1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
// Copyright 2024 OpenPubkey
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SPDX-License-Identifier: Apache-2.0
package gq
import (
"crypto/rand"
"encoding/json"
"fmt"
"math/big"
"filippo.io/bigmod"
"github.com/awnumar/memguard"
"github.com/lestrrat-go/jwx/v2/jws"
"github.com/openpubkey/openpubkey/util"
)
// Sign creates a GQ1 signature over the given message with the given GQ1 private number.
//
// Comments throughout refer to stages as specified in the ISO/IEC 14888-2 standard.
func (sv *signerVerifier) Sign(private []byte, message []byte) ([]byte, error) {
n, v, t := sv.n, sv.v, sv.t
vBytes := sv.vBytes
M := message
Q, err := bigmod.NewNat().SetBytes(private, n)
if err != nil {
return nil, err
}
// Stage 1 - select t numbers, each consisting of nBytes random bytes.
// In order to guarantee our operation is constant time, we deviate slightly
// from the standard and directly select an integer less than n
r, err := randomNumbers(t, sv.n)
if err != nil {
return nil, err
}
// Stage 2 - calculate test number W
// for i from 1 to t, compute W_i <- r_i^v mod n
// combine to form W
var W []byte
for i := 0; i < t; i++ {
W_i := bigmod.NewNat().Exp(r[i], v.Bytes(), n)
W = append(W, W_i.Bytes(n)...)
}
// Stage 3 - calculate question number R
// hash W and M and take first t*vBytes bytes as R
R, err := hash(t*vBytes, W, M)
if err != nil {
return nil, err
}
// split R into t numbers each consisting of vBytes bytes
Rs := make([]*bigmod.Nat, t)
for i := 0; i < t; i++ {
Rs[i], err = new(bigmod.Nat).SetBytes(R[i*vBytes:(i+1)*vBytes], n)
if err != nil {
return nil, err
}
}
// Stage 4 - calculate witness number S
// for i from 1 to t, compute S_i <- r_i * Q^{R_i} mod n
// combine to form S
var S []byte
for i := 0; i < t; i++ {
S_i := bigmod.NewNat().Exp(Q, Rs[i].Bytes(n), n)
S_i.Mul(r[i], n)
S = append(S, S_i.Bytes(n)...)
}
// proof is combination of R and S
return encodeProof(R, S), nil
}
func (sv *signerVerifier) SignJWT(jwt []byte, opts ...Opts) ([]byte, error) {
options := &OptsStruct{}
for _, applyOpt := range opts {
applyOpt(options)
}
// Ensure that someone doesn't use a reserved protected header claim name
for _, reserved := range []string{"alg", "typ", "kid"} {
if _, ok := options.extraClaims[reserved]; ok {
return nil, fmt.Errorf("use of reserved header name, %s, in additional headers", reserved)
}
}
origHeaders, payload, signature, err := jws.SplitCompact(jwt)
if err != nil {
return nil, err
}
signingPayload := util.JoinJWTSegments(origHeaders, payload)
headers := jws.NewHeaders()
err = headers.Set(jws.AlgorithmKey, GQ256)
if err != nil {
return nil, err
}
err = headers.Set(jws.TypeKey, "JWT")
if err != nil {
return nil, err
}
err = headers.Set(jws.KeyIDKey, string(origHeaders))
if err != nil {
return nil, err
}
for k, v := range options.extraClaims {
if err = headers.Set(k, v); err != nil {
return nil, err
}
}
headersJSON, err := json.Marshal(headers)
if err != nil {
return nil, err
}
headersEnc := util.Base64EncodeForJWT(headersJSON)
// When jwt is parsed it's split into base64-encoded bytes, but
// we need the raw signature to calculate mod inverse
decodedSig, err := util.Base64DecodeForJWT(signature)
if err != nil {
return nil, err
}
// GQ1 private number (Q) is inverse of RSA signature mod n
private, err := sv.modInverse(memguard.NewBufferFromBytes(decodedSig))
if err != nil {
return nil, err
}
defer private.Destroy()
gqSig, err := sv.Sign(private.Bytes(), signingPayload)
if err != nil {
return nil, err
}
// Now make a new GQ-signed token
gqToken := util.JoinJWTSegments(headersEnc, payload, gqSig)
return gqToken, nil
}
// modInverse finds the modular multiplicative inverse of the value stored in b
//
// All operations involving the secret value are performed either with constant-
// time methods or with blinding (if sv has a source of randomness)
func (sv *signerVerifier) modInverse(b *memguard.LockedBuffer) (*memguard.LockedBuffer, error) {
x, err := bigmod.NewNat().SetBytes(b.Bytes(), sv.n)
if err != nil {
return nil, err
}
nInt := natAsInt(sv.n.Nat(), sv.n)
var r *big.Int
var rConstant, xr *bigmod.Nat
// Apply RSA blinding to the ModInverse operation.
// Translates the technique formerly used in the Go Standard Library before they
// switched to bigmod in late 2022. Since bigmod does not yet support constant-time
// ModInverse, we perform the blinding so that the value of the private key is not
// detectable via side channel.
// Ref: https://github.com/golang/go/blob/5f60f844beb0581a19cb425a3338d79d322a7db2/src/crypto/rsa/rsa.go#L567-L596
//
// For a secret value x, the idea is to find m = 1/x mod n by calculating
// rm/r mod n ==> r/(xr) mod n, where r is a random value
for {
// draw r
r, err = rand.Int(rand.Reader, nInt)
if err != nil {
return nil, err
}
// compute xr = x * r
xr, err = intAsNat(r, sv.n)
if err != nil {
return nil, err
}
xr.Mul(x, sv.n)
// check that xr has a multiplicative inverse mod n. It is exceedingly
// rare but technically possible for it not to, in which case we need
// to draw a new value for r
xrInt := natAsInt(xr, sv.n)
inverse := new(big.Int).ModInverse(xrInt, nInt)
if inverse != nil {
break
}
}
// overwrite x with the blinded value
x = xr
// calculate m/r mod n
m := natAsInt(x, sv.n).ModInverse(natAsInt(x, sv.n), nInt)
mConstant, err := intAsNat(m, sv.n)
if err != nil {
return nil, err
}
// remove the blinding by multiplying m/r by r
rConstant, err = intAsNat(r, sv.n)
if err != nil {
return nil, err
}
mConstant.Mul(rConstant, sv.n)
mFinal := natAsInt(mConstant, sv.n)
// need to allocate memory for fixed length slice using FillBytes
ret := make([]byte, len(b.Bytes()))
defer b.Destroy()
return memguard.NewBufferFromBytes(mFinal.FillBytes(ret)), nil
}
func encodeProof(R, S []byte) []byte {
var bin []byte
bin = append(bin, R...)
bin = append(bin, S...)
return util.Base64EncodeForJWT(bin)
}
var randomNumbers = func(t int, n *bigmod.Modulus) ([]*bigmod.Nat, error) {
nInt := modAsInt(n)
ys := make([]*bigmod.Nat, t)
for i := 0; i < t; i++ {
r, err := rand.Int(rand.Reader, nInt)
if err != nil {
return nil, err
}
ys[i], err = intAsNat(r, n)
if err != nil {
return nil, err
}
}
return ys, nil
}
|