1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
// sieve_test.go - test harness for sieve cache
//
// (c) 2024 Sudhi Herle <sudhi@herle.net>
//
// Copyright 2024- Sudhi Herle <sw-at-herle-dot-net>
// License: BSD-2-Clause
//
// If you need a commercial license for this work, please contact
// the author.
//
// This software does not come with any express or implied
// warranty; it is provided "as is". No claim is made to its
// suitability for any purpose.
package sieve_test
import (
"encoding/binary"
"fmt"
"math/rand"
"runtime"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/opencoff/go-sieve"
)
func TestBasic(t *testing.T) {
assert := newAsserter(t)
s := sieve.New[int, string](4)
ok := s.Add(1, "hello")
assert(!ok, "empty cache: expected clean add of 1")
ok = s.Add(2, "foo")
assert(!ok, "empty cache: expected clean add of 2")
ok = s.Add(3, "bar")
assert(!ok, "empty cache: expected clean add of 3")
ok = s.Add(4, "gah")
assert(!ok, "empty cache: expected clean add of 4")
ok = s.Add(1, "world")
assert(ok, "key 1: expected to replace")
ok = s.Add(5, "boo")
assert(!ok, "adding 5: expected to be new add")
_, ok = s.Get(2)
assert(!ok, "evict: expected 2 to be evicted")
}
func TestEvictAll(t *testing.T) {
assert := newAsserter(t)
size := 128
s := sieve.New[int, string](size)
for i := 0; i < size*2; i++ {
val := fmt.Sprintf("val %d", i)
_, ok := s.Probe(i, val)
assert(!ok, "%d: exp new add", i)
}
// the first half should've been all evicted
for i := 0; i < size; i++ {
_, ok := s.Get(i)
assert(!ok, "%d: exp to be evicted", i)
}
// leaving the second half intact
for i := size; i < size*2; i++ {
ok := s.Delete(i)
assert(ok, "%d: exp del on existing cache elem")
}
}
func TestAllOps(t *testing.T) {
size := 8192
vals := randints(size * 3)
s := sieve.New[uint64, uint64](size)
for i := range vals {
k := vals[i]
s.Add(k, k)
}
vals = shuffle(vals)
var hit, miss int
for i := range vals {
k := vals[i]
_, ok := s.Get(k)
if ok {
hit++
} else {
miss++
}
}
t.Logf("%d items: hit %d, miss %d, ratio %4.2f\n", len(vals), hit, miss, float64(hit)/float64(hit+miss))
}
type timing struct {
typ string
d time.Duration
hit, miss uint64
}
type barrier atomic.Uint64
func (b *barrier) Wait() {
v := (*atomic.Uint64)(b)
for {
if v.Load() == 1 {
return
}
runtime.Gosched()
}
}
func (b *barrier) Signal() {
v := (*atomic.Uint64)(b)
v.Store(1)
}
func TestSpeed(t *testing.T) {
size := 32768
vals := randints(size * 3)
//valr := shuffle(vals)
// we will start 4 types of workers: add, get, del, probe
// each worker will be working on a shuffled version of
// the uint64 array.
for ncpu := 2; ncpu <= 32; ncpu *= 2 {
var wg sync.WaitGroup
wg.Add(ncpu)
s := sieve.New[uint64, uint64](size)
var bar barrier
// number of workers of each type
m := ncpu / 2
ch := make(chan timing, m)
for i := 0; i < m; i++ {
go func(ch chan timing, wg *sync.WaitGroup) {
var hit, miss uint64
bar.Wait()
st := time.Now()
// shuffled array
for _, x := range vals {
v := x % 16384
if _, ok := s.Get(v); ok {
hit++
} else {
miss++
}
}
d := time.Now().Sub(st)
ch <- timing{
typ: "get",
d: d,
hit: hit,
miss: miss,
}
wg.Done()
}(ch, &wg)
go func(ch chan timing, wg *sync.WaitGroup) {
var hit, miss uint64
bar.Wait()
st := time.Now()
for _, x := range vals {
v := x % 16384
if _, ok := s.Probe(v, v); ok {
hit++
} else {
miss++
}
}
d := time.Now().Sub(st)
ch <- timing{
typ: "probe",
d: d,
hit: hit,
miss: miss,
}
wg.Done()
}(ch, &wg)
}
bar.Signal()
// wait for goroutines to end and close the chan
go func() {
wg.Wait()
close(ch)
}()
// now harvest timing
times := map[string]timing{}
for tm := range ch {
if v, ok := times[tm.typ]; ok {
z := (int64(v.d) + int64(tm.d)) / 2
v.d = time.Duration(z)
v.hit = (v.hit + tm.hit) / 2
v.miss = (v.miss + tm.miss) / 2
times[tm.typ] = v
} else {
times[tm.typ] = tm
}
}
var out strings.Builder
fmt.Fprintf(&out, "Tot CPU %d, workers/type %d %d elems\n", ncpu, m, len(vals))
for _, v := range times {
var ratio string
ns := toNs(int64(v.d), len(vals), m)
ratio = hitRatio(v.hit, v.miss)
fmt.Fprintf(&out, "%6s %4.2f ns/op%s\n", v.typ, ns, ratio)
}
t.Logf("%s", out.String())
}
}
func dup[T ~[]E, E any](v T) []E {
n := len(v)
g := make([]E, n)
copy(g, v)
return g
}
func shuffle[T ~[]E, E any](v T) []E {
i := len(v)
for i--; i >= 0; i-- {
j := rand.Intn(i + 1)
v[i], v[j] = v[j], v[i]
}
return v
}
func toNs(tot int64, nvals, ncpu int) float64 {
return (float64(tot) / float64(nvals)) / float64(ncpu)
}
func hitRatio(hit, miss uint64) string {
r := float64(hit) / float64(hit+miss)
return fmt.Sprintf(" hit-ratio %4.2f (hit %d, miss %d)", r, hit, miss)
}
func randints(sz int) []uint64 {
var b [8]byte
v := make([]uint64, sz)
for i := 0; i < sz; i++ {
n, err := rand.Read(b[:])
if n != 8 || err != nil {
panic("can't generate rand")
}
v[i] = binary.BigEndian.Uint64(b[:])
}
return v
}
|