1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
package stats
import (
"math"
)
// Validate data for distance calculation
func validateData(dataPointX, dataPointY Float64Data) error {
if len(dataPointX) == 0 || len(dataPointY) == 0 {
return EmptyInputErr
}
if len(dataPointX) != len(dataPointY) {
return SizeErr
}
return nil
}
// ChebyshevDistance computes the Chebyshev distance between two data sets
func ChebyshevDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
return math.NaN(), err
}
var tempDistance float64
for i := 0; i < len(dataPointY); i++ {
tempDistance = math.Abs(dataPointX[i] - dataPointY[i])
if distance < tempDistance {
distance = tempDistance
}
}
return distance, nil
}
// EuclideanDistance computes the Euclidean distance between two data sets
func EuclideanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
return math.NaN(), err
}
distance = 0
for i := 0; i < len(dataPointX); i++ {
distance = distance + ((dataPointX[i] - dataPointY[i]) * (dataPointX[i] - dataPointY[i]))
}
return math.Sqrt(distance), nil
}
// ManhattanDistance computes the Manhattan distance between two data sets
func ManhattanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
return math.NaN(), err
}
distance = 0
for i := 0; i < len(dataPointX); i++ {
distance = distance + math.Abs(dataPointX[i]-dataPointY[i])
}
return distance, nil
}
// MinkowskiDistance computes the Minkowski distance between two data sets
//
// Arguments:
//
// dataPointX: First set of data points
// dataPointY: Second set of data points. Length of both data
// sets must be equal.
// lambda: aka p or city blocks; With lambda = 1
// returned distance is manhattan distance and
// lambda = 2; it is euclidean distance. Lambda
// reaching to infinite - distance would be chebysev
// distance.
//
// Return:
//
// Distance or error
func MinkowskiDistance(dataPointX, dataPointY Float64Data, lambda float64) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
return math.NaN(), err
}
for i := 0; i < len(dataPointY); i++ {
distance = distance + math.Pow(math.Abs(dataPointX[i]-dataPointY[i]), lambda)
}
distance = math.Pow(distance, 1/lambda)
if math.IsInf(distance, 1) {
return math.NaN(), InfValue
}
return distance, nil
}
|