1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
|
package writeaheadlog
// TODO: Make it so that not every update changes the silo data. That will
// probably make the test run a lot faster overall.
import (
"bytes"
"encoding/binary"
"encoding/hex"
"fmt"
"os"
"path/filepath"
"sync"
"testing"
"time"
"github.com/NebulousLabs/errors"
"github.com/NebulousLabs/fastrand"
"golang.org/x/crypto/blake2b"
)
type (
// A silo is a simulated group of data that requires using the full
// featureset of the wal for maximum performance. The silo is a list of
// numbers followed by a checksum. The numbers form a ring (the first
// number follows the last number) that has strictly increasing values,
// except for one place within the ring where the next number is smaller
// than the previous.
//
// The checksum is the checksum of the silo data plus some external data.
// The external data exists in a file with the same name as checksum. The
// external data should always be available if the silo exists. There
// should also be exactly one external file per file and not more if the
// full database is intact and has been consistently managed.
silo struct {
// List of numbers in silo and the index of the next number that will
// be incremented.
nextNumber uint32
numbers []uint32
// The checksum of last written data file
cs checksum
// Utilities
deps dependencies
f file // database file holding silo
offset int64 // offset within database
skip bool // skips the next startup and verification of the silo
}
// A siloUpdate contains an update to the silo. There is a number that
// needs to be written (it's the smallest number in the silo), as well as
// an update to the checksum because the blob file associated with the silo
// has changed.
siloUpdate struct {
offset int64 // Location in the file where we need to write a number.
number uint32 // The number we need to write.
silo int64 // Offset of the silo within the file.
// Datafile checksum management.
prevChecksum checksum // Need to remove the corresponding file.
newChecksum checksum // Need to write the new checksum. File already exists.
checksumOffset int64 // Location to write the checksum.
}
)
// newSilo creates a new silo of a certain length at a specific offset in the
// file
func newSilo(offset int64, length int, deps dependencies, f file, dataPath string) (*silo, error) {
if length == 0 {
panic("numbers shouldn't be empty")
}
s := &silo{
offset: offset,
numbers: make([]uint32, length, length),
f: f,
deps: deps,
}
randomData := fastrand.Bytes(10 * pageSize)
s.cs = computeChecksum(randomData)
// Write initial checksum
_, err := s.f.WriteAt(s.cs[:], s.offset+int64(len(s.numbers)*4))
if err != nil {
return nil, err
}
// Do initial setup write
done := make(chan error)
go s.threadedSetupWrite(done, dataPath, randomData, s.cs)
return s, <-done
}
// marshal marshals a siloUpdate
func (su siloUpdate) marshal() []byte {
data := make([]byte, 28+2*checksumSize)
binary.LittleEndian.PutUint64(data[0:8], uint64(su.offset))
binary.LittleEndian.PutUint32(data[8:12], su.number)
binary.LittleEndian.PutUint64(data[12:20], uint64(su.silo))
binary.LittleEndian.PutUint64(data[20:28], uint64(su.checksumOffset))
copy(data[28:28+checksumSize], su.prevChecksum[:])
copy(data[28+checksumSize:], su.newChecksum[:])
return data
}
// unmarshal unmarshals a siloUpdate from data
func (su *siloUpdate) unmarshal(data []byte) {
if len(data) != 28+2*checksumSize {
panic("data has wrong size")
}
su.offset = int64(binary.LittleEndian.Uint64(data[0:8]))
su.number = binary.LittleEndian.Uint32(data[8:12])
su.silo = int64(binary.LittleEndian.Uint64(data[12:20]))
su.checksumOffset = int64(binary.LittleEndian.Uint64(data[20:28]))
copy(su.prevChecksum[:], data[28:28+checksumSize])
copy(su.newChecksum[:], data[28+checksumSize:])
return
}
// newUpdate create a WAL update from a siloUpdate
func (su *siloUpdate) newUpdate() Update {
update := Update{
Name: "This is my update. There are others like it but this one is mine",
Instructions: su.marshal(),
}
return update
}
// newSiloUpdate creates a new Silo update for a number at a specific index
func (s *silo) newSiloUpdate(index uint32, number uint32, pcs checksum) *siloUpdate {
return &siloUpdate{
number: number,
offset: s.offset + int64(4*(index)),
silo: s.offset,
prevChecksum: pcs,
checksumOffset: s.offset + int64(len(s.numbers)*4),
}
}
// checksum calculates the silos's current checksum given some data
func computeChecksum(d []byte) (cs checksum) {
c := blake2b.Sum256(d)
copy(cs[:], c[:])
return
}
// applyUpdate applies an update to a silo on disk
func (su siloUpdate) applyUpdate(silo *silo, dataPath string) error {
if silo == nil {
panic("silo shouldn't be nil")
}
// This update should be skipped this time
if silo.skip {
return nil
}
// Write number
data := make([]byte, 4)
binary.LittleEndian.PutUint32(data[:], su.number)
_, err := silo.f.WriteAt(data[:], su.offset)
if err != nil {
return err
}
// Write new checksum
_, err = silo.f.WriteAt(su.newChecksum[:], su.checksumOffset)
if err != nil {
return err
}
// If a new datafile was created we can delete the old one
if bytes.Compare(su.prevChecksum[:], su.newChecksum[:]) != 0 {
err = silo.deps.remove(filepath.Join(dataPath, hex.EncodeToString(su.prevChecksum[:])))
if err != nil && !os.IsNotExist(err) {
return err
}
}
// Update the silos cs field
silo.cs = su.newChecksum
return nil
}
// threadedSetupWrite simulates a setup by updating the checksum and writing
// random data to a file which uses the checksum as a filename
func (s *silo) threadedSetupWrite(done chan error, dataPath string, randomData []byte, ncs checksum) {
// signal completion
defer close(done)
// write new data file
newFile, err := s.deps.create(filepath.Join(dataPath, hex.EncodeToString(ncs[:])))
if err != nil {
done <- err
return
}
_, err = newFile.Write(randomData)
if err != nil {
done <- err
return
}
syncErr := newFile.Sync()
if err := newFile.Close(); err != nil {
done <- err
return
}
// sync changes
done <- syncErr
}
// threadedUpdate updates a silo until a sync fails
func (s *silo) threadedUpdate(t *testing.T, w *WAL, dataPath string, wg *sync.WaitGroup) {
defer wg.Done()
// This silo has unfinished transactions. Skip it.
if s.skip {
return
}
// Allocate some memory for the updates
sus := make([]*siloUpdate, 0, len(s.numbers))
// Create some random data and the corresponding checksum for creating data
// files
randomData := fastrand.Bytes(10 * pageSize)
ncs := computeChecksum(randomData)
// Make sure we start at the beginning of the numbers slice. We need this
// since there is a chance that nextNumber gets increased without updates
// being applied. This means that we miss a couple of numbers and we might
// end up with a slice like [1,2,3,0,0,0,1,2,3,4,5,0,0,0] which is
// corrupted.
s.nextNumber = 0
// This thread will execute until the dependency of the silo causes a file
// sync to fail
for {
// Change between 1 and len(s.numbers)
length := fastrand.Intn(len(s.numbers)) + 1
appendFrom := length
for j := 0; j < length; j++ {
if appendFrom == length && j > 0 && fastrand.Intn(500) == 0 {
// There is a 0.5% chance that the remaing updates will be
// appended after the transaction was created
appendFrom = j
}
if s.nextNumber == 0 {
s.numbers[s.nextNumber] = (s.numbers[len(s.numbers)-1] + 1)
} else {
s.numbers[s.nextNumber] = (s.numbers[s.nextNumber-1] + 1)
}
// Create siloUpdate
su := s.newSiloUpdate(s.nextNumber, s.numbers[s.nextNumber], s.cs)
sus = append(sus, su)
// Increment the index. If that means we reach the end, set it to 0
s.nextNumber = (s.nextNumber + 1) % uint32(len(s.numbers))
}
// 10% chance to write new data file
newFile := false
if fastrand.Intn(10) == 0 {
newFile = true
}
// Set the siloUpdates checksum correctly and create the corresponding
// update
updates := make([]Update, 0, len(s.numbers))
for _, su := range sus {
// If we create a new file we need to set the checksum accordingly
if newFile {
copy(su.newChecksum[:], ncs[:])
} else {
su.newChecksum = su.prevChecksum
}
updates = append(updates, su.newUpdate())
}
// Create txn
txn, err := w.NewTransaction(updates[:appendFrom])
if err != nil {
t.Error(err)
return
}
// Create new file during setup write if necessary
wait := make(chan error)
if newFile {
go s.threadedSetupWrite(wait, dataPath, randomData, ncs)
} else {
close(wait)
}
// Append the remaining updates
if err := <-txn.Append(updates[appendFrom:]); err != nil {
return
}
// Wait for setup to finish. If it wasn't successful there is no need
// to continue
if err := <-wait; err != nil {
return
}
// Signal setup complete
if err := <-txn.SignalSetupComplete(); err != nil {
return
}
// Reset random data and checksum if we used it
if newFile {
randomData = fastrand.Bytes(10 * pageSize)
ncs = computeChecksum(randomData)
}
// Apply the updates
for _, su := range sus {
if err := su.applyUpdate(s, dataPath); err != nil {
t.Error(err)
return
}
}
// Sync the updates
if err := s.f.Sync(); err != nil {
return
}
// Signal release complete
if err := txn.SignalUpdatesApplied(); err != nil {
return
}
// Reset
sus = sus[:0]
updates = updates[:0]
}
}
// toUint32Slice is a helper function to convert a byte slice to a uint32
// slice
func toUint32Slice(d []byte) []uint32 {
buf := bytes.NewBuffer(d)
converted := make([]uint32, len(d)/4, len(d)/4)
for i := 0; i < len(converted); i++ {
converted[i] = binary.LittleEndian.Uint32(buf.Next(4))
}
return converted
}
// verifyNumbers checks the numbers of a silo for corruption
func verifyNumbers(numbers []uint32) error {
// Handle corner cases
if len(numbers) == 0 {
return errors.New("len of numbers is 0")
}
if len(numbers) == 1 {
return nil
}
// Count the number of dips. Shouldn't be greater than 1
dips := 0
for i := 1; i < len(numbers); i++ {
if numbers[i] < numbers[i-1] {
dips++
}
}
// Check for the dip from the last number to the first number.
if numbers[0] < numbers[len(numbers)-1] {
dips++
}
if dips > 1 {
return fmt.Errorf("numbers are corrupted %v", numbers)
}
return nil
}
// recoverSiloWAL recovers the WAL after a crash. This will be called
// repeatedly until it finishes.
func recoverSiloWAL(walPath string, deps *dependencyFaultyDisk, silos map[int64]*silo, testdir string, file file, numSilos int64, numIncrease int) (numSkipped int64, err error) {
// Reload wal.
recoveredTxns, wal, err := newWal(walPath, deps)
if err != nil {
return 0, errors.Extend(errors.New("failed to reload WAL"), err)
}
defer func() {
if err != nil {
wal.logFile.Close()
}
}()
// Unmarshal updates and apply them
var appliedTxns []*Transaction
for _, txn := range recoveredTxns {
// 20% chance to skip transaction
skipTxn := fastrand.Intn(5) == 0
for _, update := range txn.Updates {
var su siloUpdate
su.unmarshal(update.Instructions)
silos[su.silo].skip = skipTxn
if err := su.applyUpdate(silos[su.silo], testdir); err != nil {
return 0, errors.Extend(errors.New("Failed to apply update"), err)
}
}
if !skipTxn {
appliedTxns = append(appliedTxns, txn)
}
}
// Sync the applied updates
if err := file.Sync(); err != nil {
return 0, errors.Extend(errors.New("Failed to sync database"), err)
}
// Check numbers and checksums
numbers := make([]byte, numSilos*int64(numIncrease)*4)
var cs checksum
for _, silo := range silos {
// We didn't apply the changes for this silo. Skip it this time.
if silo.skip {
continue
}
// Adjust the size of numbers
numbers = numbers[:4*len(silo.numbers)]
// Read numbers and checksum
if _, err := silo.f.ReadAt(numbers, silo.offset); err != nil {
return 0, errors.Extend(errors.New("Failed to read numbers of silo"), err)
}
if _, err := silo.f.ReadAt(cs[:], silo.offset+int64(4*len(silo.numbers))); err != nil {
return 0, errors.Extend(errors.New("Failed to read checksum of silo"), err)
}
// Check numbers for corruption
parsedNumbers := toUint32Slice(numbers)
if err := verifyNumbers(parsedNumbers); err != nil {
return 0, err
}
// Check if a file for the checksum exists
csHex := hex.EncodeToString(cs[:])
if _, err := os.Stat(filepath.Join(testdir, csHex)); os.IsNotExist(err) {
return 0, fmt.Errorf("No file for the following checksum exists: %v", csHex)
}
// Reset silo numbers in memory
silo.numbers = parsedNumbers
}
for _, txn := range appliedTxns {
if err := txn.SignalUpdatesApplied(); err != nil {
return 0, errors.Extend(errors.New("Failed to signal applied updates"), err)
}
}
// Close the wal
var openTxns int64
if openTxns, err = wal.CloseIncomplete(); err != nil {
return 0, errors.Extend(errors.New("Failed to close WAL"), err)
}
// Sanity check open transactions
if int64(len(recoveredTxns)-len(appliedTxns)) != openTxns {
panic("Number of skipped txns doesn't match number of open txns")
}
return openTxns, nil
}
// newSiloDatabase will create a silo database that overwrites any existing
// silo database.
func newSiloDatabase(deps *dependencyFaultyDisk, dbPath, walPath string, dataPath string, numSilos int64, numIncrease int, numSkipped int64) (map[int64]*silo, *WAL, file, error) {
// Create the database file.
file, err := deps.create(dbPath)
if err != nil {
return nil, nil, nil, err
}
// Create the wal.
recoveredTxns, wal, err := newWal(walPath, deps)
if err != nil {
return nil, nil, nil, err
}
// The wal might contain skipped transactions. Apply them.
if int64(len(recoveredTxns)) != numSkipped {
return nil, nil, nil, fmt.Errorf("Expected %v txns but was %v", numSkipped, len(recoveredTxns))
}
for _, txn := range recoveredTxns {
if err := txn.SignalUpdatesApplied(); err != nil {
return nil, nil, nil, err
}
}
// Create and initialize the silos.
var siloOffset int64
var siloOffsets []int64
var silos = make(map[int64]*silo)
for i := 0; int64(i) < numSilos; i++ {
silo, err := newSilo(siloOffset, 1+i*numIncrease, deps, file, dataPath)
if err != nil {
return nil, nil, nil, errors.Extend(errors.New("failed to init silo"), err)
}
siloOffsets = append(siloOffsets, siloOffset)
silos[siloOffset] = silo
siloOffset += int64(len(silo.numbers)*4) + checksumSize
}
return silos, wal, file, nil
}
// TestSilo is an integration test that is supposed to test all the features of
// the WAL in a single testcase. It uses 120 silos updating 250 times each and
// has a time limit of 5 minutes (long) or 30 seconds (short).
func TestSilo(t *testing.T) {
// Declare some vars to configure the loop
numSilos := int64(120)
numIncrease := 45
maxIters := 250
endTime := time.Now().Add(5 * time.Minute)
// Test should only run 30 seconds in short mode.
if testing.Short() {
endTime = time.Now().Add(30 * time.Second)
}
// Create the folder and establish the filepaths.
deps := newFaultyDiskDependency(10e6)
testdir := tempDir("wal", t.Name())
os.MkdirAll(testdir, 0777)
dbPath := filepath.Join(testdir, "database.dat")
walPath := filepath.Join(testdir, "wal.dat")
// Create the silo database. Disable deps before doing that. Otherwise the
// test might fail right away
deps.disable()
silos, wal, file, err := newSiloDatabase(deps, dbPath, walPath, testdir, numSilos, numIncrease, 0)
if err != nil {
t.Fatal(err)
}
deps.enable()
// Run the silo update threads, and simulate pulling the plub on the
// filesystem repeatedly.
i := 0
maxRetries := 0
totalRetries := 0
numSkipped := int64(0)
totalSkipped := int64(0)
for i = 0; i < maxIters; i++ {
if time.Now().After(endTime) {
// Stop if test takes too long
break
}
// Reset the dependencies for this iteration.
deps.reset()
// Randomly decide between resetting the database entirely and opening
// the database from the previous iteration. Have the dependecies
// disabled during this process to guarantee clean startup. Later in
// the loop we perform recovery on the corrupted wal in a way that
// ensures recovery can survive consecutive random failures.
deps.disable()
if fastrand.Intn(3) == 0 {
// Reset database.
silos, wal, file, err = newSiloDatabase(deps, dbPath, walPath, testdir, numSilos, numIncrease, numSkipped)
if err != nil {
t.Fatal(err)
}
} else {
// Resume with existing database.
var recoveredTxns []*Transaction
recoveredTxns, wal, err = newWal(walPath, deps)
if int64(len(recoveredTxns)) != numSkipped || err != nil {
t.Fatal(recoveredTxns, err)
}
}
deps.enable()
// Spin up all of the silo threads.
var wg sync.WaitGroup
for _, silo := range silos {
wg.Add(1)
go silo.threadedUpdate(t, wal, testdir, &wg)
}
// Wait for all the threads to fail
wg.Wait()
// Close wal.
if err := wal.logFile.Close(); err != nil {
t.Fatal(err)
}
// Repeatedly try to recover WAL. The dependencies get reset every
// recovery attempt. The failure rate of the dependecies is such that
// dozens of consecutive failures is not uncommon.
retries := 0
err = retry(100, time.Millisecond, func() error {
retries++
deps.reset()
if retries >= 100 {
// Could be getting unlucky - try to disable the faulty disk and
// see if we can recover all the way.
t.Log("Disabling dependencies during recovery - recovery filed 100 times in a row")
deps.disable()
defer deps.enable()
}
// Try to recover WAL
var err error
numSkipped, err = recoverSiloWAL(walPath, deps, silos, testdir, file, numSilos, numIncrease)
return err
})
if err != nil {
t.Fatalf("WAL never recovered: %v", err)
}
// Statistics about how many times we retry.
totalRetries += retries - 1
if retries > maxRetries {
maxRetries = retries - 1
}
// Statistics about how many transactions are skipped.
totalSkipped += numSkipped
}
// Fetch the size of the wal file for the stats reporting.
walFile, err := os.Open(walPath)
if err != nil {
t.Error("Failed to open wal:", err)
}
fi, err := walFile.Stat()
if err != nil {
t.Error("Failed to get wal stats:", err)
}
// Log the statistics about the running characteristics of the test.
t.Logf("Number of iterations: %v", i)
t.Logf("Max number of retries: %v", maxRetries)
t.Logf("Average number of retries: %v", totalRetries/i)
t.Logf("Average number of skipped txns: %v", float64(totalSkipped)/float64(i))
t.Logf("WAL size: %v bytes", fi.Size())
}
|