1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
|
package tablewriter
import (
"database/sql"
"fmt"
"github.com/olekukonko/errors"
"github.com/olekukonko/tablewriter/pkg/twwidth"
"github.com/olekukonko/tablewriter/tw"
"io"
"math"
"reflect"
"strconv"
"strings"
)
// applyHierarchicalMerges applies hierarchical merges to row content.
// Parameters ctx and mctx hold rendering and merge state.
// No return value.
func (t *Table) applyHierarchicalMerges(ctx *renderContext, mctx *mergeContext) {
ctx.logger.Debug("Applying hierarchical merges (left-to-right vertical flow - snapshot comparison)")
if len(ctx.rowLines) <= 1 {
ctx.logger.Debug("Skipping hierarchical merges - less than 2 rows")
return
}
numCols := ctx.numCols
originalRowLines := make([][][]string, len(ctx.rowLines))
for i, row := range ctx.rowLines {
originalRowLines[i] = make([][]string, len(row))
for j, line := range row {
originalRowLines[i][j] = make([]string, len(line))
copy(originalRowLines[i][j], line)
}
}
ctx.logger.Debug("Created snapshot of original row data for hierarchical merge comparison.")
hMergeStartRow := make(map[int]int)
for r := 1; r < len(ctx.rowLines); r++ {
leftCellContinuedHierarchical := false
for c := 0; c < numCols; c++ {
if mctx.rowMerges[r] == nil {
mctx.rowMerges[r] = make(map[int]tw.MergeState)
}
if mctx.rowMerges[r-1] == nil {
mctx.rowMerges[r-1] = make(map[int]tw.MergeState)
}
canCompare := r > 0 &&
len(originalRowLines[r]) > 0 &&
len(originalRowLines[r-1]) > 0
if !canCompare {
currentState := mctx.rowMerges[r][c]
currentState.Hierarchical = tw.MergeStateOption{}
mctx.rowMerges[r][c] = currentState
ctx.logger.Debugf("HCompare Skipped: r=%d, c=%d - Insufficient data in snapshot", r, c)
leftCellContinuedHierarchical = false
continue
}
// Join all lines of the cell for comparison
var currentVal, aboveVal string
for _, line := range originalRowLines[r] {
if c < len(line) {
currentVal += line[c]
}
}
for _, line := range originalRowLines[r-1] {
if c < len(line) {
aboveVal += line[c]
}
}
currentVal = t.Trimmer(currentVal)
aboveVal = t.Trimmer(aboveVal)
currentState := mctx.rowMerges[r][c]
prevStateAbove := mctx.rowMerges[r-1][c]
valuesMatch := currentVal == aboveVal && currentVal != "" && currentVal != "-"
hierarchyAllowed := c == 0 || leftCellContinuedHierarchical
shouldContinue := valuesMatch && hierarchyAllowed
ctx.logger.Debugf("HCompare: r=%d, c=%d; current='%s', above='%s'; match=%v; leftCont=%v; shouldCont=%v",
r, c, currentVal, aboveVal, valuesMatch, leftCellContinuedHierarchical, shouldContinue)
if shouldContinue {
currentState.Hierarchical.Present = true
currentState.Hierarchical.Start = false
if prevStateAbove.Hierarchical.Present && !prevStateAbove.Hierarchical.End {
startRow, ok := hMergeStartRow[c]
if !ok {
ctx.logger.Debugf("Hierarchical merge WARNING: Recovering lost start row at r=%d, c=%d. Assuming r-1 was start.", r, c)
startRow = r - 1
hMergeStartRow[c] = startRow
startState := mctx.rowMerges[startRow][c]
startState.Hierarchical.Present = true
startState.Hierarchical.Start = true
startState.Hierarchical.End = false
mctx.rowMerges[startRow][c] = startState
}
ctx.logger.Debugf("Hierarchical merge CONTINUED row %d, col %d. Block previously started row %d", r, c, startRow)
} else {
startRow := r - 1
hMergeStartRow[c] = startRow
startState := mctx.rowMerges[startRow][c]
startState.Hierarchical.Present = true
startState.Hierarchical.Start = true
startState.Hierarchical.End = false
mctx.rowMerges[startRow][c] = startState
ctx.logger.Debugf("Hierarchical merge START detected for block ending at or after row %d, col %d (started at row %d)", r, c, startRow)
}
for lineIdx := range ctx.rowLines[r] {
if c < len(ctx.rowLines[r][lineIdx]) {
ctx.rowLines[r][lineIdx][c] = tw.Empty
}
}
leftCellContinuedHierarchical = true
} else {
currentState.Hierarchical = tw.MergeStateOption{}
if startRow, ok := hMergeStartRow[c]; ok {
t.finalizeHierarchicalMergeBlock(ctx, mctx, c, startRow, r-1)
delete(hMergeStartRow, c)
}
leftCellContinuedHierarchical = false
}
mctx.rowMerges[r][c] = currentState
}
}
lastRowIdx := len(ctx.rowLines) - 1
if lastRowIdx >= 0 {
for c, startRow := range hMergeStartRow {
t.finalizeHierarchicalMergeBlock(ctx, mctx, c, startRow, lastRowIdx)
}
}
ctx.logger.Debug("Hierarchical merge processing completed")
}
// applyHorizontalMergeWidths adjusts column widths for horizontal merges.
// Parameters include position, ctx for rendering, and mergeStates for merges.
// No return value.
func (t *Table) applyHorizontalMergeWidths(position tw.Position, ctx *renderContext, mergeStates map[int]tw.MergeState) {
if mergeStates == nil {
t.logger.Debugf("applyHorizontalMergeWidths: Skipping %s - no merge states", position)
return
}
t.logger.Debugf("applyHorizontalMergeWidths: Applying HMerge width recalc for %s", position)
numCols := ctx.numCols
targetWidthsMap := ctx.widths[position]
originalNormalizedWidths := tw.NewMapper[int, int]()
for i := 0; i < numCols; i++ {
originalNormalizedWidths.Set(i, targetWidthsMap.Get(i))
}
separatorWidth := 0
if t.renderer != nil {
rendererConfig := t.renderer.Config()
if rendererConfig.Settings.Separators.BetweenColumns.Enabled() {
separatorWidth = twwidth.Width(rendererConfig.Symbols.Column())
}
}
processedCols := make(map[int]bool)
for col := 0; col < numCols; col++ {
if processedCols[col] {
continue
}
state, exists := mergeStates[col]
if !exists {
continue
}
if state.Horizontal.Present && state.Horizontal.Start {
totalWidth := 0
span := state.Horizontal.Span
t.logger.Debugf(" -> HMerge detected: startCol=%d, span=%d, separatorWidth=%d", col, span, separatorWidth)
for i := 0; i < span && (col+i) < numCols; i++ {
currentColIndex := col + i
normalizedWidth := originalNormalizedWidths.Get(currentColIndex)
totalWidth += normalizedWidth
t.logger.Debugf(" -> col %d: adding normalized width %d", currentColIndex, normalizedWidth)
if i > 0 && separatorWidth > 0 {
totalWidth += separatorWidth
t.logger.Debugf(" -> col %d: adding separator width %d", currentColIndex, separatorWidth)
}
}
targetWidthsMap.Set(col, totalWidth)
t.logger.Debugf(" -> Set %s col %d width to %d (merged)", position, col, totalWidth)
processedCols[col] = true
for i := 1; i < span && (col+i) < numCols; i++ {
targetWidthsMap.Set(col+i, 0)
t.logger.Debugf(" -> Set %s col %d width to 0 (part of merge)", position, col+i)
processedCols[col+i] = true
}
}
}
ctx.logger.Debugf("applyHorizontalMergeWidths: Final widths for %s: %v", position, targetWidthsMap)
}
// applyVerticalMerges applies vertical merges to row content.
// Parameters ctx and mctx hold rendering and merge state.
// No return value.
func (t *Table) applyVerticalMerges(ctx *renderContext, mctx *mergeContext) {
ctx.logger.Debugf("Applying vertical merges across %d rows", len(ctx.rowLines))
numCols := ctx.numCols
mergeStartRow := make(map[int]int)
mergeStartContent := make(map[int]string)
for i := 0; i < len(ctx.rowLines); i++ {
if i >= len(mctx.rowMerges) {
newRowMerges := make([]map[int]tw.MergeState, i+1)
copy(newRowMerges, mctx.rowMerges)
for k := len(mctx.rowMerges); k <= i; k++ {
newRowMerges[k] = make(map[int]tw.MergeState)
}
mctx.rowMerges = newRowMerges
ctx.logger.Debugf("Extended rowMerges to index %d", i)
} else if mctx.rowMerges[i] == nil {
mctx.rowMerges[i] = make(map[int]tw.MergeState)
}
if len(ctx.rowLines[i]) == 0 {
continue
}
currentLineContent := ctx.rowLines[i]
for col := 0; col < numCols; col++ {
// Join all lines of the cell to compare full content
var currentVal strings.Builder
for _, line := range currentLineContent {
if col < len(line) {
currentVal.WriteString(line[col])
}
}
currentValStr := t.Trimmer(currentVal.String())
startRow, ongoingMerge := mergeStartRow[col]
startContent := mergeStartContent[col]
mergeState := mctx.rowMerges[i][col]
if ongoingMerge && currentValStr == startContent && currentValStr != "" {
mergeState.Vertical = tw.MergeStateOption{
Present: true,
Span: 0,
Start: false,
End: false,
}
mctx.rowMerges[i][col] = mergeState
for lineIdx := range ctx.rowLines[i] {
if col < len(ctx.rowLines[i][lineIdx]) {
ctx.rowLines[i][lineIdx][col] = tw.Empty
}
}
ctx.logger.Debugf("Vertical merge continued at row %d, col %d", i, col)
} else {
if ongoingMerge {
endedRow := i - 1
if endedRow >= 0 && endedRow >= startRow {
startState := mctx.rowMerges[startRow][col]
startState.Vertical.Span = (endedRow - startRow) + 1
startState.Vertical.End = startState.Vertical.Span == 1
mctx.rowMerges[startRow][col] = startState
endState := mctx.rowMerges[endedRow][col]
endState.Vertical.End = true
endState.Vertical.Span = startState.Vertical.Span
mctx.rowMerges[endedRow][col] = endState
ctx.logger.Debugf("Vertical merge ended at row %d, col %d, span %d", endedRow, col, startState.Vertical.Span)
}
delete(mergeStartRow, col)
delete(mergeStartContent, col)
}
if currentValStr != "" {
mergeState.Vertical = tw.MergeStateOption{
Present: true,
Span: 1,
Start: true,
End: false,
}
mctx.rowMerges[i][col] = mergeState
mergeStartRow[col] = i
mergeStartContent[col] = currentValStr
ctx.logger.Debugf("Vertical merge started at row %d, col %d", i, col)
} else if !mergeState.Horizontal.Present {
mergeState.Vertical = tw.MergeStateOption{}
mctx.rowMerges[i][col] = mergeState
}
}
}
}
lastRowIdx := len(ctx.rowLines) - 1
if lastRowIdx >= 0 {
for col, startRow := range mergeStartRow {
startState := mctx.rowMerges[startRow][col]
finalSpan := (lastRowIdx - startRow) + 1
startState.Vertical.Span = finalSpan
startState.Vertical.End = finalSpan == 1
mctx.rowMerges[startRow][col] = startState
endState := mctx.rowMerges[lastRowIdx][col]
endState.Vertical.Present = true
endState.Vertical.End = true
endState.Vertical.Span = finalSpan
if startRow != lastRowIdx {
endState.Vertical.Start = false
}
mctx.rowMerges[lastRowIdx][col] = endState
ctx.logger.Debugf("Vertical merge finalized at row %d, col %d, span %d", lastRowIdx, col, finalSpan)
}
}
ctx.logger.Debug("Vertical merges completed")
}
// buildAdjacentCells constructs cell contexts for adjacent lines.
// Parameters include ctx, mctx, hctx, and direction (-1 for prev, +1 for next).
// Returns a map of column indices to CellContext for the adjacent line.
func (t *Table) buildAdjacentCells(ctx *renderContext, mctx *mergeContext, hctx *helperContext, direction int) map[int]tw.CellContext {
adjCells := make(map[int]tw.CellContext)
var adjLine []string
var adjMerges map[int]tw.MergeState
found := false
adjPosition := hctx.position // Assume adjacent line is in the same section initially
switch hctx.position {
case tw.Header:
targetLineIdx := hctx.lineIdx + direction
if direction < 0 { // Previous
if targetLineIdx >= 0 && targetLineIdx < len(ctx.headerLines) {
adjLine = ctx.headerLines[targetLineIdx]
adjMerges = mctx.headerMerges
found = true
}
} else { // Next
if targetLineIdx < len(ctx.headerLines) {
adjLine = ctx.headerLines[targetLineIdx]
adjMerges = mctx.headerMerges
found = true
} else if len(ctx.rowLines) > 0 && len(ctx.rowLines[0]) > 0 && len(mctx.rowMerges) > 0 {
adjLine = ctx.rowLines[0][0]
adjMerges = mctx.rowMerges[0]
adjPosition = tw.Row
found = true
} else if len(ctx.footerLines) > 0 {
adjLine = ctx.footerLines[0]
adjMerges = mctx.footerMerges
adjPosition = tw.Footer
found = true
}
}
case tw.Row:
targetLineIdx := hctx.lineIdx + direction
if hctx.rowIdx < 0 || hctx.rowIdx >= len(ctx.rowLines) || hctx.rowIdx >= len(mctx.rowMerges) {
t.logger.Debugf("Warning: Invalid row index %d in buildAdjacentCells", hctx.rowIdx)
return nil
}
currentRowLines := ctx.rowLines[hctx.rowIdx]
currentMerges := mctx.rowMerges[hctx.rowIdx]
if direction < 0 { // Previous
if targetLineIdx >= 0 && targetLineIdx < len(currentRowLines) {
adjLine = currentRowLines[targetLineIdx]
adjMerges = currentMerges
found = true
} else if targetLineIdx < 0 {
targetRowIdx := hctx.rowIdx - 1
if targetRowIdx >= 0 && targetRowIdx < len(ctx.rowLines) && targetRowIdx < len(mctx.rowMerges) {
prevRowLines := ctx.rowLines[targetRowIdx]
if len(prevRowLines) > 0 {
adjLine = prevRowLines[len(prevRowLines)-1]
adjMerges = mctx.rowMerges[targetRowIdx]
found = true
}
} else if len(ctx.headerLines) > 0 {
adjLine = ctx.headerLines[len(ctx.headerLines)-1]
adjMerges = mctx.headerMerges
adjPosition = tw.Header
found = true
}
}
} else { // Next
if targetLineIdx >= 0 && targetLineIdx < len(currentRowLines) {
adjLine = currentRowLines[targetLineIdx]
adjMerges = currentMerges
found = true
} else if targetLineIdx >= len(currentRowLines) {
targetRowIdx := hctx.rowIdx + 1
if targetRowIdx < len(ctx.rowLines) && targetRowIdx < len(mctx.rowMerges) && len(ctx.rowLines[targetRowIdx]) > 0 {
adjLine = ctx.rowLines[targetRowIdx][0]
adjMerges = mctx.rowMerges[targetRowIdx]
found = true
} else if len(ctx.footerLines) > 0 {
adjLine = ctx.footerLines[0]
adjMerges = mctx.footerMerges
adjPosition = tw.Footer
found = true
}
}
}
case tw.Footer:
targetLineIdx := hctx.lineIdx + direction
if direction < 0 { // Previous
if targetLineIdx >= 0 && targetLineIdx < len(ctx.footerLines) {
adjLine = ctx.footerLines[targetLineIdx]
adjMerges = mctx.footerMerges
found = true
} else if targetLineIdx < 0 {
if len(ctx.rowLines) > 0 {
lastRowIdx := len(ctx.rowLines) - 1
if lastRowIdx < len(mctx.rowMerges) && len(ctx.rowLines[lastRowIdx]) > 0 {
lastRowLines := ctx.rowLines[lastRowIdx]
adjLine = lastRowLines[len(lastRowLines)-1]
adjMerges = mctx.rowMerges[lastRowIdx]
adjPosition = tw.Row
found = true
}
} else if len(ctx.headerLines) > 0 {
adjLine = ctx.headerLines[len(ctx.headerLines)-1]
adjMerges = mctx.headerMerges
adjPosition = tw.Header
found = true
}
}
} else { // Next
if targetLineIdx >= 0 && targetLineIdx < len(ctx.footerLines) {
adjLine = ctx.footerLines[targetLineIdx]
adjMerges = mctx.footerMerges
found = true
}
}
}
if !found {
return nil
}
if adjMerges == nil {
adjMerges = make(map[int]tw.MergeState)
t.logger.Debugf("Warning: adjMerges was nil in buildAdjacentCells despite found=true")
}
paddedAdjLine := padLine(adjLine, ctx.numCols)
for j := 0; j < ctx.numCols; j++ {
mergeState := adjMerges[j]
cellData := paddedAdjLine[j]
finalAdjColWidth := ctx.widths[adjPosition].Get(j)
adjCells[j] = tw.CellContext{
Data: cellData,
Merge: mergeState,
Width: finalAdjColWidth,
}
}
return adjCells
}
// buildCellContexts creates CellContext objects for a given line in batch mode.
// Parameters include ctx, mctx, hctx, aligns, and padding for rendering.
// Returns a renderMergeResponse with current, previous, and next cell contexts.
func (t *Table) buildCellContexts(ctx *renderContext, mctx *mergeContext, hctx *helperContext, aligns map[int]tw.Align, padding map[int]tw.Padding) renderMergeResponse {
t.logger.Debugf("buildCellContexts: Building contexts for position=%s, rowIdx=%d, lineIdx=%d", hctx.position, hctx.rowIdx, hctx.lineIdx)
var merges map[int]tw.MergeState
switch hctx.position {
case tw.Header:
merges = mctx.headerMerges
case tw.Row:
if hctx.rowIdx >= 0 && hctx.rowIdx < len(mctx.rowMerges) && mctx.rowMerges[hctx.rowIdx] != nil {
merges = mctx.rowMerges[hctx.rowIdx]
} else {
merges = make(map[int]tw.MergeState)
t.logger.Warnf("buildCellContexts: Invalid row index %d or nil merges for row", hctx.rowIdx)
}
case tw.Footer:
merges = mctx.footerMerges
default:
merges = make(map[int]tw.MergeState)
t.logger.Warnf("buildCellContexts: Invalid position '%s'", hctx.position)
}
cells := t.buildCoreCellContexts(hctx.line, merges, ctx.widths[hctx.position], aligns, padding, ctx.numCols)
return renderMergeResponse{
cells: cells,
prevCells: t.buildAdjacentCells(ctx, mctx, hctx, -1),
nextCells: t.buildAdjacentCells(ctx, mctx, hctx, +1),
location: hctx.location,
}
}
// buildCoreCellContexts constructs CellContext objects for a single line, shared between batch and streaming modes.
// Parameters:
// - line: The content of the current line (padded to numCols).
// - merges: Merge states for the line's columns (map[int]tw.MergeState).
// - widths: Column widths (tw.Mapper[int, int]).
// - aligns: Column alignments (map[int]tw.Align).
// - padding: Column padding settings (map[int]tw.Padding).
// - numCols: Number of columns to process.
// Returns a map of column indices to CellContext for the current line.
func (t *Table) buildCoreCellContexts(line []string, merges map[int]tw.MergeState, widths tw.Mapper[int, int], aligns map[int]tw.Align, padding map[int]tw.Padding, numCols int) map[int]tw.CellContext {
cells := make(map[int]tw.CellContext)
paddedLine := padLine(line, numCols)
for j := 0; j < numCols; j++ {
cellData := paddedLine[j]
mergeState := tw.MergeState{}
if merges != nil {
if state, ok := merges[j]; ok {
mergeState = state
}
}
cells[j] = tw.CellContext{
Data: cellData,
Align: aligns[j],
Padding: padding[j],
Width: widths.Get(j),
Merge: mergeState,
}
}
t.logger.Debugf("buildCoreCellContexts: Built cell contexts for %d columns", numCols)
return cells
}
// buildPaddingLineContents constructs a padding line for a given section, respecting column widths and horizontal merges.
// It generates a []string where each element is the padding content for a column, using the specified padChar.
func (t *Table) buildPaddingLineContents(padChar string, widths tw.Mapper[int, int], numCols int, merges map[int]tw.MergeState) []string {
line := make([]string, numCols)
padWidth := twwidth.Width(padChar)
if padWidth < 1 {
padWidth = 1
}
for j := 0; j < numCols; j++ {
mergeState := tw.MergeState{}
if merges != nil {
if state, ok := merges[j]; ok {
mergeState = state
}
}
if mergeState.Horizontal.Present && !mergeState.Horizontal.Start {
line[j] = tw.Empty
continue
}
colWd := widths.Get(j)
repeatCount := 0
if colWd > 0 && padWidth > 0 {
repeatCount = colWd / padWidth
}
if colWd > 0 && repeatCount < 1 {
repeatCount = 1
}
content := strings.Repeat(padChar, repeatCount)
line[j] = content
}
if t.logger.Enabled() {
t.logger.Debugf("Built padding line with char '%s' for %d columns", padChar, numCols)
}
return line
}
// calculateAndNormalizeWidths computes and normalizes column widths.
// Parameter ctx holds rendering state with width maps.
// Returns an error if width calculation fails.
func (t *Table) calculateAndNormalizeWidths(ctx *renderContext) error {
ctx.logger.Debugf("calculateAndNormalizeWidths: Computing and normalizing widths for %d columns. Compact: %v",
ctx.numCols, t.config.Behavior.Compact.Merge.Enabled())
// Initialize width maps
//t.headerWidths = tw.NewMapper[int, int]()
//t.rowWidths = tw.NewMapper[int, int]()
//t.footerWidths = tw.NewMapper[int, int]()
// Compute content-based widths for each section
for _, lines := range ctx.headerLines {
t.updateWidths(lines, t.headerWidths, t.config.Header.Padding)
}
rowWidthCache := make([]tw.Mapper[int, int], len(ctx.rowLines))
for i, row := range ctx.rowLines {
rowWidthCache[i] = tw.NewMapper[int, int]()
for _, line := range row {
t.updateWidths(line, rowWidthCache[i], t.config.Row.Padding)
for col, width := range rowWidthCache[i] {
currentMax, _ := t.rowWidths.OK(col)
if width > currentMax {
t.rowWidths.Set(col, width)
}
}
}
}
for _, lines := range ctx.footerLines {
t.updateWidths(lines, t.footerWidths, t.config.Footer.Padding)
}
ctx.logger.Debugf("Content-based widths: header=%v, row=%v, footer=%v", t.headerWidths, t.rowWidths, t.footerWidths)
// Analyze header merges for optimization
var headerMergeSpans map[int]int
if t.config.Header.Formatting.MergeMode&tw.MergeHorizontal != 0 && len(ctx.headerLines) > 0 {
headerMergeSpans = make(map[int]int)
visitedCols := make(map[int]bool)
firstHeaderLine := ctx.headerLines[0]
if len(firstHeaderLine) > 0 {
for i := 0; i < len(firstHeaderLine); {
if visitedCols[i] {
i++
continue
}
var currentLogicalCellContentBuilder strings.Builder
for _, hLine := range ctx.headerLines {
if i < len(hLine) {
currentLogicalCellContentBuilder.WriteString(hLine[i])
}
}
currentHeaderCellContent := t.Trimmer(currentLogicalCellContentBuilder.String())
span := 1
for j := i + 1; j < len(firstHeaderLine); j++ {
var nextLogicalCellContentBuilder strings.Builder
for _, hLine := range ctx.headerLines {
if j < len(hLine) {
nextLogicalCellContentBuilder.WriteString(hLine[j])
}
}
nextHeaderCellContent := t.Trimmer(nextLogicalCellContentBuilder.String())
if currentHeaderCellContent == nextHeaderCellContent && currentHeaderCellContent != "" && currentHeaderCellContent != "-" {
span++
} else {
break
}
}
if span > 1 {
headerMergeSpans[i] = span
for k := 0; k < span; k++ {
visitedCols[i+k] = true
}
}
i += span
}
}
if len(headerMergeSpans) > 0 {
ctx.logger.Debugf("Header merge spans: %v", headerMergeSpans)
}
}
// Determine natural column widths
naturalColumnWidths := tw.NewMapper[int, int]()
for i := 0; i < ctx.numCols; i++ {
width := 0
if colWidth, ok := t.config.Widths.PerColumn.OK(i); ok && colWidth >= 0 {
width = colWidth
ctx.logger.Debugf("Col %d width from Config.Widths.PerColumn: %d", i, width)
} else {
maxRowFooterWidth := tw.Max(t.rowWidths.Get(i), t.footerWidths.Get(i))
headerCellOriginalWidth := t.headerWidths.Get(i)
if t.config.Behavior.Compact.Merge.Enabled() &&
t.config.Header.Formatting.MergeMode&tw.MergeHorizontal != 0 &&
headerMergeSpans != nil {
isColInHeaderMerge := false
for startCol, span := range headerMergeSpans {
if i >= startCol && i < startCol+span {
isColInHeaderMerge = true
break
}
}
if isColInHeaderMerge {
width = maxRowFooterWidth
if width == 0 && headerCellOriginalWidth > 0 {
width = headerCellOriginalWidth
}
ctx.logger.Debugf("Col %d (in merge) width: %d (row/footer: %d, header: %d)", i, width, maxRowFooterWidth, headerCellOriginalWidth)
} else {
width = tw.Max(headerCellOriginalWidth, maxRowFooterWidth)
ctx.logger.Debugf("Col %d (not in merge) width: %d", i, width)
}
} else {
width = tw.Max(tw.Max(headerCellOriginalWidth, t.rowWidths.Get(i)), t.footerWidths.Get(i))
ctx.logger.Debugf("Col %d width (no merge): %d", i, width)
}
if width == 0 && (headerCellOriginalWidth > 0 || t.rowWidths.Get(i) > 0 || t.footerWidths.Get(i) > 0) {
width = tw.Max(tw.Max(headerCellOriginalWidth, t.rowWidths.Get(i)), t.footerWidths.Get(i))
}
if width == 0 {
width = 1
}
}
naturalColumnWidths.Set(i, width)
}
ctx.logger.Debugf("Natural column widths: %v", naturalColumnWidths)
// Expand columns for merged header content if needed
workingWidths := naturalColumnWidths.Clone()
if t.config.Header.Formatting.MergeMode&tw.MergeHorizontal != 0 && headerMergeSpans != nil {
if span, isOneBigMerge := headerMergeSpans[0]; isOneBigMerge && span == ctx.numCols && ctx.numCols > 0 {
var firstHeaderCellLogicalContentBuilder strings.Builder
for _, hLine := range ctx.headerLines {
if 0 < len(hLine) {
firstHeaderCellLogicalContentBuilder.WriteString(hLine[0])
}
}
mergedContentString := t.Trimmer(firstHeaderCellLogicalContentBuilder.String())
headerCellPadding := t.config.Header.Padding.Global
if 0 < len(t.config.Header.Padding.PerColumn) && t.config.Header.Padding.PerColumn[0].Paddable() {
headerCellPadding = t.config.Header.Padding.PerColumn[0]
}
actualMergedHeaderContentPhysicalWidth := twwidth.Width(mergedContentString) +
twwidth.Width(headerCellPadding.Left) +
twwidth.Width(headerCellPadding.Right)
currentSumOfColumnWidths := 0
workingWidths.Each(func(_ int, w int) { currentSumOfColumnWidths += w })
numSeparatorsInFullSpan := 0
if ctx.numCols > 1 {
if t.renderer != nil && t.renderer.Config().Settings.Separators.BetweenColumns.Enabled() {
numSeparatorsInFullSpan = (ctx.numCols - 1) * twwidth.Width(t.renderer.Config().Symbols.Column())
}
}
totalCurrentSpanPhysicalWidth := currentSumOfColumnWidths + numSeparatorsInFullSpan
if actualMergedHeaderContentPhysicalWidth > totalCurrentSpanPhysicalWidth {
ctx.logger.Debugf("Merged header content '%s' (width %d) exceeds total width %d. Expanding.",
mergedContentString, actualMergedHeaderContentPhysicalWidth, totalCurrentSpanPhysicalWidth)
shortfall := actualMergedHeaderContentPhysicalWidth - totalCurrentSpanPhysicalWidth
numNonZeroCols := 0
workingWidths.Each(func(_ int, w int) {
if w > 0 {
numNonZeroCols++
}
})
if numNonZeroCols == 0 && ctx.numCols > 0 {
numNonZeroCols = ctx.numCols
}
if numNonZeroCols > 0 && shortfall > 0 {
extraPerColumn := int(math.Ceil(float64(shortfall) / float64(numNonZeroCols)))
finalSumAfterExpansion := 0
workingWidths.Each(func(colIdx int, currentW int) {
if currentW > 0 || (numNonZeroCols == ctx.numCols && ctx.numCols > 0) {
newWidth := currentW + extraPerColumn
workingWidths.Set(colIdx, newWidth)
finalSumAfterExpansion += newWidth
ctx.logger.Debugf("Col %d expanded by %d to %d", colIdx, extraPerColumn, newWidth)
} else {
finalSumAfterExpansion += currentW
}
})
overDistributed := (finalSumAfterExpansion + numSeparatorsInFullSpan) - actualMergedHeaderContentPhysicalWidth
if overDistributed > 0 {
ctx.logger.Debugf("Correcting over-distribution of %d", overDistributed)
// Sort columns for deterministic reduction
sortedCols := workingWidths.SortedKeys()
for i := 0; i < overDistributed; i++ {
// Reduce from highest-indexed column
for j := len(sortedCols) - 1; j >= 0; j-- {
col := sortedCols[j]
if workingWidths.Get(col) > 1 && naturalColumnWidths.Get(col) < workingWidths.Get(col) {
workingWidths.Set(col, workingWidths.Get(col)-1)
ctx.logger.Debugf("Reduced col %d by 1 to %d", col, workingWidths.Get(col))
break
}
}
}
}
}
}
}
}
ctx.logger.Debugf("Widths after merged header expansion: %v", workingWidths)
// Apply global width constraint
finalWidths := workingWidths.Clone()
if t.config.Widths.Global > 0 {
ctx.logger.Debugf("Applying global width constraint: %d", t.config.Widths.Global)
currentSumOfFinalColWidths := 0
finalWidths.Each(func(_ int, w int) { currentSumOfFinalColWidths += w })
numSeparators := 0
if ctx.numCols > 1 && t.renderer != nil && t.renderer.Config().Settings.Separators.BetweenColumns.Enabled() {
numSeparators = (ctx.numCols - 1) * twwidth.Width(t.renderer.Config().Symbols.Column())
}
totalCurrentTablePhysicalWidth := currentSumOfFinalColWidths + numSeparators
if totalCurrentTablePhysicalWidth > t.config.Widths.Global {
ctx.logger.Debugf("Table width %d exceeds global limit %d. Shrinking.", totalCurrentTablePhysicalWidth, t.config.Widths.Global)
targetTotalColumnContentWidth := t.config.Widths.Global - numSeparators
if targetTotalColumnContentWidth < 0 {
targetTotalColumnContentWidth = 0
}
if ctx.numCols > 0 && targetTotalColumnContentWidth < ctx.numCols {
targetTotalColumnContentWidth = ctx.numCols
}
hardMinimums := tw.NewMapper[int, int]()
sumOfHardMinimums := 0
isHeaderContentHardToWrap := !(t.config.Header.Formatting.AutoWrap == tw.WrapNormal || t.config.Header.Formatting.AutoWrap == tw.WrapBreak)
for i := 0; i < ctx.numCols; i++ {
minW := 1
if isHeaderContentHardToWrap && len(ctx.headerLines) > 0 {
headerColNaturalWidthWithPadding := t.headerWidths.Get(i)
if headerColNaturalWidthWithPadding > minW {
minW = headerColNaturalWidthWithPadding
}
}
hardMinimums.Set(i, minW)
sumOfHardMinimums += minW
}
ctx.logger.Debugf("Hard minimums: %v (sum: %d)", hardMinimums, sumOfHardMinimums)
if targetTotalColumnContentWidth < sumOfHardMinimums && sumOfHardMinimums > 0 {
ctx.logger.Warnf("Target width %d below minimums %d. Scaling.", targetTotalColumnContentWidth, sumOfHardMinimums)
scaleFactorMin := float64(targetTotalColumnContentWidth) / float64(sumOfHardMinimums)
if scaleFactorMin < 0 {
scaleFactorMin = 0
}
tempSum := 0
scaledHardMinimums := tw.NewMapper[int, int]()
hardMinimums.Each(func(colIdx int, currentMinW int) {
scaledMinW := int(math.Round(float64(currentMinW) * scaleFactorMin))
if scaledMinW < 1 && targetTotalColumnContentWidth > 0 {
scaledMinW = 1
} else if scaledMinW < 0 {
scaledMinW = 0
}
scaledHardMinimums.Set(colIdx, scaledMinW)
tempSum += scaledMinW
})
errorDiffMin := targetTotalColumnContentWidth - tempSum
if errorDiffMin != 0 && scaledHardMinimums.Len() > 0 {
sortedKeys := scaledHardMinimums.SortedKeys()
for i := 0; i < int(math.Abs(float64(errorDiffMin))); i++ {
keyToAdjust := sortedKeys[i%len(sortedKeys)]
val := scaledHardMinimums.Get(keyToAdjust)
adj := 1
if errorDiffMin < 0 {
adj = -1
}
if val+adj >= 1 || (val+adj == 0 && targetTotalColumnContentWidth == 0) {
scaledHardMinimums.Set(keyToAdjust, val+adj)
} else if adj > 0 {
scaledHardMinimums.Set(keyToAdjust, val+adj)
}
}
}
finalWidths = scaledHardMinimums.Clone()
ctx.logger.Debugf("Scaled minimums: %v", finalWidths)
} else {
finalWidths = hardMinimums.Clone()
widthAllocatedByMinimums := sumOfHardMinimums
remainingWidthToDistribute := targetTotalColumnContentWidth - widthAllocatedByMinimums
ctx.logger.Debugf("Target: %d, minimums: %d, remaining: %d", targetTotalColumnContentWidth, widthAllocatedByMinimums, remainingWidthToDistribute)
if remainingWidthToDistribute > 0 {
sumOfFlexiblePotentialBase := 0
flexibleColsOriginalWidths := tw.NewMapper[int, int]()
for i := 0; i < ctx.numCols; i++ {
naturalW := workingWidths.Get(i)
minW := hardMinimums.Get(i)
if naturalW > minW {
sumOfFlexiblePotentialBase += (naturalW - minW)
flexibleColsOriginalWidths.Set(i, naturalW)
}
}
ctx.logger.Debugf("Flexible potential: %d, flexible widths: %v", sumOfFlexiblePotentialBase, flexibleColsOriginalWidths)
if sumOfFlexiblePotentialBase > 0 {
distributedExtraSum := 0
sortedFlexKeys := flexibleColsOriginalWidths.SortedKeys()
for _, colIdx := range sortedFlexKeys {
naturalWOfCol := flexibleColsOriginalWidths.Get(colIdx)
hardMinOfCol := hardMinimums.Get(colIdx)
flexiblePartOfCol := naturalWOfCol - hardMinOfCol
proportion := 0.0
if sumOfFlexiblePotentialBase > 0 {
proportion = float64(flexiblePartOfCol) / float64(sumOfFlexiblePotentialBase)
} else if len(sortedFlexKeys) > 0 {
proportion = 1.0 / float64(len(sortedFlexKeys))
}
extraForThisCol := int(math.Round(float64(remainingWidthToDistribute) * proportion))
currentAssignedW := finalWidths.Get(colIdx)
finalWidths.Set(colIdx, currentAssignedW+extraForThisCol)
distributedExtraSum += extraForThisCol
}
errorInDist := remainingWidthToDistribute - distributedExtraSum
ctx.logger.Debugf("Distributed %d, error: %d", distributedExtraSum, errorInDist)
if errorInDist != 0 && len(sortedFlexKeys) > 0 {
for i := 0; i < int(math.Abs(float64(errorInDist))); i++ {
colToAdjust := sortedFlexKeys[i%len(sortedFlexKeys)]
w := finalWidths.Get(colToAdjust)
adj := 1
if errorInDist < 0 {
adj = -1
}
if !(adj < 0 && w+adj < hardMinimums.Get(colToAdjust)) {
finalWidths.Set(colToAdjust, w+adj)
} else if adj > 0 {
finalWidths.Set(colToAdjust, w+adj)
}
}
}
} else {
if ctx.numCols > 0 {
extraPerCol := remainingWidthToDistribute / ctx.numCols
rem := remainingWidthToDistribute % ctx.numCols
for i := 0; i < ctx.numCols; i++ {
currentW := finalWidths.Get(i)
add := extraPerCol
if i < rem {
add++
}
finalWidths.Set(i, currentW+add)
}
}
}
}
}
finalSumCheck := 0
finalWidths.Each(func(idx int, w int) {
if w < 1 && targetTotalColumnContentWidth > 0 {
finalWidths.Set(idx, 1)
} else if w < 0 {
finalWidths.Set(idx, 0)
}
finalSumCheck += finalWidths.Get(idx)
})
ctx.logger.Debugf("Final widths after scaling: %v (sum: %d, target: %d)", finalWidths, finalSumCheck, targetTotalColumnContentWidth)
}
}
// Assign final widths to context
ctx.widths[tw.Header] = finalWidths.Clone()
ctx.widths[tw.Row] = finalWidths.Clone()
ctx.widths[tw.Footer] = finalWidths.Clone()
ctx.logger.Debugf("Final normalized widths: header=%v, row=%v, footer=%v", ctx.widths[tw.Header], ctx.widths[tw.Row], ctx.widths[tw.Footer])
return nil
}
// calculateContentMaxWidth computes the maximum content width for a column, accounting for padding and mode-specific constraints.
// Returns the effective content width (after subtracting padding) for the given column index.
func (t *Table) calculateContentMaxWidth(colIdx int, config tw.CellConfig, padLeftWidth, padRightWidth int, isStreaming bool) int {
var effectiveContentMaxWidth int
if isStreaming {
// Existing streaming logic remains unchanged
totalColumnWidthFromStream := t.streamWidths.Get(colIdx)
if totalColumnWidthFromStream < 0 {
totalColumnWidthFromStream = 0
}
effectiveContentMaxWidth = totalColumnWidthFromStream - padLeftWidth - padRightWidth
if effectiveContentMaxWidth < 1 && totalColumnWidthFromStream > (padLeftWidth+padRightWidth) {
effectiveContentMaxWidth = 1
} else if effectiveContentMaxWidth < 0 {
effectiveContentMaxWidth = 0
}
if totalColumnWidthFromStream == 0 {
effectiveContentMaxWidth = 0
}
t.logger.Debugf("calculateContentMaxWidth: Streaming col %d, TotalColWd=%d, PadL=%d, PadR=%d -> ContentMaxWd=%d", colIdx, totalColumnWidthFromStream, padLeftWidth, padRightWidth, effectiveContentMaxWidth)
} else {
// New priority-based width constraint checking
constraintTotalCellWidth := 0
hasConstraint := false
// 1. Check new Widths.PerColumn (highest priority)
if t.config.Widths.Constrained() {
if colWidth, ok := t.config.Widths.PerColumn.OK(colIdx); ok && colWidth > 0 {
constraintTotalCellWidth = colWidth
hasConstraint = true
t.logger.Debugf("calculateContentMaxWidth: Using Widths.PerColumn[%d] = %d",
colIdx, constraintTotalCellWidth)
}
// 2. Check new Widths.Global
if !hasConstraint && t.config.Widths.Global > 0 {
constraintTotalCellWidth = t.config.Widths.Global
hasConstraint = true
t.logger.Debugf("calculateContentMaxWidth: Using Widths.Global = %d", constraintTotalCellWidth)
}
}
// 3. Fall back to legacy ColMaxWidths.PerColumn (backward compatibility)
if !hasConstraint && config.ColMaxWidths.PerColumn != nil {
if colMax, ok := config.ColMaxWidths.PerColumn.OK(colIdx); ok && colMax > 0 {
constraintTotalCellWidth = colMax
hasConstraint = true
t.logger.Debugf("calculateContentMaxWidth: Using legacy ColMaxWidths.PerColumn[%d] = %d",
colIdx, constraintTotalCellWidth)
}
}
// 4. Fall back to legacy ColMaxWidths.Global
if !hasConstraint && config.ColMaxWidths.Global > 0 {
constraintTotalCellWidth = config.ColMaxWidths.Global
hasConstraint = true
t.logger.Debugf("calculateContentMaxWidth: Using legacy ColMaxWidths.Global = %d",
constraintTotalCellWidth)
}
// 5. Fall back to table MaxWidth if auto-wrapping
if !hasConstraint && t.config.MaxWidth > 0 && config.Formatting.AutoWrap != tw.WrapNone {
constraintTotalCellWidth = t.config.MaxWidth
hasConstraint = true
t.logger.Debugf("calculateContentMaxWidth: Using table MaxWidth = %d (AutoWrap enabled)",
constraintTotalCellWidth)
}
// Calculate effective width based on found constraint
if hasConstraint {
effectiveContentMaxWidth = constraintTotalCellWidth - padLeftWidth - padRightWidth
if effectiveContentMaxWidth < 1 && constraintTotalCellWidth > (padLeftWidth+padRightWidth) {
effectiveContentMaxWidth = 1
} else if effectiveContentMaxWidth < 0 {
effectiveContentMaxWidth = 0
}
t.logger.Debugf("calculateContentMaxWidth: ConstraintTotalCellWidth=%d, PadL=%d, PadR=%d -> EffectiveContentMaxWidth=%d",
constraintTotalCellWidth, padLeftWidth, padRightWidth, effectiveContentMaxWidth)
} else {
effectiveContentMaxWidth = 0
t.logger.Debugf("calculateContentMaxWidth: No width constraints found for column %d", colIdx)
}
}
return effectiveContentMaxWidth
}
// convertToStringer invokes the table's stringer function with optional caching.
func (t *Table) convertToStringer(input interface{}) ([]string, error) {
// This function is now only called if t.stringer is non-nil.
if t.stringer == nil {
return nil, errors.New("internal error: convertToStringer called with nil t.stringer")
}
t.logger.Debugf("convertToString attempt %v using %v", input, t.stringer)
inputType := reflect.TypeOf(input)
stringerFuncVal := reflect.ValueOf(t.stringer)
stringerFuncType := stringerFuncVal.Type()
// Cache lookup (simplified, actual cache logic can be more complex)
if t.stringerCacheEnabled {
t.stringerCacheMu.RLock()
cachedFunc, ok := t.stringerCache[inputType]
t.stringerCacheMu.RUnlock()
if ok {
// Add proper type checking for cachedFunc against input here if necessary
t.logger.Debugf("convertToStringer: Cache hit for type %v", inputType)
results := cachedFunc.Call([]reflect.Value{reflect.ValueOf(input)})
if len(results) == 1 && results[0].Type() == reflect.TypeOf([]string{}) {
return results[0].Interface().([]string), nil
}
}
}
// Robust type checking for the stringer function
validSignature := stringerFuncVal.Kind() == reflect.Func &&
stringerFuncType.NumIn() == 1 &&
stringerFuncType.NumOut() == 1 &&
stringerFuncType.Out(0) == reflect.TypeOf([]string{})
if !validSignature {
return nil, errors.Newf("table stringer (type %T) does not have signature func(SomeType) []string", t.stringer)
}
// Check if input is assignable to stringer's parameter type
paramType := stringerFuncType.In(0)
assignable := false
if inputType != nil { // input is not untyped nil
if inputType.AssignableTo(paramType) {
assignable = true
} else if paramType.Kind() == reflect.Interface && inputType.Implements(paramType) {
assignable = true
} else if paramType.Kind() == reflect.Interface && paramType.NumMethod() == 0 { // stringer expects interface{}
assignable = true
}
} else if paramType.Kind() == reflect.Interface || (paramType.Kind() == reflect.Ptr && paramType.Elem().Kind() != reflect.Interface) {
// If input is nil, it can be assigned if stringer expects an interface or a pointer type
// (but not a pointer to an interface, which is rare for stringers).
// A nil value for a concrete type parameter would cause a panic on Call.
// So, if paramType is not an interface/pointer, and input is nil, it's an issue.
// This needs careful handling. For now, assume assignable if interface/pointer.
assignable = true
}
if !assignable {
return nil, errors.Newf("input type %T cannot be passed to table stringer expecting %s", input, paramType)
}
var callArgs []reflect.Value
if input == nil {
// If input is nil, we must pass a zero value of the stringer's parameter type
// if that type is a pointer or interface.
// Passing reflect.ValueOf(nil) directly will cause issues if paramType is concrete.
callArgs = []reflect.Value{reflect.Zero(paramType)}
} else {
callArgs = []reflect.Value{reflect.ValueOf(input)}
}
resultValues := stringerFuncVal.Call(callArgs)
if t.stringerCacheEnabled && inputType != nil { // Only cache if inputType is valid
t.stringerCacheMu.Lock()
t.stringerCache[inputType] = stringerFuncVal
t.stringerCacheMu.Unlock()
}
return resultValues[0].Interface().([]string), nil
}
// convertToString converts a value to its string representation.
func (t *Table) convertToString(value interface{}) string {
if value == nil {
return ""
}
switch v := value.(type) {
case tw.Formatter:
return v.Format()
case io.Reader:
const maxReadSize = 512
var buf strings.Builder
_, err := io.CopyN(&buf, v, maxReadSize)
if err != nil && err != io.EOF {
return fmt.Sprintf("[reader error: %v]", err) // Keep fmt.Sprintf for rare error case
}
if buf.Len() == maxReadSize {
buf.WriteString(tw.CharEllipsis)
}
return buf.String()
case sql.NullString:
if v.Valid {
return v.String
}
return ""
case sql.NullInt64:
if v.Valid {
return strconv.FormatInt(v.Int64, 10)
}
return ""
case sql.NullFloat64:
if v.Valid {
return strconv.FormatFloat(v.Float64, 'f', -1, 64)
}
return ""
case sql.NullBool:
if v.Valid {
return strconv.FormatBool(v.Bool)
}
return ""
case sql.NullTime:
if v.Valid {
return v.Time.String()
}
return ""
case []byte:
return string(v)
case error:
return v.Error()
case fmt.Stringer:
return v.String()
case string:
return v
case int:
return strconv.FormatInt(int64(v), 10)
case int8:
return strconv.FormatInt(int64(v), 10)
case int16:
return strconv.FormatInt(int64(v), 10)
case int32:
return strconv.FormatInt(int64(v), 10)
case int64:
return strconv.FormatInt(v, 10)
case uint:
return strconv.FormatUint(uint64(v), 10)
case uint8:
return strconv.FormatUint(uint64(v), 10)
case uint16:
return strconv.FormatUint(uint64(v), 10)
case uint32:
return strconv.FormatUint(uint64(v), 10)
case uint64:
return strconv.FormatUint(v, 10)
case float32:
return strconv.FormatFloat(float64(v), 'f', -1, 32)
case float64:
return strconv.FormatFloat(v, 'f', -1, 64)
case bool:
return strconv.FormatBool(v)
default:
t.logger.Debugf("convertToString: Falling back to fmt.Sprintf for type %T", value)
return fmt.Sprintf("%v", value) // Fallback for rare types
}
}
// convertItemToCells is responsible for converting a single input item (which could be
// a struct, a basic type, or an item implementing Stringer/Formatter) into a slice
// of strings, where each string represents a cell for the table row.
// zoo.go
// convertItemToCells is responsible for converting a single input item into a slice of strings.
// It now uses the unified struct parser for structs.
func (t *Table) convertItemToCells(item interface{}) ([]string, error) {
t.logger.Debugf("convertItemToCells: Converting item of type %T", item)
// 1. User-defined table-wide stringer (t.stringer) takes highest precedence.
if t.stringer != nil {
res, err := t.convertToStringer(item)
if err == nil {
t.logger.Debugf("convertItemToCells: Used custom table stringer for type %T. Produced %d cells: %v", item, len(res), res)
return res, nil
}
t.logger.Warnf("convertItemToCells: Custom table stringer was set but incompatible for type %T: %v. Will attempt other methods.", item, err)
}
// 2. Handle untyped nil directly.
if item == nil {
t.logger.Debugf("convertItemToCells: Item is untyped nil. Returning single empty cell.")
return []string{""}, nil
}
// 3. Use the new unified struct parser. It handles pointers and embedding.
// We only care about the values it returns.
_, values := t.extractFieldsAndValuesFromStruct(item)
if values != nil {
t.logger.Debugf("convertItemToCells: Structs %T reflected into %d cells: %v", item, len(values), values)
return values, nil
}
// 4. Fallback for any other single item (e.g., basic types, or types that implement Stringer/Formatter).
// This code path is now for non-struct types.
if formatter, ok := item.(tw.Formatter); ok {
t.logger.Debugf("convertItemToCells: Item (non-struct, type %T) is tw.Formatter. Using Format().", item)
return []string{formatter.Format()}, nil
}
if stringer, ok := item.(fmt.Stringer); ok {
t.logger.Debugf("convertItemToCells: Item (non-struct, type %T) is fmt.Stringer. Using String().", item)
return []string{stringer.String()}, nil
}
t.logger.Debugf("convertItemToCells: Item (type %T) is a basic type. Treating as single cell via convertToString.", item)
return []string{t.convertToString(item)}, nil
}
// convertCellsToStrings converts a row to its raw string representation using specified cell config for filters.
// 'rowInput' can be []string, []any, or a custom type if t.stringer is set.
func (t *Table) convertCellsToStrings(rowInput interface{}, cellCfg tw.CellConfig) ([]string, error) {
t.logger.Debugf("convertCellsToStrings: Converting row: %v (type: %T)", rowInput, rowInput)
var cells []string
var err error
switch v := rowInput.(type) {
//Directly supported slice types
case []string:
cells = v
case []interface{}: // Catches variadic simple types grouped by Append
cells = make([]string, len(v))
for i, val := range v {
cells[i] = t.convertToString(val)
}
case []int:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.Itoa(val)
}
case []int8:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatInt(int64(val), 10)
}
case []int16:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatInt(int64(val), 10)
}
case []int32: // Also rune
cells = make([]string, len(v))
for i, val := range v {
cells[i] = t.convertToString(val)
} // Use convertToString for potential rune
case []int64:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatInt(val, 10)
}
case []uint:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatUint(uint64(val), 10)
}
case []uint8: // Also byte
cells = make([]string, len(v))
// If it's truly []byte, convertToString will handle it as a string.
// If it's a slice of small numbers, convertToString will handle them individually.
for i, val := range v {
cells[i] = t.convertToString(val)
}
case []uint16:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatUint(uint64(val), 10)
}
case []uint32:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatUint(uint64(val), 10)
}
case []uint64:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatUint(val, 10)
}
case []float32:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatFloat(float64(val), 'f', -1, 32)
}
case []float64:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatFloat(val, 'f', -1, 64)
}
case []bool:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = strconv.FormatBool(val)
}
case []tw.Formatter:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = val.Format()
}
case []fmt.Stringer:
cells = make([]string, len(v))
for i, val := range v {
cells[i] = val.String()
}
//Cases for single items that are NOT slices
// These are now dispatched to convertItemToCells by the default case.
// Keeping direct tw.Formatter and fmt.Stringer here could be a micro-optimization
// if `rowInput` is *exactly* that type (not a struct implementing it),
// but for clarity, `convertItemToCells` can handle these too.
// For this iteration, to match the described flow:
case tw.Formatter: // This handles a single Formatter item
t.logger.Debugf("convertCellsToStrings: Input is a single tw.Formatter. Using Format().")
cells = []string{v.Format()}
case fmt.Stringer: // This handles a single Stringer item
t.logger.Debugf("convertCellsToStrings: Input is a single fmt.Stringer. Using String().")
cells = []string{v.String()}
default:
// If rowInput is not one of the recognized slice types above,
// or not a single Formatter/Stringer that was directly matched,
// it's treated as a single item that needs to be converted into potentially multiple cells.
// This is where structs (for field expansion) or other single values (for a single cell) are handled.
t.logger.Debugf("convertCellsToStrings: Default case for type %T. Dispatching to convertItemToCells.", rowInput)
cells, err = t.convertItemToCells(rowInput)
if err != nil {
t.logger.Errorf("convertCellsToStrings: Error from convertItemToCells for type %T: %v", rowInput, err)
return nil, err
}
}
// Apply filters (common logic for all successful conversions)
if err == nil && cells != nil {
if cellCfg.Filter.Global != nil {
t.logger.Debugf("convertCellsToStrings: Applying global filter to cells: %v", cells)
cells = cellCfg.Filter.Global(cells)
}
if len(cellCfg.Filter.PerColumn) > 0 {
t.logger.Debugf("convertCellsToStrings: Applying per-column filters to %d cells", len(cells))
for i := 0; i < len(cellCfg.Filter.PerColumn); i++ {
if i < len(cells) && cellCfg.Filter.PerColumn[i] != nil {
originalCell := cells[i]
cells[i] = cellCfg.Filter.PerColumn[i](cells[i])
if cells[i] != originalCell {
t.logger.Debugf(" convertCellsToStrings: Col %d filter applied: '%s' -> '%s'", i, originalCell, cells[i])
}
} else if i >= len(cells) && cellCfg.Filter.PerColumn[i] != nil {
t.logger.Warnf(" convertCellsToStrings: Per-column filter defined for col %d, but item only produced %d cells. Filter for this column skipped.", i, len(cells))
}
}
}
}
if err != nil {
t.logger.Debugf("convertCellsToStrings: Returning with error: %v", err)
return nil, err
}
t.logger.Debugf("convertCellsToStrings: Conversion and filtering completed, raw cells: %v", cells)
return cells, nil
}
// determineLocation determines the boundary location for a line.
// Parameters include lineIdx, totalLines, topPad, and bottomPad.
// Returns a tw.Location indicating First, Middle, or End.
func (t *Table) determineLocation(lineIdx, totalLines int, topPad, bottomPad string) tw.Location {
if lineIdx == 0 && topPad == tw.Empty {
return tw.LocationFirst
}
if lineIdx == totalLines-1 && bottomPad == tw.Empty {
return tw.LocationEnd
}
return tw.LocationMiddle
}
// ensureStreamWidthsCalculated ensures that stream widths and column count are initialized for streaming mode.
// It uses sampleData and sectionConfig to calculate widths if not already set.
// Returns an error if the column count cannot be determined.
func (t *Table) ensureStreamWidthsCalculated(sampleData []string, sectionConfig tw.CellConfig) error {
if t.streamWidths != nil && t.streamWidths.Len() > 0 {
t.logger.Debugf("Stream widths already set: %v", t.streamWidths)
return nil
}
t.streamCalculateWidths(sampleData, sectionConfig)
if t.streamNumCols == 0 {
t.logger.Warn("Failed to determine column count from sample data")
return errors.New("failed to determine column count for streaming")
}
for i := 0; i < t.streamNumCols; i++ {
if _, ok := t.streamWidths.OK(i); !ok {
t.streamWidths.Set(i, 0)
}
}
t.logger.Debugf("Initialized stream widths: %v", t.streamWidths)
return nil
}
// getColMaxWidths retrieves maximum column widths for a section.
// Parameter position specifies the section (Header, Row, Footer).
// Returns a map of column indices to maximum widths.
func (t *Table) getColMaxWidths(position tw.Position) tw.CellWidth {
switch position {
case tw.Header:
return t.config.Header.ColMaxWidths
case tw.Row:
return t.config.Row.ColMaxWidths
case tw.Footer:
return t.config.Footer.ColMaxWidths
default:
return tw.CellWidth{}
}
}
// getEmptyColumnInfo identifies empty columns in row data.
// Parameter numOriginalCols specifies the total column count.
// Returns a boolean slice (true for empty) and visible column count.
func (t *Table) getEmptyColumnInfo(numOriginalCols int) (isEmpty []bool, visibleColCount int) {
isEmpty = make([]bool, numOriginalCols)
for i := range isEmpty {
isEmpty[i] = true
}
if t.config.Behavior.AutoHide.Disabled() {
t.logger.Debugf("getEmptyColumnInfo: AutoHide disabled, marking all %d columns as visible.", numOriginalCols)
for i := range isEmpty {
isEmpty[i] = false
}
visibleColCount = numOriginalCols
return isEmpty, visibleColCount
}
t.logger.Debugf("getEmptyColumnInfo: Checking %d rows for %d columns...", len(t.rows), numOriginalCols)
for rowIdx, logicalRow := range t.rows {
for lineIdx, visualLine := range logicalRow {
for colIdx, cellContent := range visualLine {
if colIdx >= numOriginalCols {
continue
}
if !isEmpty[colIdx] {
continue
}
cellContent = t.Trimmer(cellContent)
if cellContent != "" {
isEmpty[colIdx] = false
t.logger.Debugf("getEmptyColumnInfo: Found content in row %d, line %d, col %d ('%s'). Marked as not empty.", rowIdx, lineIdx, colIdx, cellContent)
}
}
}
}
visibleColCount = 0
for _, empty := range isEmpty {
if !empty {
visibleColCount++
}
}
t.logger.Debugf("getEmptyColumnInfo: Detection complete. isEmpty: %v, visibleColCount: %d", isEmpty, visibleColCount)
return isEmpty, visibleColCount
}
// getNumColsToUse determines the number of columns to use for rendering, based on streaming or batch mode.
// Returns the number of columns (streamNumCols for streaming, maxColumns for batch).
func (t *Table) getNumColsToUse() int {
if t.config.Stream.Enable && t.hasPrinted {
t.logger.Debugf("getNumColsToUse: Using streamNumCols: %d", t.streamNumCols)
return t.streamNumCols
}
// For batch mode:
if t.isBatchRenderNumColsSet {
// If the flag is set, batchRenderNumCols holds the authoritative count
// for the current Render() pass, even if that count is 0.
t.logger.Debugf("getNumColsToUse (batch): Using cached t.batchRenderNumCols: %d (because isBatchRenderNumColsSet is true)", t.batchRenderNumCols)
return t.batchRenderNumCols
}
// Fallback: If not streaming and cache flag is not set (e.g., called outside a Render pass)
num := t.maxColumns()
t.logger.Debugf("getNumColsToUse (batch): Cache not active, calculated via t.maxColumns(): %d", num)
return num
}
// prepareTableSection prepares either headers or footers for the table
func (t *Table) prepareTableSection(elements []any, config tw.CellConfig, sectionName string) [][]string {
actualCellsToProcess := t.processVariadic(elements)
t.logger.Debugf("%s(): Effective cells to process: %v", sectionName, actualCellsToProcess)
stringsResult, err := t.convertCellsToStrings(actualCellsToProcess, config)
if err != nil {
t.logger.Errorf("%s(): Failed to convert elements to strings: %v", sectionName, err)
stringsResult = []string{}
}
prepared := t.prepareContent(stringsResult, config)
numColsBatch := t.maxColumns()
if len(prepared) > 0 {
for i := range prepared {
if len(prepared[i]) < numColsBatch {
t.logger.Debugf("Padding %s line %d from %d to %d columns", sectionName, i, len(prepared[i]), numColsBatch)
paddedLine := make([]string, numColsBatch)
copy(paddedLine, prepared[i])
for j := len(prepared[i]); j < numColsBatch; j++ {
paddedLine[j] = tw.Empty
}
prepared[i] = paddedLine
} else if len(prepared[i]) > numColsBatch {
t.logger.Debugf("Truncating %s line %d from %d to %d columns", sectionName, i, len(prepared[i]), numColsBatch)
prepared[i] = prepared[i][:numColsBatch]
}
}
}
return prepared
}
// processVariadic handles the common logic for processing variadic arguments
// that could be either individual elements or a slice of elements
func (t *Table) processVariadic(elements []any) []any {
if len(elements) == 1 {
switch v := elements[0].(type) {
case []string:
t.logger.Debugf("Detected single []string argument. Unpacking it (fast path).")
out := make([]any, len(v))
for i := range v {
out[i] = v[i]
}
return out
case []interface{}:
t.logger.Debugf("Detected single []interface{} argument. Unpacking it (fast path).")
out := make([]any, len(v))
copy(out, v)
return out
}
}
t.logger.Debugf("Input has multiple elements or single non-slice. Using variadic elements as-is.")
return elements
}
// toStringLines converts raw cells to formatted lines for table output
func (t *Table) toStringLines(row interface{}, config tw.CellConfig) ([][]string, error) {
cells, err := t.convertCellsToStrings(row, config)
if err != nil {
return nil, err
}
return t.prepareContent(cells, config), nil
}
// updateWidths updates the width map based on cell content and padding.
// Parameters include row content, widths map, and padding configuration.
// No return value.
func (t *Table) updateWidths(row []string, widths tw.Mapper[int, int], padding tw.CellPadding) {
t.logger.Debugf("Updating widths for row: %v", row)
for i, cell := range row {
colPad := padding.Global
if i < len(padding.PerColumn) && padding.PerColumn[i].Paddable() {
colPad = padding.PerColumn[i]
t.logger.Debugf(" Col %d: Using per-column padding: L:'%s' R:'%s'", i, colPad.Left, colPad.Right)
} else {
t.logger.Debugf(" Col %d: Using global padding: L:'%s' R:'%s'", i, padding.Global.Left, padding.Global.Right)
}
padLeftWidth := twwidth.Width(colPad.Left)
padRightWidth := twwidth.Width(colPad.Right)
// Split cell into lines and find maximum content width
lines := strings.Split(cell, tw.NewLine)
contentWidth := 0
for _, line := range lines {
lineWidth := twwidth.Width(line)
if t.config.Behavior.TrimSpace.Enabled() {
lineWidth = twwidth.Width(t.Trimmer(line))
}
if lineWidth > contentWidth {
contentWidth = lineWidth
}
}
totalWidth := contentWidth + padLeftWidth + padRightWidth
minRequiredPaddingWidth := padLeftWidth + padRightWidth
if contentWidth == 0 && totalWidth < minRequiredPaddingWidth {
t.logger.Debugf(" Col %d: Empty content, ensuring width >= padding width (%d). Setting totalWidth to %d.", i, minRequiredPaddingWidth, minRequiredPaddingWidth)
totalWidth = minRequiredPaddingWidth
}
if totalWidth < 1 {
t.logger.Debugf(" Col %d: Calculated totalWidth is zero, setting minimum width to 1.", i)
totalWidth = 1
}
currentMax, _ := widths.OK(i)
if totalWidth > currentMax {
widths.Set(i, totalWidth)
t.logger.Debugf(" Col %d: Updated width from %d to %d (content:%d + padL:%d + padR:%d) for cell '%s'", i, currentMax, totalWidth, contentWidth, padLeftWidth, padRightWidth, cell)
} else {
t.logger.Debugf(" Col %d: Width %d not greater than current max %d for cell '%s'", i, totalWidth, currentMax, cell)
}
}
}
// extractHeadersFromStruct is now a thin wrapper around the new unified function.
// It only cares about the header names.
func (t *Table) extractHeadersFromStruct(sample interface{}) []string {
headers, _ := t.extractFieldsAndValuesFromStruct(sample)
return headers
}
// extractFieldsAndValuesFromStruct is the new single source of truth for struct reflection.
// It recursively processes a struct, handling pointers and embedded structs,
// and returns two slices: one for header names and one for string-converted values.
func (t *Table) extractFieldsAndValuesFromStruct(sample interface{}) ([]string, []string) {
v := reflect.ValueOf(sample)
if v.Kind() == reflect.Ptr {
if v.IsNil() {
return nil, nil
}
v = v.Elem()
}
if v.Kind() != reflect.Struct {
return nil, nil
}
typ := v.Type()
headers := make([]string, 0, typ.NumField())
values := make([]string, 0, typ.NumField())
for i := 0; i < typ.NumField(); i++ {
field := typ.Field(i)
fieldValue := v.Field(i)
// Skip unexported fields
if field.PkgPath != "" {
continue
}
// Handle embedded structs recursively
if field.Anonymous {
h, val := t.extractFieldsAndValuesFromStruct(fieldValue.Interface())
if h != nil {
headers = append(headers, h...)
values = append(values, val...)
}
continue
}
var tagName string
skipField := false
// Loop through the priority list of configured tags (e.g., ["json", "db"])
for _, tagKey := range t.config.Behavior.Structs.Tags {
tagValue := field.Tag.Get(tagKey)
// If a tag is found...
if tagValue != "" {
// If the tag is "-", this field should be skipped entirely.
if tagValue == "-" {
skipField = true
break // Stop processing tags for this field.
}
// Otherwise, we've found our highest-priority tag. Store it and stop.
tagName = tagValue
break // Stop processing tags for this field.
}
}
// If the field was marked for skipping, continue to the next field.
if skipField {
continue
}
// Determine header name from the tag or fallback to the field name
headerName := field.Name
if tagName != "" {
headerName = strings.Split(tagName, ",")[0]
}
headers = append(headers, tw.Title(headerName))
// Determine value, respecting omitempty from the found tag
value := ""
if !strings.Contains(tagName, ",omitempty") || !fieldValue.IsZero() {
value = t.convertToString(fieldValue.Interface())
}
values = append(values, value)
}
return headers, values
}
|