1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// SPDX-License-Identifier: Apache-2.0
/*
* Copyright (C) 2020 Aleksa Sarai <cyphar@cyphar.com>
* Copyright (C) 2020 SUSE LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package devices
import (
"bufio"
"fmt"
"io"
"sort"
"strconv"
"strings"
devices "github.com/opencontainers/cgroups/devices/config"
)
// deviceMeta is a Rule without the Allow or Permissions fields, and no
// wildcard-type support. It's effectively the "match" portion of a metadata
// rule, for the purposes of our emulation.
type deviceMeta struct {
node devices.Type
major int64
minor int64
}
// deviceRule is effectively the tuple (deviceMeta, Permissions).
type deviceRule struct {
meta deviceMeta
perms devices.Permissions
}
// deviceRules is a mapping of device metadata rules to the associated
// permissions in the ruleset.
type deviceRules map[deviceMeta]devices.Permissions
func (r deviceRules) orderedEntries() []deviceRule {
var rules []deviceRule
for meta, perms := range r {
rules = append(rules, deviceRule{meta: meta, perms: perms})
}
sort.Slice(rules, func(i, j int) bool {
// Sort by (major, minor, type).
a, b := rules[i].meta, rules[j].meta
return a.major < b.major ||
(a.major == b.major && a.minor < b.minor) ||
(a.major == b.major && a.minor == b.minor && a.node < b.node)
})
return rules
}
type emulator struct {
defaultAllow bool
rules deviceRules
}
func (e *emulator) IsBlacklist() bool {
return e.defaultAllow
}
func (e *emulator) IsAllowAll() bool {
return e.IsBlacklist() && len(e.rules) == 0
}
func parseLine(line string) (*deviceRule, error) {
// Input: node major:minor perms.
fields := strings.FieldsFunc(line, func(r rune) bool {
return r == ' ' || r == ':'
})
if len(fields) != 4 {
return nil, fmt.Errorf("malformed devices.list rule %s", line)
}
var (
rule deviceRule
node = fields[0]
major = fields[1]
minor = fields[2]
perms = fields[3]
)
// Parse the node type.
switch node {
case "a":
// Super-special case -- "a" always means every device with every
// access mode. In fact, for devices.list this actually indicates that
// the cgroup is in black-list mode.
// TODO: Double-check that the entire file is "a *:* rwm".
return nil, nil
case "b":
rule.meta.node = devices.BlockDevice
case "c":
rule.meta.node = devices.CharDevice
default:
return nil, fmt.Errorf("unknown device type %q", node)
}
// Parse the major number.
if major == "*" {
rule.meta.major = devices.Wildcard
} else {
val, err := strconv.ParseUint(major, 10, 32)
if err != nil {
return nil, fmt.Errorf("invalid major number: %w", err)
}
rule.meta.major = int64(val)
}
// Parse the minor number.
if minor == "*" {
rule.meta.minor = devices.Wildcard
} else {
val, err := strconv.ParseUint(minor, 10, 32)
if err != nil {
return nil, fmt.Errorf("invalid minor number: %w", err)
}
rule.meta.minor = int64(val)
}
// Parse the access permissions.
rule.perms = devices.Permissions(perms)
if !rule.perms.IsValid() || rule.perms.IsEmpty() {
return nil, fmt.Errorf("parse access mode: contained unknown modes or is empty: %q", perms)
}
return &rule, nil
}
func (e *emulator) addRule(rule deviceRule) error { //nolint:unparam
if e.rules == nil {
e.rules = make(map[deviceMeta]devices.Permissions)
}
// Merge with any pre-existing permissions.
oldPerms := e.rules[rule.meta]
newPerms := rule.perms.Union(oldPerms)
e.rules[rule.meta] = newPerms
return nil
}
func (e *emulator) rmRule(rule deviceRule) error {
// Give an error if any of the permissions requested to be removed are
// present in a partially-matching wildcard rule, because such rules will
// be ignored by cgroupv1.
//
// This is a diversion from cgroupv1, but is necessary to avoid leading
// users into a false sense of security. cgroupv1 will silently(!) ignore
// requests to remove partial exceptions, but we really shouldn't do that.
//
// It may seem like we could just "split" wildcard rules which hit this
// issue, but unfortunately there are 2^32 possible major and minor
// numbers, which would exhaust kernel memory quickly if we did this. Not
// to mention it'd be really slow (the kernel side is implemented as a
// linked-list of exceptions).
for _, partialMeta := range []deviceMeta{
{node: rule.meta.node, major: devices.Wildcard, minor: rule.meta.minor},
{node: rule.meta.node, major: rule.meta.major, minor: devices.Wildcard},
{node: rule.meta.node, major: devices.Wildcard, minor: devices.Wildcard},
} {
// This wildcard rule is equivalent to the requested rule, so skip it.
if rule.meta == partialMeta {
continue
}
// Only give an error if the set of permissions overlap.
partialPerms := e.rules[partialMeta]
if !partialPerms.Intersection(rule.perms).IsEmpty() {
return fmt.Errorf("requested rule [%v %v] not supported by devices cgroupv1 (cannot punch hole in existing wildcard rule [%v %v])", rule.meta, rule.perms, partialMeta, partialPerms)
}
}
// Subtract all of the permissions listed from the full match rule. If the
// rule didn't exist, all of this is a no-op.
newPerms := e.rules[rule.meta].Difference(rule.perms)
if newPerms.IsEmpty() {
delete(e.rules, rule.meta)
} else {
e.rules[rule.meta] = newPerms
}
// TODO: The actual cgroup code doesn't care if an exception didn't exist
// during removal, so not erroring out here is /accurate/ but quite
// worrying. Maybe we should do additional validation, but again we
// have to worry about backwards-compatibility.
return nil
}
func (e *emulator) allow(rule *deviceRule) error {
// This cgroup is configured as a black-list. Reset the entire emulator,
// and put is into black-list mode.
if rule == nil || rule.meta.node == devices.WildcardDevice {
*e = emulator{
defaultAllow: true,
rules: nil,
}
return nil
}
var err error
if e.defaultAllow {
err = wrapErr(e.rmRule(*rule), "unable to remove 'deny' exception")
} else {
err = wrapErr(e.addRule(*rule), "unable to add 'allow' exception")
}
return err
}
func (e *emulator) deny(rule *deviceRule) error {
// This cgroup is configured as a white-list. Reset the entire emulator,
// and put is into white-list mode.
if rule == nil || rule.meta.node == devices.WildcardDevice {
*e = emulator{
defaultAllow: false,
rules: nil,
}
return nil
}
var err error
if e.defaultAllow {
err = wrapErr(e.addRule(*rule), "unable to add 'deny' exception")
} else {
err = wrapErr(e.rmRule(*rule), "unable to remove 'allow' exception")
}
return err
}
func (e *emulator) Apply(rule devices.Rule) error {
if !rule.Type.CanCgroup() {
return fmt.Errorf("cannot add rule [%#v] with non-cgroup type %q", rule, rule.Type)
}
innerRule := &deviceRule{
meta: deviceMeta{
node: rule.Type,
major: rule.Major,
minor: rule.Minor,
},
perms: rule.Permissions,
}
if innerRule.meta.node == devices.WildcardDevice {
innerRule = nil
}
if rule.Allow {
return e.allow(innerRule)
}
return e.deny(innerRule)
}
// emulatorFromList takes a reader to a "devices.list"-like source, and returns
// a new emulator that represents the state of the devices cgroup. Note that
// black-list devices cgroups cannot be fully reconstructed, due to limitations
// in the devices cgroup API. Instead, such cgroups are always treated as
// "allow all" cgroups.
func emulatorFromList(list io.Reader) (*emulator, error) {
// Normally cgroups are in black-list mode by default, but the way we
// figure out the current mode is whether or not devices.list has an
// allow-all rule. So we default to a white-list, and the existence of an
// "a *:* rwm" entry will tell us otherwise.
e := &emulator{
defaultAllow: false,
}
// Parse the "devices.list".
s := bufio.NewScanner(list)
for s.Scan() {
line := s.Text()
deviceRule, err := parseLine(line)
if err != nil {
return nil, fmt.Errorf("error parsing line %q: %w", line, err)
}
// "devices.list" is an allow list. Note that this means that in
// black-list mode, we have no idea what rules are in play. As a
// result, we need to be very careful in Transition().
if err := e.allow(deviceRule); err != nil {
return nil, fmt.Errorf("error adding devices.list rule: %w", err)
}
}
if err := s.Err(); err != nil {
return nil, fmt.Errorf("error reading devices.list lines: %w", err)
}
return e, nil
}
// Transition calculates what is the minimally-disruptive set of rules need to
// be applied to a devices cgroup in order to transition to the given target.
// This means that any already-existing rules will not be applied, and
// disruptive rules (like denying all device access) will only be applied if
// necessary.
//
// This function is the sole reason for all of emulator -- to allow us
// to figure out how to update a containers' cgroups without causing spurious
// device errors (if possible).
func (e *emulator) Transition(target *emulator) ([]*devices.Rule, error) {
var transitionRules []*devices.Rule
source := e
oldRules := source.rules
// If the default policy doesn't match, we need to include a "disruptive"
// rule (either allow-all or deny-all) in order to switch the cgroup to the
// correct default policy.
//
// However, due to a limitation in "devices.list" we cannot be sure what
// deny rules are in place in a black-list cgroup. Thus if the source is a
// black-list we also have to include a disruptive rule.
if source.IsBlacklist() || source.defaultAllow != target.defaultAllow {
transitionRules = append(transitionRules, &devices.Rule{
Type: 'a',
Major: -1,
Minor: -1,
Permissions: devices.Permissions("rwm"),
Allow: target.defaultAllow,
})
// The old rules are only relevant if we aren't starting out with a
// disruptive rule.
oldRules = nil
}
// NOTE: We traverse through the rules in a sorted order so we always write
// the same set of rules (this is to aid testing).
// First, we create inverse rules for any old rules not in the new set.
// This includes partial-inverse rules for specific permissions. This is a
// no-op if we added a disruptive rule, since oldRules will be empty.
for _, rule := range oldRules.orderedEntries() {
meta, oldPerms := rule.meta, rule.perms
newPerms := target.rules[meta]
droppedPerms := oldPerms.Difference(newPerms)
if !droppedPerms.IsEmpty() {
transitionRules = append(transitionRules, &devices.Rule{
Type: meta.node,
Major: meta.major,
Minor: meta.minor,
Permissions: droppedPerms,
Allow: target.defaultAllow,
})
}
}
// Add any additional rules which weren't in the old set. We happen to
// filter out rules which are present in both sets, though this isn't
// strictly necessary.
for _, rule := range target.rules.orderedEntries() {
meta, newPerms := rule.meta, rule.perms
oldPerms := oldRules[meta]
gainedPerms := newPerms.Difference(oldPerms)
if !gainedPerms.IsEmpty() {
transitionRules = append(transitionRules, &devices.Rule{
Type: meta.node,
Major: meta.major,
Minor: meta.minor,
Permissions: gainedPerms,
Allow: !target.defaultAllow,
})
}
}
return transitionRules, nil
}
// Rules returns the minimum set of rules necessary to convert a *deny-all*
// cgroup to the emulated filter state (note that this is not the same as a
// default cgroupv1 cgroup -- which is allow-all). This is effectively just a
// wrapper around Transition() with the source emulator being an empty cgroup.
func (e *emulator) Rules() ([]*devices.Rule, error) {
defaultCgroup := &emulator{defaultAllow: false}
return defaultCgroup.Transition(e)
}
func wrapErr(err error, text string) error {
if err == nil {
return nil
}
return fmt.Errorf(text+": %w", err)
}
|