1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
// Copyright 2024 OpenPubkey
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SPDX-License-Identifier: Apache-2.0
package pktoken
import (
"bytes"
"context"
"crypto"
"encoding/json"
"fmt"
"github.com/lestrrat-go/jwx/v2/jwa"
"github.com/lestrrat-go/jwx/v2/jws"
"github.com/openpubkey/openpubkey/oidc"
"github.com/openpubkey/openpubkey/pktoken/clientinstance"
"github.com/openpubkey/openpubkey/util"
_ "golang.org/x/crypto/sha3"
)
type SignatureType string
const (
OIDC SignatureType = "JWT"
CIC SignatureType = "CIC"
COS SignatureType = "COS"
)
type Signature = jws.Signature
type PKToken struct {
raw []byte // the original, raw representation of the object
Payload []byte // decoded payload
Op *Signature // Provider Signature
Cic *Signature // Client Signature
Cos *Signature // Cosigner Signature
// We keep the tokens around as unmarshalled values can no longer be verified
OpToken []byte // Compact encoded ID Token signed by the OP, i.e., Base64(Protected).Base64(Payload).Base64(Sig)
CicToken []byte // Compact encoded Token signed by the Client
CosToken []byte // Compact encoded Token signed by the Cosigner
// FreshIDToken is the refreshed ID Token. It has a different payload from
// other tokens and must be handled separately.
// It is only used for POP Authentication
FreshIDToken []byte // Compact encoded Refreshed ID Token
}
// New creates a new PKToken from an ID Token and a CIC Token.
// It adds signatures for both tokens to the PK Token and returns the PK Token.
func New(idToken []byte, cicToken []byte) (*PKToken, error) {
pkt := &PKToken{}
if err := pkt.AddSignature(idToken, OIDC); err != nil {
return nil, err
}
if err := pkt.AddSignature(cicToken, CIC); err != nil {
return nil, err
}
return pkt, nil
}
// NewFromCompact creates a PK Token from a compact representation
func NewFromCompact(pktCom []byte) (*PKToken, error) {
tokens, freshIDToken, err := SplitCompactPKToken(pktCom)
if err != nil {
return nil, err
}
pkt := &PKToken{}
for _, token := range tokens {
parsedToken, err := oidc.NewJwt(token)
if err != nil {
return nil, err
}
typ := parsedToken.GetSignature().GetProtectedClaims().Type
if typ == "" {
// missing typ claim, assuming this is from the OIDC provider and set typ=OIDC=JWT
// Okta is known not to set the typ parameter on their ID Tokens
// The JWT RFC-7519 encourages but does not require that typ be set saying about typ
// "This parameter is ignored by JWT implementations; any processing of this parameter is
// performed by the JWT application. If present, it is RECOMMENDED that its value be "JWT"
// to indicate that this object is a JWT."
// https://datatracker.ietf.org/doc/html/rfc7519#section-5.1
typ = string(OIDC)
}
sigType := SignatureType(typ)
if err := pkt.AddSignature(token, sigType); err != nil {
return nil, err
}
}
pkt.FreshIDToken = freshIDToken
return pkt, nil
}
// Issuer returns the issuer (`iss`) of the ID Token in the PKToken.
// It extracts the issuer from the PKToken payload and returns it as a string.
func (p *PKToken) Issuer() (string, error) {
var claims struct {
Issuer string `json:"iss"`
}
if err := json.Unmarshal(p.Payload, &claims); err != nil {
return "", fmt.Errorf("malformatted PK token claims: %w", err)
}
return claims.Issuer, nil
}
// Audience returns the audience (`aud`) of the ID Token in the PKToken.
// The audience is also known as the client ID.
func (p *PKToken) Audience() (string, error) {
var claims struct {
Audience string `json:"aud"`
}
if err := json.Unmarshal(p.Payload, &claims); err != nil {
return "", fmt.Errorf("malformatted PK token claims: %w", err)
}
return claims.Audience, nil
}
// Subject returns the subject (`sub`) of the ID Token in the PKToken.
// This is a unique identifier for the user at the OpenID Provider.
func (p *PKToken) Subject() (string, error) {
var claims struct {
Subject string `json:"sub"`
}
if err := json.Unmarshal(p.Payload, &claims); err != nil {
return "", fmt.Errorf("malformatted PK token claims: %w", err)
}
return claims.Subject, nil
}
// IdentityString string returns the three attributes that are used to uniquely identify a user
// in the OpenID Connect protocol: the subject, the issuer
func (p *PKToken) IdentityString() (string, error) {
sub, err := p.Subject()
if err != nil {
return "", err
}
iss, err := p.Issuer()
if err != nil {
return "", err
}
return fmt.Sprintf("%s %s", sub, iss), nil
}
// Signs PK Token and then returns only the payload, header and signature as a JWT
func (p *PKToken) SignToken(
signer crypto.Signer,
alg jwa.KeyAlgorithm,
protected map[string]any,
) ([]byte, error) {
headers := jws.NewHeaders()
for key, val := range protected {
if err := headers.Set(key, val); err != nil {
return nil, fmt.Errorf("malformatted headers: %w", err)
}
}
return jws.Sign(
p.Payload,
jws.WithKey(
alg,
signer,
jws.WithProtectedHeaders(headers),
),
)
}
// AddSignature will add a signature to the PKToken with the specified signature type.
// It takes a token byte slice and a signature type as input, and returns an error if the signature cannot be added.
//
// To use AddSignature, first parse the token byte slice using the jws.Parse function to obtain a jws.Message object.
// You can then extract the signature from the message object using the Signatures method, and pass it to AddSignature along with the desired signature type.
//
// The function supports three signature types: OIDC, CIC, and COS.
// These signature types correspond to the JWTs in the PK Token.
// Depending on the signature type, the function will set the corresponding field in the PKToken struct (Op, Cic, or Cos) to the provided signature.
// It will also set the corresponding token field (OpToken, CicToken, or CosToken) to the provided token byte slice.
//
// If the signature type is not recognized, an error will be returned.
func (p *PKToken) AddSignature(token []byte, sigType SignatureType) error {
message, err := jws.Parse(token)
if err != nil {
return err
}
// If there is no payload, we set the provided token's payload as current, otherwise
// we make sure that the new payload matches current
if p.Payload == nil {
p.Payload = message.Payload()
} else if !bytes.Equal(p.Payload, message.Payload()) {
return fmt.Errorf("payload in the GQ token (%s) does not match the existing payload in the PK Token (%s)", p.Payload, message.Payload())
}
signature := message.Signatures()[0]
if sigType == CIC || sigType == COS {
protected := signature.ProtectedHeaders()
if sigTypeFound, ok := protected.Get(jws.TypeKey); !ok {
return fmt.Errorf("required 'typ' claim not found in protected")
} else if sigTypeFoundStr, ok := sigTypeFound.(string); !ok {
return fmt.Errorf("'typ' claim in protected must be a string but was a %T", sigTypeFound)
} else if sigTypeFoundStr != string(sigType) {
return fmt.Errorf("incorrect 'typ' claim in protected, expected (%s), got (%s)", sigType, sigTypeFound)
}
}
switch sigType {
case OIDC:
p.Op = signature
p.OpToken = token
case CIC:
p.Cic = signature
p.CicToken = token
case COS:
p.Cos = signature
p.CosToken = token
default:
return fmt.Errorf("unrecognized signature type: %s", string(sigType))
}
return nil
}
func (p *PKToken) ProviderAlgorithm() (jwa.SignatureAlgorithm, bool) {
alg, ok := p.Op.ProtectedHeaders().Get(jws.AlgorithmKey)
if !ok {
return "", false
}
return alg.(jwa.SignatureAlgorithm), true
}
func (p *PKToken) GetCicValues() (*clientinstance.Claims, error) {
cicPH, err := p.Cic.ProtectedHeaders().AsMap(context.TODO())
if err != nil {
return nil, err
}
return clientinstance.ParseClaims(cicPH)
}
func (p *PKToken) Hash() (string, error) {
/*
We set the raw variable when unmarshalling from json (the only current string representation of a
PK Token) so when we hash we use the same representation that was given for consistency. When the
token being hashed is a new PK Token, we marshal it ourselves. This can introduce some issues based
on how different languages format their json strings.
*/
message := p.raw
var err error
if message == nil {
message, err = json.Marshal(p)
if err != nil {
return "", err
}
}
hash := util.B64SHA3_256(message)
return string(hash), nil
}
// Compact serializes a PK Token into a compact representation.
func (p *PKToken) Compact() ([]byte, error) {
tokens := [][]byte{}
if p.OpToken != nil {
tokens = append(tokens, p.OpToken)
}
if p.CicToken != nil {
tokens = append(tokens, p.CicToken)
}
if p.CosToken != nil {
tokens = append(tokens, p.CosToken)
}
return CompactPKToken(tokens, p.FreshIDToken)
}
func (p *PKToken) MarshalJSON() ([]byte, error) {
rawJws := oidc.Jws{
Payload: string(util.Base64EncodeForJWT(p.Payload)),
Signatures: []oidc.Signature{},
}
var opPublicHeader map[string]any
var err error
if p.Op.PublicHeaders() != nil {
if opPublicHeader, err = p.Op.PublicHeaders().AsMap(context.Background()); err != nil {
return nil, err
}
}
if err = rawJws.AddSignature(p.OpToken, oidc.WithPublicHeader(opPublicHeader)); err != nil {
return nil, err
}
if err = rawJws.AddSignature(p.CicToken); err != nil {
return nil, err
}
if p.CosToken != nil {
if err = rawJws.AddSignature(p.CosToken); err != nil {
return nil, err
}
}
return json.Marshal(rawJws)
}
func (p *PKToken) UnmarshalJSON(data []byte) error {
var rawJws oidc.Jws
if err := json.Unmarshal(data, &rawJws); err != nil {
return err
}
var parsed jws.Message
if err := json.Unmarshal(data, &parsed); err != nil {
return err
}
p.Payload = parsed.Payload() // base64 decoded
opCount := 0
cicCount := 0
cosCount := 0
for i, signature := range parsed.Signatures() {
// for some reason the unmarshaled signatures have empty non-nil
// public headers. set them to nil instead.
public := signature.PublicHeaders()
pubMap, _ := public.AsMap(context.Background())
if len(pubMap) == 0 {
signature.SetPublicHeaders(nil)
}
protected := signature.ProtectedHeaders()
var sigType SignatureType
typeHeader, ok := protected.Get(jws.TypeKey)
if ok {
sigTypeStr, ok := typeHeader.(string)
if !ok {
return fmt.Errorf(`provided "%s" is of wrong type, expected string`, jws.TypeKey)
}
sigType = SignatureType(sigTypeStr)
} else {
// missing typ claim, assuming this is from the OIDC provider
sigType = OIDC
}
switch sigType {
case OIDC:
opCount += 1
p.Op = signature
p.OpToken = []byte(rawJws.Signatures[i].Protected + "." + rawJws.Payload + "." + rawJws.Signatures[i].Signature)
case CIC:
cicCount += 1
p.Cic = signature
p.CicToken = []byte(rawJws.Signatures[i].Protected + "." + rawJws.Payload + "." + rawJws.Signatures[i].Signature)
case COS:
cosCount += 1
p.Cos = signature
p.CosToken = []byte(rawJws.Signatures[i].Protected + "." + rawJws.Payload + "." + rawJws.Signatures[i].Signature)
default:
return fmt.Errorf("unrecognized signature type: %s", sigType)
}
}
// Do some signature count verifications
if opCount == 0 {
return fmt.Errorf(`at least one signature of type "oidc" or "oidc_gq" is required`)
} else if opCount > 1 {
return fmt.Errorf(`only one signature of type "oidc" or "oidc_gq" is allowed, found %d`, opCount)
}
if cicCount == 0 {
return fmt.Errorf(`at least one signature of type "cic" is required`)
} else if cicCount > 1 {
return fmt.Errorf(`only one signature of type "cic" is allowed, found %d`, cicCount)
}
if cosCount > 1 {
return fmt.Errorf(`only one signature of type "cos" is allowed, found %d`, cosCount)
}
return nil
}
// DeepCopy creates a complete and independent copy of this PKToken,
func (p *PKToken) DeepCopy() (*PKToken, error) {
pktJson, err := p.MarshalJSON()
if err != nil {
return nil, err
}
var pktCopy PKToken
if err := json.Unmarshal(pktJson, &pktCopy); err != nil {
return nil, err
}
pktCopy.FreshIDToken = p.FreshIDToken
return &pktCopy, nil
}
|