
### <a name="Float64Data.HarmonicMean">func</a> (Float64Data) [HarmonicMean](/data.go?s=1460:1512#L43)
``` go
func (f Float64Data) HarmonicMean() (float64, error)
```
HarmonicMean returns the mode of the data
### <a name="Float64Data.InterQuartileRange">func</a> (Float64Data) [InterQuartileRange](/data.go?s=3755:3813#L106)
``` go
func (f Float64Data) InterQuartileRange() (float64, error)
```
InterQuartileRange finds the range between Q1 and Q3
### <a name="Float64Data.Len">func</a> (Float64Data) [Len](/data.go?s=217:247#L10)
``` go
func (f Float64Data) Len() int
```
Len returns length of slice
### <a name="Float64Data.Less">func</a> (Float64Data) [Less](/data.go?s=318:358#L13)
``` go
func (f Float64Data) Less(i, j int) bool
```
Less returns if one number is less than another
### <a name="Float64Data.Max">func</a> (Float64Data) [Max](/data.go?s=645:688#L22)
``` go
func (f Float64Data) Max() (float64, error)
```
Max returns the maximum number in the data
### <a name="Float64Data.Mean">func</a> (Float64Data) [Mean](/data.go?s=1005:1049#L31)
``` go
func (f Float64Data) Mean() (float64, error)
```
Mean returns the mean of the data
### <a name="Float64Data.Median">func</a> (Float64Data) [Median](/data.go?s=1111:1157#L34)
``` go
func (f Float64Data) Median() (float64, error)
```
Median returns the median of the data
### <a name="Float64Data.MedianAbsoluteDeviation">func</a> (Float64Data) [MedianAbsoluteDeviation](/data.go?s=1630:1693#L46)
``` go
func (f Float64Data) MedianAbsoluteDeviation() (float64, error)
```
MedianAbsoluteDeviation the median of the absolute deviations from the dataset median
### <a name="Float64Data.MedianAbsoluteDeviationPopulation">func</a> (Float64Data) [MedianAbsoluteDeviationPopulation](/data.go?s=1842:1915#L51)
``` go
func (f Float64Data) MedianAbsoluteDeviationPopulation() (float64, error)
```
MedianAbsoluteDeviationPopulation finds the median of the absolute deviations from the population median
### <a name="Float64Data.Midhinge">func</a> (Float64Data) [Midhinge](/data.go?s=3912:3973#L111)
``` go
func (f Float64Data) Midhinge(d Float64Data) (float64, error)
```
Midhinge finds the average of the first and third quartiles
### <a name="Float64Data.Min">func</a> (Float64Data) [Min](/data.go?s=536:579#L19)
``` go
func (f Float64Data) Min() (float64, error)
```
Min returns the minimum number in the data
### <a name="Float64Data.Mode">func</a> (Float64Data) [Mode](/data.go?s=1217:1263#L37)
``` go
func (f Float64Data) Mode() ([]float64, error)
```
Mode returns the mode of the data
### <a name="Float64Data.Pearson">func</a> (Float64Data) [Pearson](/data.go?s=3455:3515#L96)
``` go
func (f Float64Data) Pearson(d Float64Data) (float64, error)
```
Pearson calculates the Pearson product-moment correlation coefficient between two variables.
### <a name="Float64Data.Percentile">func</a> (Float64Data) [Percentile](/data.go?s=2696:2755#L76)
``` go
func (f Float64Data) Percentile(p float64) (float64, error)
```
Percentile finds the relative standing in a slice of floats
### <a name="Float64Data.PercentileNearestRank">func</a> (Float64Data) [PercentileNearestRank](/data.go?s=2869:2939#L81)
``` go
func (f Float64Data) PercentileNearestRank(p float64) (float64, error)
```
PercentileNearestRank finds the relative standing using the Nearest Rank method
### <a name="Float64Data.PopulationVariance">func</a> (Float64Data) [PopulationVariance](/data.go?s=4495:4553#L131)
``` go
func (f Float64Data) PopulationVariance() (float64, error)
```
PopulationVariance finds the amount of variance within a population
### <a name="Float64Data.Quartile">func</a> (Float64Data) [Quartile](/data.go?s=3610:3673#L101)
``` go
func (f Float64Data) Quartile(d Float64Data) (Quartiles, error)
```
Quartile returns the three quartile points from a slice of data
### <a name="Float64Data.QuartileOutliers">func</a> (Float64Data) [QuartileOutliers](/data.go?s=2542:2599#L71)
``` go
func (f Float64Data) QuartileOutliers() (Outliers, error)
```
QuartileOutliers finds the mild and extreme outliers
### <a name="Float64Data.Quartiles">func</a> (Float64Data) [Quartiles](/data.go?s=5628:5679#L167)
``` go
func (f Float64Data) Quartiles() (Quartiles, error)
```
Quartiles returns the three quartile points from instance of Float64Data
### <a name="Float64Data.Sample">func</a> (Float64Data) [Sample](/data.go?s=4208:4269#L121)
``` go
func (f Float64Data) Sample(n int, r bool) ([]float64, error)
```
Sample returns sample from input with replacement or without
### <a name="Float64Data.SampleVariance">func</a> (Float64Data) [SampleVariance](/data.go?s=4652:4706#L136)
``` go
func (f Float64Data) SampleVariance() (float64, error)
```
SampleVariance finds the amount of variance within a sample
### <a name="Float64Data.Sigmoid">func</a> (Float64Data) [Sigmoid](/data.go?s=5169:5218#L151)
``` go
func (f Float64Data) Sigmoid() ([]float64, error)
```
Sigmoid returns the input values along the sigmoid or s-shaped curve
### <a name="Float64Data.SoftMax">func</a> (Float64Data) [SoftMax](/data.go?s=5359:5408#L157)
``` go
func (f Float64Data) SoftMax() ([]float64, error)
```
SoftMax returns the input values in the range of 0 to 1
with sum of all the probabilities being equal to one.
### <a name="Float64Data.StandardDeviation">func</a> (Float64Data) [StandardDeviation](/data.go?s=2026:2083#L56)
``` go
func (f Float64Data) StandardDeviation() (float64, error)
```
StandardDeviation the amount of variation in the dataset
### <a name="Float64Data.StandardDeviationPopulation">func</a> (Float64Data) [StandardDeviationPopulation](/data.go?s=2199:2266#L61)
``` go
func (f Float64Data) StandardDeviationPopulation() (float64, error)
```
StandardDeviationPopulation finds the amount of variation from the population
### <a name="Float64Data.StandardDeviationSample">func</a> (Float64Data) [StandardDeviationSample](/data.go?s=2382:2445#L66)
``` go
func (f Float64Data) StandardDeviationSample() (float64, error)
```
StandardDeviationSample finds the amount of variation from a sample
### <a name="Float64Data.Sum">func</a> (Float64Data) [Sum](/data.go?s=764:807#L25)
``` go
func (f Float64Data) Sum() (float64, error)
```
Sum returns the total of all the numbers in the data
### <a name="Float64Data.Swap">func</a> (Float64Data) [Swap](/data.go?s=425:460#L16)
``` go
func (f Float64Data) Swap(i, j int)
```
Swap switches out two numbers in slice
### <a name="Float64Data.Trimean">func</a> (Float64Data) [Trimean](/data.go?s=4059:4119#L116)
``` go
func (f Float64Data) Trimean(d Float64Data) (float64, error)
```
Trimean finds the average of the median and the midhinge
### <a name="Float64Data.Variance">func</a> (Float64Data) [Variance](/data.go?s=4350:4398#L126)
``` go
func (f Float64Data) Variance() (float64, error)
```
Variance the amount of variation in the dataset
## <a name="Outliers">type</a> [Outliers](/outlier.go?s=73:139#L4)
``` go
type Outliers struct {
Mild Float64Data
Extreme Float64Data
}
```
Outliers holds mild and extreme outliers found in data
### <a name="QuartileOutliers">func</a> [QuartileOutliers](/outlier.go?s=197:255#L10)
``` go
func QuartileOutliers(input Float64Data) (Outliers, error)
```
QuartileOutliers finds the mild and extreme outliers
## <a name="Quartiles">type</a> [Quartiles](/quartile.go?s=75:136#L6)
``` go
type Quartiles struct {
Q1 float64
Q2 float64
Q3 float64
}
```
Quartiles holds the three quartile points
### <a name="Quartile">func</a> [Quartile](/quartile.go?s=205:256#L13)
``` go
func Quartile(input Float64Data) (Quartiles, error)
```
Quartile returns the three quartile points from a slice of data
## <a name="Series">type</a> [Series](/regression.go?s=76:100#L6)
``` go
type Series []Coordinate
```
Series is a container for a series of data
### <a name="ExponentialRegression">func</a> [ExponentialRegression](/regression.go?s=1089:1157#L50)
``` go
func ExponentialRegression(s Series) (regressions Series, err error)
```
ExponentialRegression returns an exponential regression on data series
### <a name="LinearRegression">func</a> [LinearRegression](/regression.go?s=262:325#L14)
``` go
func LinearRegression(s Series) (regressions Series, err error)
```
LinearRegression finds the least squares linear regression on data series
### <a name="LogarithmicRegression">func</a> [LogarithmicRegression](/regression.go?s=1903:1971#L85)
``` go
func LogarithmicRegression(s Series) (regressions Series, err error)
```
LogarithmicRegression returns an logarithmic regression on data series
- - -
Generated by [godoc2md](http://godoc.org/github.com/davecheney/godoc2md)
|