1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
package stats
import (
"math"
"math/rand"
"strings"
"time"
)
// NormPpfRvs generates random variates using the Point Percentile Function.
// For more information please visit: https://demonstrations.wolfram.com/TheMethodOfInverseTransforms/
func NormPpfRvs(loc float64, scale float64, size int) []float64 {
rand.Seed(time.Now().UnixNano())
var toReturn []float64
for i := 0; i < size; i++ {
toReturn = append(toReturn, NormPpf(rand.Float64(), loc, scale))
}
return toReturn
}
// NormBoxMullerRvs generates random variates using the Box–Muller transform.
// For more information please visit: http://mathworld.wolfram.com/Box-MullerTransformation.html
func NormBoxMullerRvs(loc float64, scale float64, size int) []float64 {
rand.Seed(time.Now().UnixNano())
var toReturn []float64
for i := 0; i < int(float64(size/2)+float64(size%2)); i++ {
// u1 and u2 are uniformly distributed random numbers between 0 and 1.
u1 := rand.Float64()
u2 := rand.Float64()
// x1 and x2 are normally distributed random numbers.
x1 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Cos(2*math.Pi*u2)))
toReturn = append(toReturn, x1)
if (i+1)*2 <= size {
x2 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Sin(2*math.Pi*u2)))
toReturn = append(toReturn, x2)
}
}
return toReturn
}
// NormPdf is the probability density function.
func NormPdf(x float64, loc float64, scale float64) float64 {
return (math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi))
}
// NormLogPdf is the log of the probability density function.
func NormLogPdf(x float64, loc float64, scale float64) float64 {
return math.Log((math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi)))
}
// NormCdf is the cumulative distribution function.
func NormCdf(x float64, loc float64, scale float64) float64 {
return 0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2))))
}
// NormLogCdf is the log of the cumulative distribution function.
func NormLogCdf(x float64, loc float64, scale float64) float64 {
return math.Log(0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2)))))
}
// NormSf is the survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
func NormSf(x float64, loc float64, scale float64) float64 {
return 1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2))))
}
// NormLogSf is the log of the survival function.
func NormLogSf(x float64, loc float64, scale float64) float64 {
return math.Log(1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2)))))
}
// NormPpf is the point percentile function.
// This is based on Peter John Acklam's inverse normal CDF.
// algorithm: http://home.online.no/~pjacklam/notes/invnorm/ (no longer visible).
// For more information please visit: https://stackedboxes.org/2017/05/01/acklams-normal-quantile-function/
func NormPpf(p float64, loc float64, scale float64) (x float64) {
const (
a1 = -3.969683028665376e+01
a2 = 2.209460984245205e+02
a3 = -2.759285104469687e+02
a4 = 1.383577518672690e+02
a5 = -3.066479806614716e+01
a6 = 2.506628277459239e+00
b1 = -5.447609879822406e+01
b2 = 1.615858368580409e+02
b3 = -1.556989798598866e+02
b4 = 6.680131188771972e+01
b5 = -1.328068155288572e+01
c1 = -7.784894002430293e-03
c2 = -3.223964580411365e-01
c3 = -2.400758277161838e+00
c4 = -2.549732539343734e+00
c5 = 4.374664141464968e+00
c6 = 2.938163982698783e+00
d1 = 7.784695709041462e-03
d2 = 3.224671290700398e-01
d3 = 2.445134137142996e+00
d4 = 3.754408661907416e+00
plow = 0.02425
phigh = 1 - plow
)
if p < 0 || p > 1 {
return math.NaN()
} else if p == 0 {
return -math.Inf(0)
} else if p == 1 {
return math.Inf(0)
}
if p < plow {
q := math.Sqrt(-2 * math.Log(p))
x = (((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) /
((((d1*q+d2)*q+d3)*q+d4)*q + 1)
} else if phigh < p {
q := math.Sqrt(-2 * math.Log(1-p))
x = -(((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) /
((((d1*q+d2)*q+d3)*q+d4)*q + 1)
} else {
q := p - 0.5
r := q * q
x = (((((a1*r+a2)*r+a3)*r+a4)*r+a5)*r + a6) * q /
(((((b1*r+b2)*r+b3)*r+b4)*r+b5)*r + 1)
}
e := 0.5*math.Erfc(-x/math.Sqrt2) - p
u := e * math.Sqrt(2*math.Pi) * math.Exp(x*x/2)
x = x - u/(1+x*u/2)
return x*scale + loc
}
// NormIsf is the inverse survival function (inverse of sf).
func NormIsf(p float64, loc float64, scale float64) (x float64) {
if -NormPpf(p, loc, scale) == 0 {
return 0
}
return -NormPpf(p, loc, scale)
}
// NormMoment approximates the non-central (raw) moment of order n.
// For more information please visit: https://math.stackexchange.com/questions/1945448/methods-for-finding-raw-moments-of-the-normal-distribution
func NormMoment(n int, loc float64, scale float64) float64 {
toReturn := 0.0
for i := 0; i < n+1; i++ {
if (n-i)%2 == 0 {
toReturn += float64(Ncr(n, i)) * (math.Pow(loc, float64(i))) * (math.Pow(scale, float64(n-i))) *
(float64(factorial(n-i)) / ((math.Pow(2.0, float64((n-i)/2))) *
float64(factorial((n-i)/2))))
}
}
return toReturn
}
// NormStats returns the mean, variance, skew, and/or kurtosis.
// Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
// Takes string containing any of 'mvsk'.
// Returns array of m v s k in that order.
func NormStats(loc float64, scale float64, moments string) []float64 {
var toReturn []float64
if strings.ContainsAny(moments, "m") {
toReturn = append(toReturn, loc)
}
if strings.ContainsAny(moments, "v") {
toReturn = append(toReturn, math.Pow(scale, 2))
}
if strings.ContainsAny(moments, "s") {
toReturn = append(toReturn, 0.0)
}
if strings.ContainsAny(moments, "k") {
toReturn = append(toReturn, 0.0)
}
return toReturn
}
// NormEntropy is the differential entropy of the RV.
func NormEntropy(loc float64, scale float64) float64 {
return math.Log(scale * math.Sqrt(2*math.Pi*math.E))
}
// NormFit returns the maximum likelihood estimators for the Normal Distribution.
// Takes array of float64 values.
// Returns array of Mean followed by Standard Deviation.
func NormFit(data []float64) [2]float64 {
sum := 0.00
for i := 0; i < len(data); i++ {
sum += data[i]
}
mean := sum / float64(len(data))
stdNumerator := 0.00
for i := 0; i < len(data); i++ {
stdNumerator += math.Pow(data[i]-mean, 2)
}
return [2]float64{mean, math.Sqrt((stdNumerator) / (float64(len(data))))}
}
// NormMedian is the median of the distribution.
func NormMedian(loc float64, scale float64) float64 {
return loc
}
// NormMean is the mean/expected value of the distribution.
func NormMean(loc float64, scale float64) float64 {
return loc
}
// NormVar is the variance of the distribution.
func NormVar(loc float64, scale float64) float64 {
return math.Pow(scale, 2)
}
// NormStd is the standard deviation of the distribution.
func NormStd(loc float64, scale float64) float64 {
return scale
}
// NormInterval finds endpoints of the range that contains alpha percent of the distribution.
func NormInterval(alpha float64, loc float64, scale float64) [2]float64 {
q1 := (1.0 - alpha) / 2
q2 := (1.0 + alpha) / 2
a := NormPpf(q1, loc, scale)
b := NormPpf(q2, loc, scale)
return [2]float64{a, b}
}
// factorial is the naive factorial algorithm.
func factorial(x int) int {
if x == 0 {
return 1
}
return x * factorial(x-1)
}
// Ncr is an N choose R algorithm.
// Aaron Cannon's algorithm.
func Ncr(n, r int) int {
if n <= 1 || r == 0 || n == r {
return 1
}
if newR := n - r; newR < r {
r = newR
}
if r == 1 {
return n
}
ret := int(n - r + 1)
for i, j := ret+1, int(2); j <= r; i, j = i+1, j+1 {
ret = ret * i / j
}
return ret
}
|