1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
package rardecode
import (
"bytes"
"encoding/binary"
"hash/crc32"
"io"
"math"
)
const (
fileSize = 0x1000000
vmGlobalAddr = 0x3C000
vmGlobalSize = 0x02000
vmFixedGlobalSize = 0x40
)
// v3Filter is the interface type for RAR V3 filters.
// v3Filter performs the same function as the filter type, except that it also takes
// the initial register values r, and global data as input for the RAR V3 VM.
type v3Filter func(r map[int]uint32, global, buf []byte, offset int64) ([]byte, error)
var (
// standardV3Filters is a list of known filters. We can replace the use of a vm
// filter with a custom filter function.
standardV3Filters = []struct {
crc uint32 // crc of code byte slice for filter
len int // length of code byte slice for filter
f v3Filter // replacement filter function
}{
{0xad576887, 53, e8FilterV3},
{0x3cd7e57e, 57, e8e9FilterV3},
{0x3769893f, 120, itaniumFilterV3},
{0x0e06077d, 29, deltaFilterV3},
{0x1c2c5dc8, 149, filterRGBV3},
{0xbc85e701, 216, filterAudioV3},
}
// itanium filter byte masks
byteMask = []int{4, 4, 6, 6, 0, 0, 7, 7, 4, 4, 0, 0, 4, 4, 0, 0}
)
func filterE8(c byte, v5 bool, buf []byte, offset int64) ([]byte, error) {
off := int32(offset)
for b := buf; len(b) >= 5; {
ch := b[0]
b = b[1:]
off++
if ch != 0xe8 && ch != c {
continue
}
if v5 {
off %= fileSize
}
addr := int32(binary.LittleEndian.Uint32(b))
if addr < 0 {
if addr+off >= 0 {
binary.LittleEndian.PutUint32(b, uint32(addr+fileSize))
}
} else if addr < fileSize {
binary.LittleEndian.PutUint32(b, uint32(addr-off))
}
off += 4
b = b[4:]
}
return buf, nil
}
func e8FilterV3(r map[int]uint32, global, buf []byte, offset int64) ([]byte, error) {
return filterE8(0xe8, false, buf, offset)
}
func e8e9FilterV3(r map[int]uint32, global, buf []byte, offset int64) ([]byte, error) {
return filterE8(0xe9, false, buf, offset)
}
func getBits(buf []byte, pos, count uint) uint32 {
n := binary.LittleEndian.Uint32(buf[pos/8:])
n >>= pos & 7
mask := uint32(math.MaxUint32) >> (32 - count)
return n & mask
}
func setBits(buf []byte, pos, count uint, bits uint32) {
mask := uint32(math.MaxUint32) >> (32 - count)
mask <<= pos & 7
bits <<= pos & 7
n := binary.LittleEndian.Uint32(buf[pos/8:])
n = (n & ^mask) | (bits & mask)
binary.LittleEndian.PutUint32(buf[pos/8:], n)
}
func itaniumFilterV3(r map[int]uint32, global, buf []byte, offset int64) ([]byte, error) {
fileOffset := uint32(offset) >> 4
for b := buf; len(b) > 21; b = b[16:] {
c := int(b[0]&0x1f) - 0x10
if c >= 0 {
mask := byteMask[c]
if mask != 0 {
for i := uint(0); i <= 2; i++ {
if mask&(1<<i) == 0 {
continue
}
pos := i*41 + 18
if getBits(b, pos+24, 4) == 5 {
n := getBits(b, pos, 20)
n -= fileOffset
setBits(b, pos, 20, n)
}
}
}
}
fileOffset++
}
return buf, nil
}
func filterDelta(n int, buf []byte) ([]byte, error) {
var res []byte
l := len(buf)
if cap(buf) >= 2*l {
res = buf[l : 2*l] // use unused capacity
} else {
res = make([]byte, l, 2*l)
}
i := 0
for j := 0; j < n; j++ {
var c byte
for k := j; k < len(res); k += n {
c -= buf[i]
i++
res[k] = c
}
}
return res, nil
}
func deltaFilterV3(r map[int]uint32, global, buf []byte, offset int64) ([]byte, error) {
return filterDelta(int(r[0]), buf)
}
func abs(n int) int {
if n < 0 {
n = -n
}
return n
}
func filterRGBV3(r map[int]uint32, global, buf []byte, offset int64) ([]byte, error) {
width := int(r[0] - 3)
posR := int(r[1])
if posR < 0 || width < 0 {
return buf, nil
}
var res []byte
l := len(buf)
if cap(buf) >= 2*l {
res = buf[l : 2*l] // use unused capacity
} else {
res = make([]byte, l, 2*l)
}
for c := 0; c < 3; c++ {
var prevByte int
for i := c; i < len(res); i += 3 {
var predicted int
upperPos := i - width
if upperPos >= 3 {
upperByte := int(res[upperPos])
upperLeftByte := int(res[upperPos-3])
predicted = prevByte + upperByte - upperLeftByte
pa := abs(predicted - prevByte)
pb := abs(predicted - upperByte)
pc := abs(predicted - upperLeftByte)
if pa <= pb && pa <= pc {
predicted = prevByte
} else if pb <= pc {
predicted = upperByte
} else {
predicted = upperLeftByte
}
} else {
predicted = prevByte
}
prevByte = (predicted - int(buf[0])) & 0xFF
res[i] = uint8(prevByte)
buf = buf[1:]
}
}
for i := posR; i < len(res)-2; i += 3 {
c := res[i+1]
res[i] += c
res[i+2] += c
}
return res, nil
}
func filterAudioV3(r map[int]uint32, global, buf []byte, offset int64) ([]byte, error) {
var res []byte
l := len(buf)
if cap(buf) >= 2*l {
res = buf[l : 2*l] // use unused capacity
} else {
res = make([]byte, l, 2*l)
}
chans := int(r[0])
for c := 0; c < chans; c++ {
var prevByte, byteCount int
var diff [7]int
var d, k [3]int
for i := c; i < len(res); i += chans {
predicted := prevByte<<3 + k[0]*d[0] + k[1]*d[1] + k[2]*d[2]
predicted = int(int8(predicted >> 3))
curByte := int(int8(buf[0]))
buf = buf[1:]
predicted -= curByte
res[i] = uint8(predicted)
dd := curByte << 3
diff[0] += abs(dd)
diff[1] += abs(dd - d[0])
diff[2] += abs(dd + d[0])
diff[3] += abs(dd - d[1])
diff[4] += abs(dd + d[1])
diff[5] += abs(dd - d[2])
diff[6] += abs(dd + d[2])
prevDelta := int(int8(predicted - prevByte))
prevByte = predicted
d[2] = d[1]
d[1] = prevDelta - d[0]
d[0] = prevDelta
if byteCount&0x1f == 0 {
min := diff[0]
diff[0] = 0
n := 0
for j := 1; j < len(diff); j++ {
if diff[j] < min {
min = diff[j]
n = j
}
diff[j] = 0
}
n--
if n >= 0 {
m := n / 2
if n%2 == 0 {
if k[m] >= -16 {
k[m]--
}
} else {
if k[m] < 16 {
k[m]++
}
}
}
}
byteCount++
}
}
return res, nil
}
func filterArm(buf []byte, offset int64) ([]byte, error) {
for i := 0; len(buf)-i > 3; i += 4 {
if buf[i+3] == 0xeb {
n := uint(buf[i])
n += uint(buf[i+1]) * 0x100
n += uint(buf[i+2]) * 0x10000
n -= (uint(offset) + uint(i)) / 4
buf[i] = byte(n)
buf[i+1] = byte(n >> 8)
buf[i+2] = byte(n >> 16)
}
}
return buf, nil
}
type vmFilter struct {
execCount uint32
global []byte
static []byte
code []command
}
// execute implements v3filter type for VM based RAR 3 filters.
func (f *vmFilter) execute(r map[int]uint32, global, buf []byte, offset int64) ([]byte, error) {
if len(buf) > vmGlobalAddr {
return buf, ErrInvalidFilter
}
v := newVM(buf)
// register setup
v.r[3] = vmGlobalAddr
v.r[4] = uint32(len(buf))
v.r[5] = f.execCount
for i, n := range r {
v.r[i] = n
}
// vm global data memory block
vg := v.m[vmGlobalAddr : vmGlobalAddr+vmGlobalSize]
// initialize fixed global memory
for i, n := range v.r[:vmRegs-1] {
binary.LittleEndian.PutUint32(vg[i*4:], n)
}
binary.LittleEndian.PutUint32(vg[0x1c:], uint32(len(buf)))
binary.LittleEndian.PutUint64(vg[0x24:], uint64(offset))
binary.LittleEndian.PutUint32(vg[0x2c:], f.execCount)
// registers
v.r[6] = uint32(offset)
// copy program global memory
var n int
if len(f.global) > 0 {
n = copy(vg[vmFixedGlobalSize:], f.global) // use saved global instead
} else {
n = copy(vg[vmFixedGlobalSize:], global)
}
copy(vg[vmFixedGlobalSize+n:], f.static)
v.execute(f.code)
f.execCount++
// keep largest global buffer
if cap(global) > cap(f.global) {
f.global = global[:0]
} else if len(f.global) > 0 {
f.global = f.global[:0]
}
// check for global data to be saved for next program execution
globalSize := binary.LittleEndian.Uint32(vg[0x30:])
if globalSize > 0 {
if globalSize > vmGlobalSize-vmFixedGlobalSize {
globalSize = vmGlobalSize - vmFixedGlobalSize
}
if cap(f.global) < int(globalSize) {
f.global = make([]byte, globalSize)
} else {
f.global = f.global[:globalSize]
}
copy(f.global, vg[vmFixedGlobalSize:])
}
// find program output
length := binary.LittleEndian.Uint32(vg[0x1c:]) & vmMask
start := binary.LittleEndian.Uint32(vg[0x20:]) & vmMask
if start+length > vmSize {
// TODO: error
start = 0
length = 0
}
if start != 0 && cap(v.m) > cap(buf) {
// Initial buffer was to small for vm.
// Copy output to beginning of vm memory so that decodeReader
// will re-use the newly allocated vm memory and we will not
// have to reallocate again next time.
copy(v.m, v.m[start:start+length])
start = 0
}
return v.m[start : start+length], nil
}
// getV3Filter returns a V3 filter function from a code byte slice.
func getV3Filter(code []byte) (v3Filter, error) {
// check if filter is a known standard filter
c := crc32.ChecksumIEEE(code)
for _, f := range standardV3Filters {
if f.crc == c && f.len == len(code) {
return f.f, nil
}
}
// create new vm filter
f := new(vmFilter)
r := newRarBitReader(bytes.NewReader(code[1:])) // skip first xor byte check
// read static data
n, err := r.readBits(1)
if err != nil {
return nil, err
}
if n > 0 {
var m uint32
m, err = r.readUint32()
if err != nil {
return nil, err
}
f.static = make([]byte, m+1)
_, err = io.ReadFull(r, f.static)
if err != nil {
return nil, err
}
}
f.code, err = readCommands(r)
if err == io.EOF {
err = nil
}
return f.execute, err
}
|