1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
package merkletree
import (
"bytes"
"crypto/rand"
"crypto/sha256"
"math/big"
"strconv"
"testing"
)
// A MerkleTester contains data types that can be filled out manually to
// compare against function results.
type MerkleTester struct {
// data is the raw data of the Merkle tree.
data [][]byte
// leaves is the hashes of the data, and should be the same length.
leaves [][]byte
// roots contains the root hashes of Merkle trees of various heights using
// the data for input.
roots map[int][]byte
// proofSets contains proofs that certain data is in a Merkle tree. The
// first map is the number of leaves in the tree that the proof is for. The
// root of that tree can be found in roots. The second map is the
// proofIndex that was used when building the proof.
proofSets map[int]map[int][][]byte
*testing.T
}
// join returns the sha256 hash of 0x01 || a || b.
func (mt *MerkleTester) join(a, b []byte) []byte {
return sum(sha256.New(), append(append([]byte{1}, a...), b...))
}
// CreateMerkleTester creates a Merkle tester and manually fills out many of
// the expected values for constructing Merkle tree roots and Merkle tree
// proofs. These manual values can then be compared against the values that the
// Tree creates.
func CreateMerkleTester(t *testing.T) (mt *MerkleTester) {
mt = &MerkleTester{
roots: make(map[int][]byte),
proofSets: make(map[int]map[int][][]byte),
}
mt.T = t
// Fill out the data and leaves values.
size := 16
for i := 0; i < size; i++ {
mt.data = append(mt.data, []byte{byte(i)})
}
for i := 0; i < size; i++ {
mt.leaves = append(mt.leaves, sum(sha256.New(), append([]byte{0}, mt.data[i]...)))
}
// Manually build out expected Merkle root values.
mt.roots[0] = nil
mt.roots[1] = mt.leaves[0]
mt.roots[2] = mt.join(mt.leaves[0], mt.leaves[1])
mt.roots[3] = mt.join(
mt.roots[2],
mt.leaves[2],
)
mt.roots[4] = mt.join(
mt.roots[2],
mt.join(mt.leaves[2], mt.leaves[3]),
)
mt.roots[5] = mt.join(
mt.roots[4],
mt.leaves[4],
)
mt.roots[6] = mt.join(
mt.roots[4],
mt.join(
mt.leaves[4],
mt.leaves[5],
),
)
mt.roots[7] = mt.join(
mt.roots[4],
mt.join(
mt.join(mt.leaves[4], mt.leaves[5]),
mt.leaves[6],
),
)
mt.roots[8] = mt.join(
mt.roots[4],
mt.join(
mt.join(mt.leaves[4], mt.leaves[5]),
mt.join(mt.leaves[6], mt.leaves[7]),
),
)
mt.roots[15] = mt.join(
mt.roots[8],
mt.join(
mt.join(
mt.join(mt.leaves[8], mt.leaves[9]),
mt.join(mt.leaves[10], mt.leaves[11]),
),
mt.join(
mt.join(mt.leaves[12], mt.leaves[13]),
mt.leaves[14],
),
),
)
// Manually build out some proof sets that should should match what the
// Tree creates for the same values.
mt.proofSets[1] = make(map[int][][]byte)
mt.proofSets[1][0] = [][]byte{mt.data[0]}
mt.proofSets[2] = make(map[int][][]byte)
mt.proofSets[2][0] = [][]byte{
mt.data[0],
mt.leaves[1],
}
mt.proofSets[2][1] = [][]byte{
mt.data[1],
mt.leaves[0],
}
mt.proofSets[5] = make(map[int][][]byte)
mt.proofSets[5][4] = [][]byte{
mt.data[4],
mt.roots[4],
}
mt.proofSets[6] = make(map[int][][]byte)
mt.proofSets[6][0] = [][]byte{
mt.data[0],
mt.leaves[1],
mt.join(
mt.leaves[2],
mt.leaves[3],
),
mt.join(
mt.leaves[4],
mt.leaves[5],
),
}
mt.proofSets[6][2] = [][]byte{
mt.data[2],
mt.leaves[3],
mt.roots[2],
mt.join(
mt.leaves[4],
mt.leaves[5],
),
}
mt.proofSets[6][4] = [][]byte{
mt.data[4],
mt.leaves[5],
mt.roots[4],
}
mt.proofSets[6][5] = [][]byte{
mt.data[5],
mt.leaves[4],
mt.roots[4],
}
mt.proofSets[7] = make(map[int][][]byte)
mt.proofSets[7][5] = [][]byte{
mt.data[5],
mt.leaves[4],
mt.leaves[6],
mt.roots[4],
}
mt.proofSets[15] = make(map[int][][]byte)
mt.proofSets[15][3] = [][]byte{
mt.data[3],
mt.leaves[2],
mt.roots[2],
mt.join(
mt.join(mt.leaves[4], mt.leaves[5]),
mt.join(mt.leaves[6], mt.leaves[7]),
),
mt.join(
mt.join(
mt.join(mt.leaves[8], mt.leaves[9]),
mt.join(mt.leaves[10], mt.leaves[11]),
),
mt.join(
mt.join(mt.leaves[12], mt.leaves[13]),
mt.leaves[14],
),
),
}
mt.proofSets[15][10] = [][]byte{
mt.data[10],
mt.leaves[11],
mt.join(
mt.leaves[8],
mt.leaves[9],
),
mt.join(
mt.join(mt.leaves[12], mt.leaves[13]),
mt.leaves[14],
),
mt.roots[8],
}
mt.proofSets[15][13] = [][]byte{
mt.data[13],
mt.leaves[12],
mt.leaves[14],
mt.join(
mt.join(mt.leaves[8], mt.leaves[9]),
mt.join(mt.leaves[10], mt.leaves[11]),
),
mt.roots[8],
}
return
}
// TestBuildRoot checks that the root returned by Tree matches the manually
// created roots for all of the manually created roots.
func TestBuildRoot(t *testing.T) {
mt := CreateMerkleTester(t)
// Compare the results of calling Root against all of the manually
// constructed Merkle trees.
var tree *Tree
for i, root := range mt.roots {
// Fill out the tree.
tree = New(sha256.New())
for j := 0; j < i; j++ {
tree.Push(mt.data[j])
}
// Get the root and compare to the manually constructed root.
treeRoot := tree.Root()
if bytes.Compare(root, treeRoot) != 0 {
t.Error("tree root doesn't match manual root for index", i)
}
}
}
// TestBuildAndVerifyProof builds a proof using a tree for every single
// manually created proof in the MerkleTester. Then it checks that the proof
// matches the manually created proof, and that the proof is verified by
// VerifyProof. Then it checks that the proof fails for all other indices,
// which should happen if all of the leaves are unique.
func TestBuildAndVerifyProof(t *testing.T) {
mt := CreateMerkleTester(t)
// Compare the results of building a Merkle proof to all of the manually
// constructed proofs.
tree := New(sha256.New())
for i, manualProveSets := range mt.proofSets {
for j, expectedProveSet := range manualProveSets {
// Build out the tree.
tree = New(sha256.New())
err := tree.SetIndex(uint64(j))
if err != nil {
t.Fatal(err)
}
for k := 0; k < i; k++ {
tree.Push(mt.data[k])
}
// Get the proof and check all values.
merkleRoot, proofSet, proofIndex, numSegments := tree.Prove()
if bytes.Compare(merkleRoot, mt.roots[i]) != 0 {
t.Error("incorrect Merkle root returned by Tree for indices", i, j)
}
if len(proofSet) != len(expectedProveSet) {
t.Error("proof set is wrong length for indices", i, j)
continue
}
if proofIndex != uint64(j) {
t.Error("incorrect proofIndex returned for indices", i, j)
}
if numSegments != uint64(i) {
t.Error("incorrect numSegments returned for indices", i, j)
}
for k := range proofSet {
if bytes.Compare(proofSet[k], expectedProveSet[k]) != 0 {
t.Error("proof set does not match expected proof set for indices", i, j, k)
}
}
// Check that verification works on for the desired proof index but
// fails for all other indices.
if !VerifyProof(sha256.New(), merkleRoot, proofSet, proofIndex, numSegments) {
t.Error("proof set does not verify for indices", i, j)
}
for k := uint64(0); k < uint64(i); k++ {
if k == proofIndex {
continue
}
if VerifyProof(sha256.New(), merkleRoot, proofSet, k, numSegments) {
t.Error("proof set verifies for wrong index at indices", i, j, k)
}
}
// Check that calling Prove a second time results in the same
// values.
merkleRoot2, proofSet2, proofIndex2, numSegments2 := tree.Prove()
if bytes.Compare(merkleRoot, merkleRoot2) != 0 {
t.Error("tree returned different merkle roots after calling Prove twice for indices", i, j)
}
if len(proofSet) != len(proofSet2) {
t.Error("tree returned different proof sets after calling Prove twice for indices", i, j)
}
for k := range proofSet {
if bytes.Compare(proofSet[k], proofSet2[k]) != 0 {
t.Error("tree returned different proof sets after calling Prove twice for indices", i, j)
}
}
if proofIndex != proofIndex2 {
t.Error("tree returned different proof indexes after calling Prove twice for indices", i, j)
}
if numSegments != numSegments2 {
t.Error("tree returned different segment count after calling Prove twice for indices", i, j)
}
}
}
}
// TestBadInputs provides malicious inputs to the functions of the package,
// trying to trigger panics or unexpected behavior.
func TestBadInputs(t *testing.T) {
// Get the root and proof of an empty tree.
tree := New(sha256.New())
root := tree.Root()
if root != nil {
t.Error("root of empty tree should be nil")
}
_, proof, _, _ := tree.Prove()
if proof != nil {
t.Error("proof of empty tree should be nil")
}
// Get the proof of a tree that hasn't reached it's index.
err := tree.SetIndex(3)
if err != nil {
t.Fatal(err)
}
tree.Push([]byte{1})
_, proof, _, _ = tree.Prove()
if proof != nil {
t.Fatal(err)
}
err = tree.SetIndex(2)
if err == nil {
t.Error("expecting error, shouldn't be able to reset a tree after pushing")
}
// Try nil values in VerifyProof.
mt := CreateMerkleTester(t)
if VerifyProof(sha256.New(), nil, mt.proofSets[1][0], 0, 1) {
t.Error("VerifyProof should return false for nil merkle root")
}
if VerifyProof(sha256.New(), []byte{1}, nil, 0, 1) {
t.Error("VerifyProof should return false for nil proof set")
}
if VerifyProof(sha256.New(), mt.roots[15], mt.proofSets[15][3][1:], 3, 15) {
t.Error("VerifyProof should return false for too-short proof set")
}
if VerifyProof(sha256.New(), mt.roots[15], mt.proofSets[15][10][1:], 10, 15) {
t.Error("VerifyProof should return false for too-short proof set")
}
if VerifyProof(sha256.New(), mt.roots[15], mt.proofSets[15][10], 15, 0) {
t.Error("VerifyProof should return false when numLeaves is 0")
}
}
// TestCompatibility runs BuildProof for a large set of trees, and checks that
// verify affirms each proof, while rejecting for all other indexes (this
// second half requires that all input data be unique). The test checks that
// build and verify are internally consistent, but doesn't check for actual
// correctness.
func TestCompatibility(t *testing.T) {
if testing.Short() {
t.SkipNow()
}
// Brute force all trees up to size 'max'. Running time for this test is max^3.
max := uint64(129)
tree := New(sha256.New())
for i := uint64(1); i < max; i++ {
// Try with proof at every possible index.
for j := uint64(0); j < i; j++ {
// Push unique data into the tree.
tree = New(sha256.New())
err := tree.SetIndex(j)
if err != nil {
t.Fatal(err)
}
for k := uint64(0); k < i; k++ {
tree.Push([]byte{byte(k)})
}
// Build the proof for the tree and run it through verify.
merkleRoot, proofSet, proofIndex, numLeaves := tree.Prove()
if !VerifyProof(sha256.New(), merkleRoot, proofSet, proofIndex, numLeaves) {
t.Error("proof didn't verify for indices", i, j)
}
// Check that verification fails for all other indices.
for k := uint64(0); k < i; k++ {
if k == j {
continue
}
if VerifyProof(sha256.New(), merkleRoot, proofSet, k, numLeaves) {
t.Error("proof verified for indices", i, j, k)
}
}
}
}
// Check that proofs on larger trees are consistent.
for i := 0; i < 25; i++ {
// Determine a random size for the tree up to 64M elements.
sizeI, err := rand.Int(rand.Reader, big.NewInt(256e3))
if err != nil {
t.Fatal(err)
}
size := uint64(sizeI.Int64())
proofIndexI, err := rand.Int(rand.Reader, sizeI)
if err != nil {
t.Fatal(err)
}
proofIndex := uint64(proofIndexI.Int64())
// Prepare the tree.
tree = New(sha256.New())
err = tree.SetIndex(proofIndex)
if err != nil {
t.Fatal(err)
}
// Insert 'size' unique elements.
for j := 0; j < int(size); j++ {
elem := []byte(strconv.Itoa(j))
tree.Push(elem)
}
// Get the proof for the tree and run it through verify.
merkleRoot, proofSet, proofIndex, numLeaves := tree.Prove()
if !VerifyProof(sha256.New(), merkleRoot, proofSet, proofIndex, numLeaves) {
t.Error("proof didn't verify in long test", size, proofIndex)
}
}
}
// TestLeafCounts checks that the number of leaves in the tree are being
// reported correctly.
func TestLeafCounts(t *testing.T) {
tree := New(sha256.New())
err := tree.SetIndex(0)
if err != nil {
t.Fatal(err)
}
_, _, _, leaves := tree.Prove()
if leaves != 0 {
t.Error("bad reporting of leaf count")
}
tree = New(sha256.New())
err = tree.SetIndex(0)
if err != nil {
t.Fatal(err)
}
tree.Push([]byte{})
_, _, _, leaves = tree.Prove()
if leaves != 1 {
t.Error("bad reporting on leaf count")
}
}
// BenchmarkSha256_4MB uses sha256 to hash 4mb of data.
func BenchmarkSha256_4MB(b *testing.B) {
data := make([]byte, 4*1024*1024)
_, err := rand.Read(data)
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
sha256.Sum256(data)
}
}
// BenchmarkTree64_4MB creates a Merkle tree out of 4MB using a segment size of
// 64 bytes, using sha256.
func BenchmarkTree64_4MB(b *testing.B) {
data := make([]byte, 4*1024*1024)
_, err := rand.Read(data)
if err != nil {
b.Fatal(err)
}
segmentSize := 64
b.ResetTimer()
tree := New(sha256.New())
for i := 0; i < b.N; i++ {
for j := 0; j < len(data)/segmentSize; j++ {
tree.Push(data[j*segmentSize : (j+1)*segmentSize])
}
tree.Root()
}
}
// BenchmarkTree4k_4MB creates a Merkle tree out of 4MB using a segment size of
// 4096 bytes, using sha256.
func BenchmarkTree4k_4MB(b *testing.B) {
data := make([]byte, 4*1024*1024)
_, err := rand.Read(data)
if err != nil {
b.Fatal(err)
}
segmentSize := 4096
b.ResetTimer()
tree := New(sha256.New())
for i := 0; i < b.N; i++ {
for j := 0; j < len(data)/segmentSize; j++ {
tree.Push(data[j*segmentSize : (j+1)*segmentSize])
}
tree.Root()
}
}
|