1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
// Copyright The Notary Project Authors.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tspclient
import (
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"fmt"
"math/big"
"time"
"github.com/notaryproject/tspclient-go/pki"
)
// signingCertificateV2 contains certificate hash and identifier of the
// TSA signing certificate.
//
// Reference: RFC 5035 3 signingCertificateV2
//
// signingCertificateV2 ::= SEQUENCE {
// certs SEQUENCE OF ESSCertIDv2,
// policies SEQUENCE OF PolicyInformation OPTIONAL }
type signingCertificateV2 struct {
// Certificates contains the list of certificates. The first certificate
// MUST be the signing certificate used to verify the timestamp token.
Certificates []eSSCertIDv2
// Policies suggests policy values to be used in the certification path
// validation.
Policies asn1.RawValue `asn1:"optional"`
}
// eSSCertIDv2 uniquely identifies a certificate.
//
// Reference: RFC 5035 4
//
// eSSCertIDv2 ::= SEQUENCE {
// hashAlgorithm AlgorithmIdentifier
// DEFAULT {algorithm id-sha256},
// certHash Hash,
// issuerSerial IssuerSerial OPTIONAL }
type eSSCertIDv2 struct {
// HashAlgorithm is the hashing algorithm used to hash certificate.
// When it is not present, the default value is SHA256 (id-sha256).
// Supported values are SHA256, SHA384, and SHA512
HashAlgorithm pkix.AlgorithmIdentifier `asn1:"optional"`
// CertHash is the certificate hash using algorithm specified
// by HashAlgorithm. It is computed over the entire DER-encoded
// certificate (including the signature)
CertHash []byte
// IssuerSerial holds the issuer and serialNumber of the certificate.
// When it is not present, the SignerIdentifier field in the SignerInfo
// will be used.
IssuerSerial issuerAndSerial `asn1:"optional"`
}
// issuerAndSerial holds the issuer name and serialNumber of the certificate
//
// Reference: RFC 5035 4
//
// IssuerSerial ::= SEQUENCE {
// issuer GeneralNames,
// serialNumber CertificateSerialNumber }
type issuerAndSerial struct {
IssuerName generalNames
SerialNumber *big.Int
}
// generalNames holds the issuer name of the certificate.
//
// Reference: RFC 3280 4.2.1.7
//
// GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
//
// GeneralName ::= CHOICE {
// otherName [0] OtherName,
// rfc822Name [1] IA5String,
// dNSName [2] IA5String,
// x400Address [3] ORAddress,
// directoryName [4] Name,
// ediPartyName [5] EDIPartyName,
// uniformResourceIdentifier [6] IA5String,
// iPAddress [7] OCTET STRING,
// registeredID [8] OBJECT IDENTIFIER }
type generalNames struct {
Name asn1.RawValue `asn1:"optional,tag:4"`
}
// Response is a time-stamping response.
//
// TimeStampResp ::= SEQUENCE {
// status PKIStatusInfo,
// timeStampToken TimeStampToken OPTIONAL }
type Response struct {
Status pki.StatusInfo
TimestampToken asn1.RawValue `asn1:"optional"`
}
// MarshalBinary encodes the response to binary form.
// This method implements encoding.BinaryMarshaler.
//
// Reference: https://pkg.go.dev/encoding#BinaryMarshaler
func (r *Response) MarshalBinary() ([]byte, error) {
if r == nil {
return nil, errors.New("nil response")
}
return asn1.Marshal(*r)
}
// UnmarshalBinary decodes the response from binary form.
// This method implements encoding.BinaryUnmarshaler.
//
// Reference: https://pkg.go.dev/encoding#BinaryUnmarshaler
func (r *Response) UnmarshalBinary(data []byte) error {
_, err := asn1.Unmarshal(data, r)
return err
}
// SignedToken returns the timestamp token with signatures.
//
// Callers should invoke SignedToken.Verify to verify the content before
// comsumption.
func (r *Response) SignedToken() (*SignedToken, error) {
if err := r.validateStatus(); err != nil {
return nil, err
}
return ParseSignedToken(r.TimestampToken.FullBytes)
}
// Validate checks if resp is a successful timestamp response against
// its corresponding request based on RFC 3161.
// It is used when a timestamp requestor receives the response from TSA.
func (r *Response) Validate(req *Request) error {
if req == nil {
return &InvalidResponseError{Msg: "missing corresponding request"}
}
if r == nil {
return &InvalidResponseError{Msg: "response cannot be nil"}
}
if err := r.validateStatus(); err != nil {
return err
}
token, err := r.SignedToken()
if err != nil {
return &InvalidResponseError{Detail: err}
}
info, err := token.Info()
if err != nil {
return &InvalidResponseError{Detail: err}
}
if info.Version != 1 {
return &InvalidResponseError{Msg: fmt.Sprintf("timestamp token info version must be 1, but got %d", info.Version)}
}
// check policy
if req.ReqPolicy != nil && !req.ReqPolicy.Equal(info.Policy) {
return &InvalidResponseError{Msg: fmt.Sprintf("policy in response %v does not match policy in request %v", info.Policy, req.ReqPolicy)}
}
// check MessageImprint
if !info.MessageImprint.Equal(req.MessageImprint) {
return &InvalidResponseError{Msg: fmt.Sprintf("message imprint in response %+v does not match with request %+v", info.MessageImprint, req.MessageImprint)}
}
// check gen time to be UTC
// reference: https://datatracker.ietf.org/doc/html/rfc3161#section-2.4.2
genTime := info.GenTime
if genTime.Location() != time.UTC {
return &InvalidResponseError{Msg: "TSTInfo genTime must be in UTC"}
}
// check nonce
if req.Nonce != nil {
responseNonce := info.Nonce
if responseNonce == nil || responseNonce.Cmp(req.Nonce) != 0 {
return &InvalidResponseError{Msg: fmt.Sprintf("nonce in response %s does not match nonce in request %s", responseNonce, req.Nonce)}
}
}
// check certReq
if req.CertReq {
for _, signerInfo := range token.SignerInfos {
if _, err := token.SigningCertificate(&signerInfo); err == nil {
// found at least one signing certificate
return nil
}
}
// no signing certificate was found
return &InvalidResponseError{Msg: "certReq is True in request, but did not find any TSA signing certificate in the response"}
}
if len(token.Certificates) != 0 {
return &InvalidResponseError{Msg: "certReq is False in request, but certificates field is included in the response"}
}
return nil
}
// validateStatus validates the response.Status
//
// Reference: RFC 3161 2.4.2
func (r *Response) validateStatus() error {
if err := r.Status.Err(); err != nil {
return &InvalidResponseError{Detail: err}
}
return nil
}
|