1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
# This package is no longer being updated! Please look for alternatives if that bothers you.
Resize
======
Image resizing for the [Go programming language](http://golang.org) with common interpolation methods.
[](https://travis-ci.org/nfnt/resize)
Installation
------------
```bash
$ go get github.com/nfnt/resize
```
It's that easy!
Usage
-----
This package needs at least Go 1.1. Import package with
```go
import "github.com/nfnt/resize"
```
The resize package provides 2 functions:
* `resize.Resize` creates a scaled image with new dimensions (`width`, `height`) using the interpolation function `interp`.
If either `width` or `height` is set to 0, it will be set to an aspect ratio preserving value.
* `resize.Thumbnail` downscales an image preserving its aspect ratio to the maximum dimensions (`maxWidth`, `maxHeight`).
It will return the original image if original sizes are smaller than the provided dimensions.
```go
resize.Resize(width, height uint, img image.Image, interp resize.InterpolationFunction) image.Image
resize.Thumbnail(maxWidth, maxHeight uint, img image.Image, interp resize.InterpolationFunction) image.Image
```
The provided interpolation functions are (from fast to slow execution time)
- `NearestNeighbor`: [Nearest-neighbor interpolation](http://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)
- `Bilinear`: [Bilinear interpolation](http://en.wikipedia.org/wiki/Bilinear_interpolation)
- `Bicubic`: [Bicubic interpolation](http://en.wikipedia.org/wiki/Bicubic_interpolation)
- `MitchellNetravali`: [Mitchell-Netravali interpolation](http://dl.acm.org/citation.cfm?id=378514)
- `Lanczos2`: [Lanczos resampling](http://en.wikipedia.org/wiki/Lanczos_resampling) with a=2
- `Lanczos3`: [Lanczos resampling](http://en.wikipedia.org/wiki/Lanczos_resampling) with a=3
Which of these methods gives the best results depends on your use case.
Sample usage:
```go
package main
import (
"github.com/nfnt/resize"
"image/jpeg"
"log"
"os"
)
func main() {
// open "test.jpg"
file, err := os.Open("test.jpg")
if err != nil {
log.Fatal(err)
}
// decode jpeg into image.Image
img, err := jpeg.Decode(file)
if err != nil {
log.Fatal(err)
}
file.Close()
// resize to width 1000 using Lanczos resampling
// and preserve aspect ratio
m := resize.Resize(1000, 0, img, resize.Lanczos3)
out, err := os.Create("test_resized.jpg")
if err != nil {
log.Fatal(err)
}
defer out.Close()
// write new image to file
jpeg.Encode(out, m, nil)
}
```
Caveats
-------
* Optimized access routines are used for `image.RGBA`, `image.NRGBA`, `image.RGBA64`, `image.NRGBA64`, `image.YCbCr`, `image.Gray`, and `image.Gray16` types. All other image types are accessed in a generic way that will result in slow processing speed.
* JPEG images are stored in `image.YCbCr`. This image format stores data in a way that will decrease processing speed. A resize may be up to 2 times slower than with `image.RGBA`.
Downsizing Samples
-------
Downsizing is not as simple as it might look like. Images have to be filtered before they are scaled down, otherwise aliasing might occur.
Filtering is highly subjective: Applying too much will blur the whole image, too little will make aliasing become apparent.
Resize tries to provide sane defaults that should suffice in most cases.
### Artificial sample
Original image

<table>
<tr>
<th><img src="http://nfnt.github.com/img/rings_300_NearestNeighbor.png" /><br>Nearest-Neighbor</th>
<th><img src="http://nfnt.github.com/img/rings_300_Bilinear.png" /><br>Bilinear</th>
</tr>
<tr>
<th><img src="http://nfnt.github.com/img/rings_300_Bicubic.png" /><br>Bicubic</th>
<th><img src="http://nfnt.github.com/img/rings_300_MitchellNetravali.png" /><br>Mitchell-Netravali</th>
</tr>
<tr>
<th><img src="http://nfnt.github.com/img/rings_300_Lanczos2.png" /><br>Lanczos2</th>
<th><img src="http://nfnt.github.com/img/rings_300_Lanczos3.png" /><br>Lanczos3</th>
</tr>
</table>
### Real-Life sample
Original image

<table>
<tr>
<th><img src="http://nfnt.github.com/img/IMG_3694_300_NearestNeighbor.png" /><br>Nearest-Neighbor</th>
<th><img src="http://nfnt.github.com/img/IMG_3694_300_Bilinear.png" /><br>Bilinear</th>
</tr>
<tr>
<th><img src="http://nfnt.github.com/img/IMG_3694_300_Bicubic.png" /><br>Bicubic</th>
<th><img src="http://nfnt.github.com/img/IMG_3694_300_MitchellNetravali.png" /><br>Mitchell-Netravali</th>
</tr>
<tr>
<th><img src="http://nfnt.github.com/img/IMG_3694_300_Lanczos2.png" /><br>Lanczos2</th>
<th><img src="http://nfnt.github.com/img/IMG_3694_300_Lanczos3.png" /><br>Lanczos3</th>
</tr>
</table>
License
-------
Copyright (c) 2012 Jan Schlicht <janschlicht@gmail.com>
Resize is released under a MIT style license.
|