File: distances.go

package info (click to toggle)
golang-github-montanaflynn-stats 0.7.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 460 kB
  • sloc: makefile: 27
file content (91 lines) | stat: -rw-r--r-- 2,580 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
package stats

import (
	"math"
)

// Validate data for distance calculation
func validateData(dataPointX, dataPointY Float64Data) error {
	if len(dataPointX) == 0 || len(dataPointY) == 0 {
		return EmptyInputErr
	}

	if len(dataPointX) != len(dataPointY) {
		return SizeErr
	}
	return nil
}

// ChebyshevDistance computes the Chebyshev distance between two data sets
func ChebyshevDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
	err = validateData(dataPointX, dataPointY)
	if err != nil {
		return math.NaN(), err
	}
	var tempDistance float64
	for i := 0; i < len(dataPointY); i++ {
		tempDistance = math.Abs(dataPointX[i] - dataPointY[i])
		if distance < tempDistance {
			distance = tempDistance
		}
	}
	return distance, nil
}

// EuclideanDistance computes the Euclidean distance between two data sets
func EuclideanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {

	err = validateData(dataPointX, dataPointY)
	if err != nil {
		return math.NaN(), err
	}
	distance = 0
	for i := 0; i < len(dataPointX); i++ {
		distance = distance + ((dataPointX[i] - dataPointY[i]) * (dataPointX[i] - dataPointY[i]))
	}
	return math.Sqrt(distance), nil
}

// ManhattanDistance computes the Manhattan distance between two data sets
func ManhattanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
	err = validateData(dataPointX, dataPointY)
	if err != nil {
		return math.NaN(), err
	}
	distance = 0
	for i := 0; i < len(dataPointX); i++ {
		distance = distance + math.Abs(dataPointX[i]-dataPointY[i])
	}
	return distance, nil
}

// MinkowskiDistance computes the Minkowski distance between two data sets
//
// Arguments:
//
//	dataPointX: First set of data points
//	dataPointY: Second set of data points. Length of both data
//	            sets must be equal.
//	lambda:     aka p or city blocks; With lambda = 1
//	            returned distance is manhattan distance and
//	            lambda = 2; it is euclidean distance. Lambda
//	            reaching to infinite - distance would be chebysev
//	            distance.
//
// Return:
//
//	Distance or error
func MinkowskiDistance(dataPointX, dataPointY Float64Data, lambda float64) (distance float64, err error) {
	err = validateData(dataPointX, dataPointY)
	if err != nil {
		return math.NaN(), err
	}
	for i := 0; i < len(dataPointY); i++ {
		distance = distance + math.Pow(math.Abs(dataPointX[i]-dataPointY[i]), lambda)
	}
	distance = math.Pow(distance, 1/lambda)
	if math.IsInf(distance, 1) {
		return math.NaN(), InfValue
	}
	return distance, nil
}