File: fn.go

package info (click to toggle)
golang-github-olekukonko-cat 0.0~git20250911.50322a0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144 kB
  • sloc: makefile: 2
file content (376 lines) | stat: -rw-r--r-- 10,377 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
package cat

import (
	"fmt"
	"reflect"
	"sort"
	"strconv"
	"strings"
	"unsafe"
)

// write writes a value to the given strings.Builder using fast paths to avoid temporary allocations.
// It handles common types like strings, byte slices, integers, floats, and booleans directly for efficiency.
// For other types, it falls back to fmt.Fprint, which may involve allocations.
// This function is optimized for performance in string concatenation scenarios, prioritizing
// common cases like strings and numbers at the top of the type switch for compiler optimization.
// Note: For integers and floats, it uses stack-allocated buffers and strconv.Append* functions to
// convert numbers to strings without heap allocations.
func write(b *strings.Builder, arg any) {
	writeValue(b, arg, 0)
}

// writeValue appends the string representation of arg to b, handling recursion with a depth limit.
// It serves as a recursive helper for write, directly handling primitives and delegating complex
// types to writeReflect. The depth parameter prevents excessive recursion in deeply nested structures.
func writeValue(b *strings.Builder, arg any, depth int) {
	// Handle recursion depth limit
	if depth > maxRecursionDepth {
		b.WriteString("...")
		return
	}

	// Handle nil values
	if arg == nil {
		b.WriteString(nilString)
		return
	}

	// Fast path type switch for all primitive types
	switch v := arg.(type) {
	case string:
		b.WriteString(v)
	case []byte:
		b.WriteString(bytesToString(v))
	case int:
		var buf [20]byte
		b.Write(strconv.AppendInt(buf[:0], int64(v), 10))
	case int64:
		var buf [20]byte
		b.Write(strconv.AppendInt(buf[:0], v, 10))
	case int32:
		var buf [11]byte
		b.Write(strconv.AppendInt(buf[:0], int64(v), 10))
	case int16:
		var buf [6]byte
		b.Write(strconv.AppendInt(buf[:0], int64(v), 10))
	case int8:
		var buf [4]byte
		b.Write(strconv.AppendInt(buf[:0], int64(v), 10))
	case uint:
		var buf [20]byte
		b.Write(strconv.AppendUint(buf[:0], uint64(v), 10))
	case uint64:
		var buf [20]byte
		b.Write(strconv.AppendUint(buf[:0], v, 10))
	case uint32:
		var buf [10]byte
		b.Write(strconv.AppendUint(buf[:0], uint64(v), 10))
	case uint16:
		var buf [5]byte
		b.Write(strconv.AppendUint(buf[:0], uint64(v), 10))
	case uint8:
		var buf [3]byte
		b.Write(strconv.AppendUint(buf[:0], uint64(v), 10))
	case float64:
		var buf [24]byte
		b.Write(strconv.AppendFloat(buf[:0], v, 'f', -1, 64))
	case float32:
		var buf [24]byte
		b.Write(strconv.AppendFloat(buf[:0], float64(v), 'f', -1, 32))
	case bool:
		if v {
			b.WriteString("true")
		} else {
			b.WriteString("false")
		}
	case fmt.Stringer:
		b.WriteString(v.String())
	case error:
		b.WriteString(v.Error())
	default:
		// Fallback to reflection-based handling
		writeReflect(b, arg, depth)
	}
}

// writeReflect handles all complex types safely.
func writeReflect(b *strings.Builder, arg any, depth int) {
	defer func() {
		if r := recover(); r != nil {
			b.WriteString("[!reflect panic!]")
		}
	}()

	val := reflect.ValueOf(arg)
	if val.Kind() == reflect.Ptr {
		if val.IsNil() {
			b.WriteString(nilString)
			return
		}
		val = val.Elem()
	}

	switch val.Kind() {
	case reflect.Slice, reflect.Array:
		b.WriteByte('[')
		for i := 0; i < val.Len(); i++ {
			if i > 0 {
				b.WriteString(", ") // Use comma-space for readability
			}
			writeValue(b, val.Index(i).Interface(), depth+1)
		}
		b.WriteByte(']')

	case reflect.Struct:
		typ := val.Type()
		b.WriteByte('{') // Use {} for structs to follow Go convention
		first := true
		for i := 0; i < val.NumField(); i++ {
			fieldValue := val.Field(i)
			if !fieldValue.CanInterface() {
				continue // Skip unexported fields
			}
			if !first {
				b.WriteByte(' ') // Use space as separator
			}
			first = false
			b.WriteString(typ.Field(i).Name)
			b.WriteByte(':')

			writeValue(b, fieldValue.Interface(), depth+1)
		}
		b.WriteByte('}')

	case reflect.Map:
		b.WriteByte('{')
		keys := val.MapKeys()
		sort.Slice(keys, func(i, j int) bool {
			// A simple string-based sort for keys
			return fmt.Sprint(keys[i].Interface()) < fmt.Sprint(keys[j].Interface())
		})
		for i, key := range keys {
			if i > 0 {
				b.WriteByte(' ') // Use space as separator
			}
			writeValue(b, key.Interface(), depth+1)
			b.WriteByte(':')
			writeValue(b, val.MapIndex(key).Interface(), depth+1)
		}
		b.WriteByte('}')

	case reflect.Interface:
		if val.IsNil() {
			b.WriteString(nilString)
			return
		}
		writeValue(b, val.Elem().Interface(), depth+1)

	default:
		fmt.Fprint(b, arg)
	}
}

// valueToString converts any value to a string representation.
// It uses optimized paths for common types to avoid unnecessary allocations.
// For types like integers and floats, it directly uses strconv functions.
// This function is useful for single-argument conversions or as a helper in other parts of the package.
// Unlike write, it returns a string instead of appending to a builder.
func valueToString(arg any) string {
	switch v := arg.(type) {
	case string:
		return v
	case []byte:
		return bytesToString(v)
	case int:
		return strconv.Itoa(v)
	case int64:
		return strconv.FormatInt(v, 10)
	case int32:
		return strconv.FormatInt(int64(v), 10)
	case uint:
		return strconv.FormatUint(uint64(v), 10)
	case uint64:
		return strconv.FormatUint(v, 10)
	case float64:
		return strconv.FormatFloat(v, 'f', -1, 64)
	case bool:
		if v {
			return "true"
		}
		return "false"
	case fmt.Stringer:
		return v.String()
	case error:
		return v.Error()
	default:
		return fmt.Sprint(v)
	}
}

// estimateWith calculates a conservative estimate of the total string length when concatenating
// the given arguments with a separator. This is used for preallocating capacity in strings.Builder
// to minimize reallocations during building.
// It accounts for the length of separators and estimates the length of each argument based on its type.
// If no arguments are provided, it returns 0.
func estimateWith(sep string, args []any) int {
	if len(args) == 0 {
		return 0
	}
	size := len(sep) * (len(args) - 1)
	size += estimate(args)
	return size
}

// estimate calculates a conservative estimate of the combined string length of the given arguments.
// It iterates over each argument and adds an estimated length based on its type:
// - Strings and byte slices: exact length.
// - Numbers: calculated digit count using numLen or uNumLen.
// - Floats and others: fixed conservative estimates (e.g., 16 or 24 bytes).
// This helper is used internally by estimateWith and focuses solely on the arguments without separators.
func estimate(args []any) int {
	var size int
	for _, a := range args {
		switch v := a.(type) {
		case string:
			size += len(v)
		case []byte:
			size += len(v)
		case int:
			size += numLen(int64(v))
		case int8:
			size += numLen(int64(v))
		case int16:
			size += numLen(int64(v))
		case int32:
			size += numLen(int64(v))
		case int64:
			size += numLen(v)
		case uint:
			size += uNumLen(uint64(v))
		case uint8:
			size += uNumLen(uint64(v))
		case uint16:
			size += uNumLen(uint64(v))
		case uint32:
			size += uNumLen(uint64(v))
		case uint64:
			size += uNumLen(v)
		case float32:
			size += 16
		case float64:
			size += 24
		case bool:
			size += 5 // "false"
		case fmt.Stringer, error:
			size += 16 // conservative
		default:
			size += 16 // conservative
		}
	}
	return size
}

// numLen returns the number of characters required to represent the signed integer n as a string.
// It handles negative numbers by adding 1 for the '-' sign and uses a loop to count digits.
// Special handling for math.MinInt64 to avoid overflow when negating.
// Returns 1 for 0, and up to 20 for the largest values.
func numLen(n int64) int {
	if n == 0 {
		return 1
	}
	c := 0
	if n < 0 {
		c = 1 // for '-'
		// NOTE: math.MinInt64 negated overflows; handle by adding one digit and returning 20.
		if n == -1<<63 {
			return 20
		}
		n = -n
	}
	for n > 0 {
		n /= 10
		c++
	}
	return c
}

// uNumLen returns the number of characters required to represent the unsigned integer n as a string.
// It uses a loop to count digits.
// Returns 1 for 0, and up to 20 for the largest uint64 values.
func uNumLen(n uint64) int {
	if n == 0 {
		return 1
	}
	c := 0
	for n > 0 {
		n /= 10
		c++
	}
	return c
}

// bytesToString converts a byte slice to a string efficiently.
// If the package's UnsafeBytes flag is set (via IsUnsafeBytes()), it uses unsafe operations
// to create a string backed by the same memory as the byte slice, avoiding a copy.
// This is zero-allocation when unsafe is enabled.
// Falls back to standard string(bts) conversion otherwise.
// For empty slices, it returns a constant empty string.
// Compatible with Go 1.20+ unsafe functions like unsafe.String and unsafe.SliceData.
func bytesToString(bts []byte) string {
	if len(bts) == 0 {
		return empty
	}
	if IsUnsafeBytes() {
		// Go 1.20+: unsafe.String with SliceData (1.20 introduced, 1.22 added SliceData).
		return unsafe.String(unsafe.SliceData(bts), len(bts))
	}
	return string(bts)
}

// recursiveEstimate calculates the estimated string length for potentially nested arguments,
// including the lengths of separators between elements. It recurses on nested []any slices,
// flattening the structure while accounting for separators only between non-empty subparts.
// This function is useful for preallocating capacity in builders for nested concatenation operations.
func recursiveEstimate(sep string, args []any) int {
	if len(args) == 0 {
		return 0
	}
	size := 0
	needsSep := false
	for _, a := range args {
		switch v := a.(type) {
		case []any:
			subSize := recursiveEstimate(sep, v)
			if subSize > 0 {
				if needsSep {
					size += len(sep)
				}
				size += subSize
				needsSep = true
			}
		default:
			if needsSep {
				size += len(sep)
			}
			size += estimate([]any{a})
			needsSep = true
		}
	}
	return size
}

// recursiveAdd appends the string representations of potentially nested arguments to the builder.
// It recurses on nested []any slices, effectively flattening the structure by adding leaf values
// directly via b.Add without inserting separators (separators are handled externally if needed).
// This function is designed for efficient concatenation of nested argument lists.
func recursiveAdd(b *Builder, args []any) {
	for _, a := range args {
		switch v := a.(type) {
		case []any:
			recursiveAdd(b, v)
		default:
			b.Add(a)
		}
	}
}