1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
package cat
import (
"fmt"
"reflect"
"sort"
"strconv"
"strings"
"unsafe"
)
// write writes a value to the given strings.Builder using fast paths to avoid temporary allocations.
// It handles common types like strings, byte slices, integers, floats, and booleans directly for efficiency.
// For other types, it falls back to fmt.Fprint, which may involve allocations.
// This function is optimized for performance in string concatenation scenarios, prioritizing
// common cases like strings and numbers at the top of the type switch for compiler optimization.
// Note: For integers and floats, it uses stack-allocated buffers and strconv.Append* functions to
// convert numbers to strings without heap allocations.
func write(b *strings.Builder, arg any) {
writeValue(b, arg, 0)
}
// writeValue appends the string representation of arg to b, handling recursion with a depth limit.
// It serves as a recursive helper for write, directly handling primitives and delegating complex
// types to writeReflect. The depth parameter prevents excessive recursion in deeply nested structures.
func writeValue(b *strings.Builder, arg any, depth int) {
// Handle recursion depth limit
if depth > maxRecursionDepth {
b.WriteString("...")
return
}
// Handle nil values
if arg == nil {
b.WriteString(nilString)
return
}
// Fast path type switch for all primitive types
switch v := arg.(type) {
case string:
b.WriteString(v)
case []byte:
b.WriteString(bytesToString(v))
case int:
var buf [20]byte
b.Write(strconv.AppendInt(buf[:0], int64(v), 10))
case int64:
var buf [20]byte
b.Write(strconv.AppendInt(buf[:0], v, 10))
case int32:
var buf [11]byte
b.Write(strconv.AppendInt(buf[:0], int64(v), 10))
case int16:
var buf [6]byte
b.Write(strconv.AppendInt(buf[:0], int64(v), 10))
case int8:
var buf [4]byte
b.Write(strconv.AppendInt(buf[:0], int64(v), 10))
case uint:
var buf [20]byte
b.Write(strconv.AppendUint(buf[:0], uint64(v), 10))
case uint64:
var buf [20]byte
b.Write(strconv.AppendUint(buf[:0], v, 10))
case uint32:
var buf [10]byte
b.Write(strconv.AppendUint(buf[:0], uint64(v), 10))
case uint16:
var buf [5]byte
b.Write(strconv.AppendUint(buf[:0], uint64(v), 10))
case uint8:
var buf [3]byte
b.Write(strconv.AppendUint(buf[:0], uint64(v), 10))
case float64:
var buf [24]byte
b.Write(strconv.AppendFloat(buf[:0], v, 'f', -1, 64))
case float32:
var buf [24]byte
b.Write(strconv.AppendFloat(buf[:0], float64(v), 'f', -1, 32))
case bool:
if v {
b.WriteString("true")
} else {
b.WriteString("false")
}
case fmt.Stringer:
b.WriteString(v.String())
case error:
b.WriteString(v.Error())
default:
// Fallback to reflection-based handling
writeReflect(b, arg, depth)
}
}
// writeReflect handles all complex types safely.
func writeReflect(b *strings.Builder, arg any, depth int) {
defer func() {
if r := recover(); r != nil {
b.WriteString("[!reflect panic!]")
}
}()
val := reflect.ValueOf(arg)
if val.Kind() == reflect.Ptr {
if val.IsNil() {
b.WriteString(nilString)
return
}
val = val.Elem()
}
switch val.Kind() {
case reflect.Slice, reflect.Array:
b.WriteByte('[')
for i := 0; i < val.Len(); i++ {
if i > 0 {
b.WriteString(", ") // Use comma-space for readability
}
writeValue(b, val.Index(i).Interface(), depth+1)
}
b.WriteByte(']')
case reflect.Struct:
typ := val.Type()
b.WriteByte('{') // Use {} for structs to follow Go convention
first := true
for i := 0; i < val.NumField(); i++ {
fieldValue := val.Field(i)
if !fieldValue.CanInterface() {
continue // Skip unexported fields
}
if !first {
b.WriteByte(' ') // Use space as separator
}
first = false
b.WriteString(typ.Field(i).Name)
b.WriteByte(':')
writeValue(b, fieldValue.Interface(), depth+1)
}
b.WriteByte('}')
case reflect.Map:
b.WriteByte('{')
keys := val.MapKeys()
sort.Slice(keys, func(i, j int) bool {
// A simple string-based sort for keys
return fmt.Sprint(keys[i].Interface()) < fmt.Sprint(keys[j].Interface())
})
for i, key := range keys {
if i > 0 {
b.WriteByte(' ') // Use space as separator
}
writeValue(b, key.Interface(), depth+1)
b.WriteByte(':')
writeValue(b, val.MapIndex(key).Interface(), depth+1)
}
b.WriteByte('}')
case reflect.Interface:
if val.IsNil() {
b.WriteString(nilString)
return
}
writeValue(b, val.Elem().Interface(), depth+1)
default:
fmt.Fprint(b, arg)
}
}
// valueToString converts any value to a string representation.
// It uses optimized paths for common types to avoid unnecessary allocations.
// For types like integers and floats, it directly uses strconv functions.
// This function is useful for single-argument conversions or as a helper in other parts of the package.
// Unlike write, it returns a string instead of appending to a builder.
func valueToString(arg any) string {
switch v := arg.(type) {
case string:
return v
case []byte:
return bytesToString(v)
case int:
return strconv.Itoa(v)
case int64:
return strconv.FormatInt(v, 10)
case int32:
return strconv.FormatInt(int64(v), 10)
case uint:
return strconv.FormatUint(uint64(v), 10)
case uint64:
return strconv.FormatUint(v, 10)
case float64:
return strconv.FormatFloat(v, 'f', -1, 64)
case bool:
if v {
return "true"
}
return "false"
case fmt.Stringer:
return v.String()
case error:
return v.Error()
default:
return fmt.Sprint(v)
}
}
// estimateWith calculates a conservative estimate of the total string length when concatenating
// the given arguments with a separator. This is used for preallocating capacity in strings.Builder
// to minimize reallocations during building.
// It accounts for the length of separators and estimates the length of each argument based on its type.
// If no arguments are provided, it returns 0.
func estimateWith(sep string, args []any) int {
if len(args) == 0 {
return 0
}
size := len(sep) * (len(args) - 1)
size += estimate(args)
return size
}
// estimate calculates a conservative estimate of the combined string length of the given arguments.
// It iterates over each argument and adds an estimated length based on its type:
// - Strings and byte slices: exact length.
// - Numbers: calculated digit count using numLen or uNumLen.
// - Floats and others: fixed conservative estimates (e.g., 16 or 24 bytes).
// This helper is used internally by estimateWith and focuses solely on the arguments without separators.
func estimate(args []any) int {
var size int
for _, a := range args {
switch v := a.(type) {
case string:
size += len(v)
case []byte:
size += len(v)
case int:
size += numLen(int64(v))
case int8:
size += numLen(int64(v))
case int16:
size += numLen(int64(v))
case int32:
size += numLen(int64(v))
case int64:
size += numLen(v)
case uint:
size += uNumLen(uint64(v))
case uint8:
size += uNumLen(uint64(v))
case uint16:
size += uNumLen(uint64(v))
case uint32:
size += uNumLen(uint64(v))
case uint64:
size += uNumLen(v)
case float32:
size += 16
case float64:
size += 24
case bool:
size += 5 // "false"
case fmt.Stringer, error:
size += 16 // conservative
default:
size += 16 // conservative
}
}
return size
}
// numLen returns the number of characters required to represent the signed integer n as a string.
// It handles negative numbers by adding 1 for the '-' sign and uses a loop to count digits.
// Special handling for math.MinInt64 to avoid overflow when negating.
// Returns 1 for 0, and up to 20 for the largest values.
func numLen(n int64) int {
if n == 0 {
return 1
}
c := 0
if n < 0 {
c = 1 // for '-'
// NOTE: math.MinInt64 negated overflows; handle by adding one digit and returning 20.
if n == -1<<63 {
return 20
}
n = -n
}
for n > 0 {
n /= 10
c++
}
return c
}
// uNumLen returns the number of characters required to represent the unsigned integer n as a string.
// It uses a loop to count digits.
// Returns 1 for 0, and up to 20 for the largest uint64 values.
func uNumLen(n uint64) int {
if n == 0 {
return 1
}
c := 0
for n > 0 {
n /= 10
c++
}
return c
}
// bytesToString converts a byte slice to a string efficiently.
// If the package's UnsafeBytes flag is set (via IsUnsafeBytes()), it uses unsafe operations
// to create a string backed by the same memory as the byte slice, avoiding a copy.
// This is zero-allocation when unsafe is enabled.
// Falls back to standard string(bts) conversion otherwise.
// For empty slices, it returns a constant empty string.
// Compatible with Go 1.20+ unsafe functions like unsafe.String and unsafe.SliceData.
func bytesToString(bts []byte) string {
if len(bts) == 0 {
return empty
}
if IsUnsafeBytes() {
// Go 1.20+: unsafe.String with SliceData (1.20 introduced, 1.22 added SliceData).
return unsafe.String(unsafe.SliceData(bts), len(bts))
}
return string(bts)
}
// recursiveEstimate calculates the estimated string length for potentially nested arguments,
// including the lengths of separators between elements. It recurses on nested []any slices,
// flattening the structure while accounting for separators only between non-empty subparts.
// This function is useful for preallocating capacity in builders for nested concatenation operations.
func recursiveEstimate(sep string, args []any) int {
if len(args) == 0 {
return 0
}
size := 0
needsSep := false
for _, a := range args {
switch v := a.(type) {
case []any:
subSize := recursiveEstimate(sep, v)
if subSize > 0 {
if needsSep {
size += len(sep)
}
size += subSize
needsSep = true
}
default:
if needsSep {
size += len(sep)
}
size += estimate([]any{a})
needsSep = true
}
}
return size
}
// recursiveAdd appends the string representations of potentially nested arguments to the builder.
// It recurses on nested []any slices, effectively flattening the structure by adding leaf values
// directly via b.Add without inserting separators (separators are handled externally if needed).
// This function is designed for efficient concatenation of nested argument lists.
func recursiveAdd(b *Builder, args []any) {
for _, a := range args {
switch v := a.(type) {
case []any:
recursiveAdd(b, v)
default:
b.Add(a)
}
}
}
|