1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
// sieve.go - SIEVE - a simple and efficient cache
//
// (c) 2024 Sudhi Herle <sudhi@herle.net>
//
// Copyright 2024- Sudhi Herle <sw-at-herle-dot-net>
// License: BSD-2-Clause
//
// If you need a commercial license for this work, please contact
// the author.
//
// This software does not come with any express or implied
// warranty; it is provided "as is". No claim is made to its
// suitability for any purpose.
// This is golang implementation of the SIEVE cache eviction algorithm
// The original paper is:
// https://yazhuozhang.com/assets/pdf/nsdi24-sieve.pdf
//
// This implementation closely follows the paper - but uses golang generics
// for an ergonomic interface.
// Package sieve implements the SIEVE cache eviction algorithm.
// SIEVE stands in contrast to other eviction algorithms like LRU, 2Q, ARC
// with its simplicity. The original paper is in:
// https://yazhuozhang.com/assets/pdf/nsdi24-sieve.pdf
//
// SIEVE is built on a FIFO queue - with an extra pointer (called "hand") in
// the paper. This "hand" plays a crucial role in determining who to evict
// next.
package sieve
import (
"fmt"
"strings"
"sync"
"sync/atomic"
)
// node contains the <key, val> tuple as a node in a linked list.
type node[K comparable, V any] struct {
sync.Mutex
key K
val V
visited atomic.Bool
next *node[K, V]
prev *node[K, V]
}
// allocator manages a fixed pool of pre-allocated nodes and a freelist
type allocator[K comparable, V any] struct {
nodes []node[K, V] // Pre-allocated array of all nodes
freelist *node[K, V] // Head of freelist of available nodes
backing []node[K, V] // backing array - to help with reset/purge
}
// newAllocator creates a new allocator with capacity nodes
func newAllocator[K comparable, V any](capacity int) *allocator[K, V] {
a := make([]node[K, V], capacity)
return &allocator[K, V]{
nodes: a,
freelist: nil,
backing: a,
}
}
// alloc retrieves a node from the allocator
// It first tries the freelist, then falls back to the pre-allocated array
func (a *allocator[K, V]) alloc() *node[K, V] {
// If freelist is not empty, use a node from there
if a.freelist != nil {
n := a.freelist
a.freelist = n.next
return n
}
// If we've used all pre-allocated nodes, return nil
if len(a.nodes) == 0 {
return nil
}
// Take a node from the pre-allocated array and shrink it
n := &a.nodes[0]
a.nodes = a.nodes[1:]
return n
}
// free returns a node to the freelist
func (a *allocator[K, V]) free(n *node[K, V]) {
// Add the node to the head of the freelist
n.next = a.freelist
a.freelist = n
}
// reset resets the allocator as if newAllocator() is called
func (a *allocator[K, V]) reset() {
a.freelist = nil
a.nodes = a.backing
}
// capacity returns the capacity of the cache
func (a *allocator[K, V]) capacity() int {
return cap(a.backing)
}
// Sieve represents a cache mapping the key of type 'K' with
// a value of type 'V'. The type 'K' must implement the
// comparable trait. An instance of Sieve has a fixed max capacity;
// new additions to the cache beyond the capacity will cause cache
// eviction of other entries - as determined by the SIEVE algorithm.
type Sieve[K comparable, V any] struct {
mu sync.Mutex
cache *syncMap[K, *node[K, V]]
head *node[K, V]
tail *node[K, V]
hand *node[K, V]
size int
allocator *allocator[K, V]
}
// New creates a new cache of size 'capacity' mapping key 'K' to value 'V'
func New[K comparable, V any](capacity int) *Sieve[K, V] {
s := &Sieve[K, V]{
cache: newSyncMap[K, *node[K, V]](),
allocator: newAllocator[K, V](capacity),
}
return s
}
// Get fetches the value for a given key in the cache.
// It returns true if the key is in the cache, false otherwise.
// The zero value for 'V' is returned when key is not in the cache.
func (s *Sieve[K, V]) Get(key K) (V, bool) {
if v, ok := s.cache.Get(key); ok {
v.visited.Store(true)
return v.val, true
}
var x V
return x, false
}
// Add adds a new element to the cache or overwrite one if it exists
// Return true if we replaced, false otherwise
func (s *Sieve[K, V]) Add(key K, val V) bool {
if v, ok := s.cache.Get(key); ok {
v.Lock()
v.visited.Store(true)
v.val = val
v.Unlock()
return true
}
s.mu.Lock()
s.add(key, val)
s.mu.Unlock()
return false
}
// Probe adds <key, val> if not present in the cache.
// Returns:
//
// <cached-val, true> when key is present in the cache
// <val, false> when key is not present in the cache
func (s *Sieve[K, V]) Probe(key K, val V) (V, bool) {
if v, ok := s.cache.Get(key); ok {
v.visited.Store(true)
return v.val, true
}
s.mu.Lock()
s.add(key, val)
s.mu.Unlock()
return val, false
}
// Delete deletes the named key from the cache
// It returns true if the item was in the cache and false otherwise
func (s *Sieve[K, V]) Delete(key K) bool {
if v, ok := s.cache.Del(key); ok {
s.mu.Lock()
s.remove(v)
s.mu.Unlock()
return true
}
return false
}
// Purge resets the cache
func (s *Sieve[K, V]) Purge() {
s.mu.Lock()
s.cache = newSyncMap[K, *node[K, V]]()
s.head = nil
s.tail = nil
s.hand = nil
// Reset the allocator
s.allocator.reset()
s.size = 0
s.mu.Unlock()
}
// Len returns the current cache utilization
func (s *Sieve[K, V]) Len() int {
return s.size
}
// Cap returns the max cache capacity
func (s *Sieve[K, V]) Cap() int {
return s.allocator.capacity()
}
// String returns a string description of the sieve cache
func (s *Sieve[K, V]) String() string {
s.mu.Lock()
m := s.desc()
s.mu.Unlock()
return m
}
// Dump dumps all the cache contents as a newline delimited
// string.
func (s *Sieve[K, V]) Dump() string {
var b strings.Builder
s.mu.Lock()
b.WriteString(s.desc())
b.WriteRune('\n')
for n := s.head; n != nil; n = n.next {
h := " "
if n == s.hand {
h = ">>"
}
b.WriteString(fmt.Sprintf("%svisited=%v, key=%v, val=%v\n", h, n.visited.Load(), n.key, n.val))
}
s.mu.Unlock()
return b.String()
}
// -- internal methods --
// add a new tuple to the cache and evict as necessary
// caller must hold lock.
func (s *Sieve[K, V]) add(key K, val V) {
// cache miss; we evict and fnd a new node
if s.size == s.allocator.capacity() {
s.evict()
}
n := s.newNode(key, val)
// Eviction is guaranteed to remove one node; so this should never happen.
if n == nil {
msg := fmt.Sprintf("%T: add <%v>: objpool empty after eviction", s, key)
panic(msg)
}
s.cache.Put(key, n)
// insert at the head of the list
n.next = s.head
n.prev = nil
if s.head != nil {
s.head.prev = n
}
s.head = n
if s.tail == nil {
s.tail = n
}
s.size += 1
}
// evict an item from the cache.
// NB: Caller must hold the lock
func (s *Sieve[K, V]) evict() {
hand := s.hand
if hand == nil {
hand = s.tail
}
for hand != nil {
if !hand.visited.Load() {
s.cache.Del(hand.key)
s.remove(hand)
s.hand = hand.prev
return
}
hand.visited.Store(false)
hand = hand.prev
// wrap around and start again
if hand == nil {
hand = s.tail
}
}
s.hand = hand
}
func (s *Sieve[K, V]) remove(n *node[K, V]) {
s.size -= 1
// remove node from list
if n.prev != nil {
n.prev.next = n.next
} else {
s.head = n.next
}
if n.next != nil {
n.next.prev = n.prev
} else {
s.tail = n.prev
}
// Return the node to the allocator's freelist
s.allocator.free(n)
}
func (s *Sieve[K, V]) newNode(key K, val V) *node[K, V] {
// Get a node from the allocator
n := s.allocator.alloc()
if n == nil {
return nil
}
n.key, n.val = key, val
n.next, n.prev = nil, nil
n.visited.Store(false)
return n
}
// desc describes the properties of the sieve
func (s *Sieve[K, V]) desc() string {
m := fmt.Sprintf("cache<%T>: size %d, cap %d, head=%p, tail=%p, hand=%p",
s, s.size, s.allocator.capacity(), s.head, s.tail, s.hand)
return m
}
// generic sync.Map
type syncMap[K comparable, V any] struct {
m sync.Map
}
func newSyncMap[K comparable, V any]() *syncMap[K, V] {
m := syncMap[K, V]{}
return &m
}
func (m *syncMap[K, V]) Get(key K) (V, bool) {
v, ok := m.m.Load(key)
if ok {
return v.(V), true
}
var z V
return z, false
}
func (m *syncMap[K, V]) Put(key K, val V) {
m.m.Store(key, val)
}
func (m *syncMap[K, V]) Del(key K) (V, bool) {
x, ok := m.m.LoadAndDelete(key)
if ok {
return x.(V), true
}
var z V
return z, false
}
|