1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
|
// Copyright 2020 New Relic Corporation. All rights reserved.
// SPDX-License-Identifier: Apache-2.0
package newrelic
import (
"testing"
"time"
)
func assert(t testing.TB, expectTrue bool) {
if h, ok := t.(interface {
Helper()
}); ok {
h.Helper()
}
if !expectTrue {
t.Error(expectTrue)
}
}
func TestAdaptiveSampler(t *testing.T) {
start := time.Now()
sampler := newAdaptiveSampler(60*time.Second, 2, start)
// first period -- we're guaranteed to get 2 sampled
// due to our target, and we'll send through a total of 4
assert(t, sampler.computeSampled(0.0, start))
assert(t, sampler.computeSampled(0.0, start))
sampler.computeSampled(0.0, start)
sampler.computeSampled(0.0, start)
// Next period! 4 calls in the last period means a new sample ratio
// of 1/2. Nothing with a priority less than the ratio will get through
now := start.Add(61 * time.Second)
assert(t, !sampler.computeSampled(0.0, now))
assert(t, !sampler.computeSampled(0.0, now))
assert(t, !sampler.computeSampled(0.0, now))
assert(t, !sampler.computeSampled(0.0, now))
assert(t, !sampler.computeSampled(0.49, now))
assert(t, !sampler.computeSampled(0.49, now))
// but these two will get through, and we'll still be under
// our target rate so there's no random sampling to deal with
assert(t, sampler.computeSampled(0.55, now))
assert(t, sampler.computeSampled(1.0, now))
// Next period! 8 calls in the last period means a new sample ratio
// of 1/4.
now = start.Add(121 * time.Second)
assert(t, !sampler.computeSampled(0.0, now))
assert(t, !sampler.computeSampled(0.5, now))
assert(t, !sampler.computeSampled(0.7, now))
assert(t, sampler.computeSampled(0.8, now))
}
func TestAdaptiveSamplerSkipPeriod(t *testing.T) {
start := time.Now()
sampler := newAdaptiveSampler(60*time.Second, 2, start)
// same as the previous test, we know we can get two through
// and we'll send a total of 4 through
assert(t, sampler.computeSampled(0.0, start))
assert(t, sampler.computeSampled(0.0, start))
sampler.computeSampled(0.0, start)
sampler.computeSampled(0.0, start)
// Two periods later! Since there was a period with no samples, priorityMin
// should be zero
now := start.Add(121 * time.Second)
assert(t, sampler.computeSampled(0.0, now))
assert(t, sampler.computeSampled(0.0, now))
}
func TestAdaptiveSamplerTarget(t *testing.T) {
var target uint64
target = 20
start := time.Now()
sampler := newAdaptiveSampler(60*time.Second, target, start)
// we should always sample up to the number of target events
for i := 0; uint64(i) < target; i++ {
assert(t, sampler.computeSampled(0.0, start))
}
// but now further calls to ComputeSampled are subject to exponential backoff.
// this means their sampling is subject to a bit of randomness and we have no
// guarantee of a true or false sample, just an increasing unlikeliness that
// things will be sampled
}
func TestAdaptiveSamplerTargetZero(t *testing.T) {
var target uint64
target = 0
start := time.Now()
sampler := newAdaptiveSampler(60*time.Second, target, start)
for i := 0; uint64(i) < 100; i++ {
assert(t, !sampler.computeSampled(0.0, start))
}
}
|