1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
|
package decoder
import (
"errors"
"fmt"
"math/big"
"reflect"
"sync"
"unicode/utf8"
"github.com/oschwald/maxminddb-golang/v2/internal/mmdberrors"
)
// Unmarshaler is implemented by types that can unmarshal MaxMind DB data.
// This is used internally for reflection-based decoding.
type Unmarshaler interface {
UnmarshalMaxMindDB(d *Decoder) error
}
// ReflectionDecoder is a decoder for the MMDB data section.
type ReflectionDecoder struct {
DataDecoder
}
// New creates a [ReflectionDecoder].
func New(buffer []byte) ReflectionDecoder {
return ReflectionDecoder{
DataDecoder: NewDataDecoder(buffer),
}
}
// IsEmptyValueAt checks if the value at the given offset is an empty map or array.
// Returns true if the value is a map or array with size 0.
func (d *ReflectionDecoder) IsEmptyValueAt(offset uint) (bool, error) {
dataOffset := offset
for {
kindNum, size, newOffset, err := d.decodeCtrlData(dataOffset)
if err != nil {
return false, err
}
if kindNum == KindPointer {
dataOffset, _, err = d.decodePointer(size, newOffset)
if err != nil {
return false, err
}
continue
}
// Check if it's a map or array with size 0
return (kindNum == KindMap || kindNum == KindSlice) && size == 0, nil
}
}
// Decode decodes the data value at offset and stores it in the value
// pointed at by v.
func (d *ReflectionDecoder) Decode(offset uint, v any) error {
// Check if the type implements Unmarshaler interface without reflection
if unmarshaler, ok := v.(Unmarshaler); ok {
decoder := NewDecoder(d.DataDecoder, offset)
return unmarshaler.UnmarshalMaxMindDB(decoder)
}
rv := reflect.ValueOf(v)
if rv.Kind() != reflect.Ptr || rv.IsNil() {
return errors.New("result param must be a pointer")
}
_, err := d.decode(offset, rv, 0)
if err == nil {
return nil
}
// Check if error already has context (including path), if so just add offset if missing
var contextErr mmdberrors.ContextualError
if errors.As(err, &contextErr) {
// If the outermost error already has offset and path info, return as-is
if contextErr.Offset != 0 || contextErr.Path != "" {
return err
}
// Otherwise, just add offset to root
return mmdberrors.WrapWithContext(contextErr.Err, offset, nil)
}
// Plain error, add offset
return mmdberrors.WrapWithContext(err, offset, nil)
}
// DecodePath decodes the data value at offset and stores the value associated
// with the path in the value pointed at by v.
func (d *ReflectionDecoder) DecodePath(
offset uint,
path []any,
v any,
) error {
result := reflect.ValueOf(v)
if result.Kind() != reflect.Ptr || result.IsNil() {
return errors.New("result param must be a pointer")
}
PATH:
for i, v := range path {
var (
typeNum Kind
size uint
err error
)
typeNum, size, offset, err = d.decodeCtrlData(offset)
if err != nil {
return err
}
if typeNum == KindPointer {
pointer, _, err := d.decodePointer(size, offset)
if err != nil {
return err
}
typeNum, size, offset, err = d.decodeCtrlData(pointer)
if err != nil {
return err
}
// Check for pointer-to-pointer after we've already read the data
if typeNum == KindPointer {
return mmdberrors.NewInvalidDatabaseError(
"invalid pointer to pointer at offset %d",
pointer,
)
}
}
switch v := v.(type) {
case string:
// We are expecting a map
if typeNum != KindMap {
return fmt.Errorf("expected a map for %s but found %s", v, typeNum.String())
}
for range size {
var key []byte
key, offset, err = d.decodeKey(offset)
if err != nil {
return err
}
if string(key) == v {
continue PATH
}
offset, err = d.nextValueOffset(offset, 1)
if err != nil {
return err
}
}
// Not found. Maybe return a boolean?
return nil
case int:
// We are expecting an array
if typeNum != KindSlice {
return fmt.Errorf("expected a slice for %d but found %s", v, typeNum.String())
}
var i uint
if v < 0 {
if size < uint(-v) {
// Slice is smaller than negative index, not found
return nil
}
i = size - uint(-v)
} else {
if size <= uint(v) {
// Slice is smaller than index, not found
return nil
}
i = uint(v)
}
offset, err = d.nextValueOffset(offset, i)
if err != nil {
return err
}
default:
return fmt.Errorf("unexpected type for %d value in path, %v: %T", i, v, v)
}
}
_, err := d.decode(offset, result, len(path))
return d.wrapError(err, offset)
}
// wrapError wraps an error with context information when an error occurs.
// Zero allocation on happy path - only allocates when error != nil.
func (*ReflectionDecoder) wrapError(err error, offset uint) error {
if err == nil {
return nil
}
// Only wrap with context when an error actually occurs
return mmdberrors.WrapWithContext(err, offset, nil)
}
// wrapErrorWithMapKey wraps an error with map key context, building path retroactively.
// Zero allocation on happy path - only allocates when error != nil.
func (*ReflectionDecoder) wrapErrorWithMapKey(err error, key string) error {
if err == nil {
return nil
}
// Build path context retroactively by checking if the error already has context
var pathBuilder *mmdberrors.PathBuilder
var contextErr mmdberrors.ContextualError
if errors.As(err, &contextErr) {
// Error already has context, extract existing path and extend it
pathBuilder = mmdberrors.NewPathBuilder()
if contextErr.Path != "" && contextErr.Path != "/" {
// Parse existing path and rebuild
pathBuilder.ParseAndExtend(contextErr.Path)
}
pathBuilder.PrependMap(key)
// Return unwrapped error with extended path, preserving original offset
return mmdberrors.WrapWithContext(contextErr.Err, contextErr.Offset, pathBuilder)
}
// New error, start building path - extract offset if it's already a contextual error
pathBuilder = mmdberrors.NewPathBuilder()
pathBuilder.PrependMap(key)
// Try to get existing offset from any wrapped contextual error
var existingOffset uint
var existingErr mmdberrors.ContextualError
if errors.As(err, &existingErr) {
existingOffset = existingErr.Offset
}
return mmdberrors.WrapWithContext(err, existingOffset, pathBuilder)
}
// wrapErrorWithSliceIndex wraps an error with slice index context, building path retroactively.
// Zero allocation on happy path - only allocates when error != nil.
func (*ReflectionDecoder) wrapErrorWithSliceIndex(err error, index int) error {
if err == nil {
return nil
}
// Build path context retroactively by checking if the error already has context
var pathBuilder *mmdberrors.PathBuilder
var contextErr mmdberrors.ContextualError
if errors.As(err, &contextErr) {
// Error already has context, extract existing path and extend it
pathBuilder = mmdberrors.NewPathBuilder()
if contextErr.Path != "" && contextErr.Path != "/" {
// Parse existing path and rebuild
pathBuilder.ParseAndExtend(contextErr.Path)
}
pathBuilder.PrependSlice(index)
// Return unwrapped error with extended path, preserving original offset
return mmdberrors.WrapWithContext(contextErr.Err, contextErr.Offset, pathBuilder)
}
// New error, start building path - extract offset if it's already a contextual error
pathBuilder = mmdberrors.NewPathBuilder()
pathBuilder.PrependSlice(index)
// Try to get existing offset from any wrapped contextual error
var existingOffset uint
var existingErr mmdberrors.ContextualError
if errors.As(err, &existingErr) {
existingOffset = existingErr.Offset
}
return mmdberrors.WrapWithContext(err, existingOffset, pathBuilder)
}
func (d *ReflectionDecoder) decode(offset uint, result reflect.Value, depth int) (uint, error) {
// Convert to addressableValue and delegate to internal method
// Use fast path for already addressable values to avoid allocation
if result.CanAddr() {
av := addressableValue{Value: result, forcedAddr: false}
return d.decodeValue(offset, av, depth)
}
av := makeAddressable(result)
return d.decodeValue(offset, av, depth)
}
// decodeValue is the internal decode method that works with addressableValue
// for consistent optimization throughout the decoder.
func (d *ReflectionDecoder) decodeValue(
offset uint,
result addressableValue,
depth int,
) (uint, error) {
if depth > maximumDataStructureDepth {
return 0, mmdberrors.NewInvalidDatabaseError(
"exceeded maximum data structure depth; database is likely corrupt",
)
}
// Apply the original indirect logic to handle pointers and interfaces properly
for {
// Load value from interface, but only if the result will be
// usefully addressable.
if result.Kind() == reflect.Interface && !result.IsNil() {
e := result.Elem()
if e.Kind() == reflect.Ptr && !e.IsNil() {
result = addressableValue{e, result.forcedAddr}
continue
}
}
if result.Kind() != reflect.Ptr {
break
}
if result.IsNil() {
result.Set(reflect.New(result.Type().Elem()))
}
result = addressableValue{
result.Elem(),
false,
} // dereferenced pointer is always addressable
}
// Check if the value implements Unmarshaler interface using type assertion
if result.CanAddr() {
if unmarshaler, ok := tryTypeAssert(result.Addr()); ok {
decoder := NewDecoder(d.DataDecoder, offset)
if err := unmarshaler.UnmarshalMaxMindDB(decoder); err != nil {
return 0, err
}
return d.nextValueOffset(offset, 1)
}
}
typeNum, size, newOffset, err := d.decodeCtrlData(offset)
if err != nil {
return 0, err
}
if typeNum != KindPointer && result.Kind() == reflect.Uintptr {
result.Set(reflect.ValueOf(uintptr(offset)))
return d.nextValueOffset(offset, 1)
}
return d.decodeFromType(typeNum, size, newOffset, result, depth+1)
}
func (d *ReflectionDecoder) decodeFromType(
dtype Kind,
size uint,
offset uint,
result addressableValue,
depth int,
) (uint, error) {
// For these types, size has a special meaning
switch dtype {
case KindBool:
return d.unmarshalBool(size, offset, result)
case KindMap:
return d.unmarshalMap(size, offset, result, depth)
case KindPointer:
return d.unmarshalPointer(size, offset, result, depth)
case KindSlice:
return d.unmarshalSlice(size, offset, result, depth)
case KindBytes:
return d.unmarshalBytes(size, offset, result)
case KindFloat32:
return d.unmarshalFloat32(size, offset, result)
case KindFloat64:
return d.unmarshalFloat64(size, offset, result)
case KindInt32:
return d.unmarshalInt32(size, offset, result)
case KindUint16:
return d.unmarshalUint(size, offset, result, 16)
case KindUint32:
return d.unmarshalUint(size, offset, result, 32)
case KindUint64:
return d.unmarshalUint(size, offset, result, 64)
case KindString:
return d.unmarshalString(size, offset, result)
case KindUint128:
return d.unmarshalUint128(size, offset, result)
default:
return 0, mmdberrors.NewInvalidDatabaseError("unknown type: %d", dtype)
}
}
func (d *ReflectionDecoder) unmarshalBool(
size, offset uint,
result addressableValue,
) (uint, error) {
value, newOffset, err := d.decodeBool(size, offset)
if err != nil {
return 0, err
}
switch result.Kind() {
case reflect.Bool:
result.SetBool(value)
return newOffset, nil
case reflect.Interface:
if result.NumMethod() == 0 {
result.Set(reflect.ValueOf(value))
return newOffset, nil
}
default:
// Fall through to error return
}
return newOffset, mmdberrors.NewUnmarshalTypeError(value, result.Type())
}
var sliceType = reflect.TypeFor[[]byte]()
func (d *ReflectionDecoder) unmarshalBytes(
size, offset uint,
result addressableValue,
) (uint, error) {
value, newOffset, err := d.decodeBytes(size, offset)
if err != nil {
return 0, err
}
switch result.Kind() {
case reflect.Slice:
if result.Type() == sliceType {
result.SetBytes(value)
return newOffset, nil
}
case reflect.Interface:
if result.NumMethod() == 0 {
result.Set(reflect.ValueOf(value))
return newOffset, nil
}
default:
// Fall through to error return
}
return newOffset, mmdberrors.NewUnmarshalTypeError(value, result.Type())
}
func (d *ReflectionDecoder) unmarshalFloat32(
size, offset uint, result addressableValue,
) (uint, error) {
value, newOffset, err := d.decodeFloat32(size, offset)
if err != nil {
return 0, err
}
switch result.Kind() {
case reflect.Float32, reflect.Float64:
result.SetFloat(float64(value))
return newOffset, nil
case reflect.Interface:
if result.NumMethod() == 0 {
result.Set(reflect.ValueOf(value))
return newOffset, nil
}
default:
// Fall through to error return
}
return newOffset, mmdberrors.NewUnmarshalTypeError(value, result.Type())
}
func (d *ReflectionDecoder) unmarshalFloat64(
size, offset uint, result addressableValue,
) (uint, error) {
value, newOffset, err := d.decodeFloat64(size, offset)
if err != nil {
return 0, err
}
switch result.Kind() {
case reflect.Float32, reflect.Float64:
if result.OverflowFloat(value) {
return 0, mmdberrors.NewUnmarshalTypeError(value, result.Type())
}
result.SetFloat(value)
return newOffset, nil
case reflect.Interface:
if result.NumMethod() == 0 {
result.Set(reflect.ValueOf(value))
return newOffset, nil
}
default:
// Fall through to error return
}
return newOffset, mmdberrors.NewUnmarshalTypeError(value, result.Type())
}
func (d *ReflectionDecoder) unmarshalInt32(
size, offset uint,
result addressableValue,
) (uint, error) {
value, newOffset, err := d.decodeInt32(size, offset)
if err != nil {
return 0, err
}
switch result.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n := int64(value)
if !result.OverflowInt(n) {
result.SetInt(n)
return newOffset, nil
}
case reflect.Uint,
reflect.Uint8,
reflect.Uint16,
reflect.Uint32,
reflect.Uint64,
reflect.Uintptr:
n := uint64(value)
if !result.OverflowUint(n) {
result.SetUint(n)
return newOffset, nil
}
case reflect.Interface:
if result.NumMethod() == 0 {
result.Set(reflect.ValueOf(value))
return newOffset, nil
}
default:
// Fall through to error return
}
return newOffset, mmdberrors.NewUnmarshalTypeError(value, result.Type())
}
func (d *ReflectionDecoder) unmarshalMap(
size uint,
offset uint,
result addressableValue,
depth int,
) (uint, error) {
switch result.Kind() {
case reflect.Struct:
return d.decodeStruct(size, offset, result, depth)
case reflect.Map:
return d.decodeMap(size, offset, result, depth)
case reflect.Interface:
if result.NumMethod() == 0 {
// Create map directly without makeAddressable wrapper
mapVal := reflect.ValueOf(make(map[string]any, size))
rv := addressableValue{Value: mapVal, forcedAddr: false}
newOffset, err := d.decodeMap(size, offset, rv, depth)
result.Set(rv.Value)
return newOffset, err
}
return 0, mmdberrors.NewUnmarshalTypeStrError("map", result.Type())
default:
return 0, mmdberrors.NewUnmarshalTypeStrError("map", result.Type())
}
}
func (d *ReflectionDecoder) unmarshalPointer(
size, offset uint,
result addressableValue,
depth int,
) (uint, error) {
pointer, newOffset, err := d.decodePointer(size, offset)
if err != nil {
return 0, err
}
// Check for pointer-to-pointer by looking at what we're about to decode
// This is done efficiently by checking the control byte at the pointer location
if len(d.buffer) > int(pointer) {
controlByte := d.buffer[pointer]
if (controlByte >> 5) == 1 { // KindPointer = 1, stored in top 3 bits
return 0, mmdberrors.NewInvalidDatabaseError(
"invalid pointer to pointer at offset %d",
pointer,
)
}
}
_, err = d.decodeValue(pointer, result, depth)
return newOffset, err
}
func (d *ReflectionDecoder) unmarshalSlice(
size uint,
offset uint,
result addressableValue,
depth int,
) (uint, error) {
switch result.Kind() {
case reflect.Slice:
return d.decodeSlice(size, offset, result, depth)
case reflect.Interface:
if result.NumMethod() == 0 {
a := []any{}
// Create slice directly without makeAddressable wrapper
sliceVal := reflect.ValueOf(&a).Elem()
rv := addressableValue{Value: sliceVal, forcedAddr: false}
newOffset, err := d.decodeSlice(size, offset, rv, depth)
result.Set(rv.Value)
return newOffset, err
}
default:
// Fall through to error return
}
return 0, mmdberrors.NewUnmarshalTypeStrError("array", result.Type())
}
func (d *ReflectionDecoder) unmarshalString(
size, offset uint,
result addressableValue,
) (uint, error) {
value, newOffset, err := d.decodeString(size, offset)
if err != nil {
return 0, err
}
switch result.Kind() {
case reflect.String:
result.SetString(value)
return newOffset, nil
case reflect.Interface:
if result.NumMethod() == 0 {
result.Set(reflect.ValueOf(value))
return newOffset, nil
}
default:
// Fall through to error return
}
return newOffset, mmdberrors.NewUnmarshalTypeError(value, result.Type())
}
func (d *ReflectionDecoder) unmarshalUint(
size, offset uint,
result addressableValue,
uintType uint,
) (uint, error) {
// Use the appropriate DataDecoder method based on uint type
var value uint64
var newOffset uint
var err error
switch uintType {
case 16:
v16, off, e := d.decodeUint16(size, offset)
value, newOffset, err = uint64(v16), off, e
case 32:
v32, off, e := d.decodeUint32(size, offset)
value, newOffset, err = uint64(v32), off, e
case 64:
value, newOffset, err = d.decodeUint64(size, offset)
default:
return 0, mmdberrors.NewInvalidDatabaseError(
"unsupported uint type: %d", uintType)
}
if err != nil {
return 0, err
}
// Fast path for exact type matches (inspired by json/v2 fast paths)
switch result.Kind() {
case reflect.Uint32:
if uintType == 32 && value <= 0xFFFFFFFF {
result.SetUint(value)
return newOffset, nil
}
case reflect.Uint64:
if uintType == 64 {
result.SetUint(value)
return newOffset, nil
}
case reflect.Uint16:
if uintType == 16 && value <= 0xFFFF {
result.SetUint(value)
return newOffset, nil
}
case reflect.Uint8:
if uintType == 16 && value <= 0xFF { // uint8 often stored as uint16 in MMDB
result.SetUint(value)
return newOffset, nil
}
default:
// Fall through to general unmarshaling logic
}
switch result.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n := int64(value)
if !result.OverflowInt(n) {
result.SetInt(n)
return newOffset, nil
}
case reflect.Uint,
reflect.Uint8,
reflect.Uint16,
reflect.Uint32,
reflect.Uint64,
reflect.Uintptr:
if !result.OverflowUint(value) {
result.SetUint(value)
return newOffset, nil
}
case reflect.Interface:
if result.NumMethod() == 0 {
result.Set(reflect.ValueOf(value))
return newOffset, nil
}
default:
// Fall through to error return
}
return newOffset, mmdberrors.NewUnmarshalTypeError(value, result.Type())
}
var bigIntType = reflect.TypeFor[big.Int]()
func (d *ReflectionDecoder) unmarshalUint128(
size, offset uint, result addressableValue,
) (uint, error) {
hi, lo, newOffset, err := d.decodeUint128(size, offset)
if err != nil {
return 0, err
}
// Convert hi/lo representation to big.Int
value := new(big.Int)
if hi == 0 {
value.SetUint64(lo)
} else {
value.SetUint64(hi)
value.Lsh(value, 64) // Shift high part left by 64 bits
value.Or(value, new(big.Int).SetUint64(lo)) // OR with low part
}
switch result.Kind() {
case reflect.Struct:
if result.Type() == bigIntType {
result.Set(reflect.ValueOf(*value))
return newOffset, nil
}
case reflect.Interface:
if result.NumMethod() == 0 {
result.Set(reflect.ValueOf(value))
return newOffset, nil
}
default:
// Fall through to error return
}
return newOffset, mmdberrors.NewUnmarshalTypeError(value, result.Type())
}
func (d *ReflectionDecoder) decodeMap(
size uint,
offset uint,
result addressableValue,
depth int,
) (uint, error) {
if result.IsNil() {
result.Set(reflect.MakeMapWithSize(result.Type(), int(size)))
}
mapType := result.Type()
// Pre-allocated values for efficient reuse
keyVal := reflect.New(mapType.Key()).Elem()
keyValue := addressableValue{Value: keyVal, forcedAddr: false}
elemType := mapType.Elem()
var elemValue addressableValue
// Pre-allocate element value to reduce allocations
elemVal := reflect.New(elemType).Elem()
elemValue = addressableValue{Value: elemVal, forcedAddr: false}
for range size {
var err error
// Reuse keyValue by zeroing it
keyValue.SetZero()
offset, err = d.decodeValue(offset, keyValue, depth)
if err != nil {
return 0, err
}
// Reuse elemValue by zeroing it
elemValue.SetZero()
offset, err = d.decodeValue(offset, elemValue, depth)
if err != nil {
return 0, d.wrapErrorWithMapKey(err, keyValue.String())
}
result.SetMapIndex(keyValue.Value, elemValue.Value)
}
return offset, nil
}
func (d *ReflectionDecoder) decodeSlice(
size uint,
offset uint,
result addressableValue,
depth int,
) (uint, error) {
result.Set(reflect.MakeSlice(result.Type(), int(size), int(size)))
for i := range size {
var err error
// Use slice element directly to avoid allocation
elemVal := result.Index(int(i))
elemValue := addressableValue{Value: elemVal, forcedAddr: false}
offset, err = d.decodeValue(offset, elemValue, depth)
if err != nil {
return 0, d.wrapErrorWithSliceIndex(err, int(i))
}
}
return offset, nil
}
func (d *ReflectionDecoder) decodeStruct(
size uint,
offset uint,
result addressableValue,
depth int,
) (uint, error) {
fields := cachedFields(result.Value)
// Single-phase processing: decode only the dominant fields
for range size {
var (
err error
key []byte
)
key, offset, err = d.decodeKey(offset)
if err != nil {
return 0, err
}
// The string() does not create a copy due to this compiler
// optimization: https://github.com/golang/go/issues/3512
fieldInfo, ok := fields.namedFields[string(key)]
if !ok {
offset, err = d.nextValueOffset(offset, 1)
if err != nil {
return 0, err
}
continue
}
// Use optimized field access with addressable value wrapper
fieldValue := result.fieldByIndex(fieldInfo.index0, fieldInfo.index, true)
if !fieldValue.IsValid() {
// Field access failed, skip this field
offset, err = d.nextValueOffset(offset, 1)
if err != nil {
return 0, err
}
continue
}
// Fast path for common simple field types
if len(fieldInfo.index) == 0 && fieldInfo.isFastType {
// Try fast decode path for pre-identified simple types
if fastOffset, ok := d.tryFastDecodeTyped(offset, fieldValue, fieldInfo.fieldType); ok {
offset = fastOffset
continue
}
}
offset, err = d.decodeValue(offset, fieldValue, depth)
if err != nil {
return 0, d.wrapErrorWithMapKey(err, string(key))
}
}
return offset, nil
}
type fieldInfo struct {
fieldType reflect.Type
name string
index []int
index0 int
depth int
hasTag bool
isFastType bool
}
type fieldsType struct {
namedFields map[string]*fieldInfo // Map from field name to field info
}
type queueEntry struct {
typ reflect.Type
index []int // Field index path
depth int // Embedding depth
}
// getEmbeddedStructType returns the struct type for embedded fields.
// Returns nil if the field is not an embeddable struct type.
func getEmbeddedStructType(fieldType reflect.Type) reflect.Type {
if fieldType.Kind() == reflect.Struct {
return fieldType
}
if fieldType.Kind() == reflect.Ptr && fieldType.Elem().Kind() == reflect.Struct {
return fieldType.Elem()
}
return nil
}
// handleEmbeddedField processes an embedded struct field and returns true if the field should be skipped.
func handleEmbeddedField(
field reflect.StructField,
hasTag bool,
queue *[]queueEntry,
seen *map[reflect.Type]bool,
fieldIndex []int,
depth int,
) bool {
embeddedType := getEmbeddedStructType(field.Type)
if embeddedType == nil {
return false
}
// For embedded structs (and pointer to structs), add to queue for further traversal
if !(*seen)[embeddedType] {
*queue = append(*queue, queueEntry{embeddedType, fieldIndex, depth + 1})
(*seen)[embeddedType] = true
}
// If embedded struct has no explicit tag, don't add it as a named field
return !hasTag
}
// validateTag performs basic validation of maxminddb struct tags.
func validateTag(field reflect.StructField, tag string) error {
if tag == "" || tag == "-" {
return nil
}
// Check for invalid UTF-8
if !utf8.ValidString(tag) {
return fmt.Errorf("field %s has tag with invalid UTF-8: %q", field.Name, tag)
}
// Only flag very obvious mistakes - don't be too restrictive
return nil
}
var fieldsMap sync.Map
func cachedFields(result reflect.Value) *fieldsType {
resultType := result.Type()
if fields, ok := fieldsMap.Load(resultType); ok {
return fields.(*fieldsType)
}
fields := makeStructFields(resultType)
fieldsMap.Store(resultType, fields)
return fields
}
// makeStructFields implements json/v2 style field precedence rules.
func makeStructFields(rootType reflect.Type) *fieldsType {
// Breadth-first traversal to collect all fields with depth information
queue := []queueEntry{{rootType, nil, 0}}
var allFields []fieldInfo
seen := make(map[reflect.Type]bool)
seen[rootType] = true
// Collect all reachable fields using breadth-first search
for len(queue) > 0 {
entry := queue[0]
queue = queue[1:]
for i := range entry.typ.NumField() {
field := entry.typ.Field(i)
// Skip unexported fields (except embedded structs)
if !field.IsExported() && (!field.Anonymous || field.Type.Kind() != reflect.Struct) {
continue
}
// Build field index path
fieldIndex := make([]int, len(entry.index)+1)
copy(fieldIndex, entry.index)
fieldIndex[len(entry.index)] = i
// Parse maxminddb tag
fieldName := field.Name
hasTag := false
if tag := field.Tag.Get("maxminddb"); tag != "" {
// Validate tag syntax
if err := validateTag(field, tag); err != nil {
// Log warning but continue processing
// In a real implementation, you might want to use a proper logger
_ = err // For now, just ignore validation errors
}
if tag == "-" {
continue // Skip ignored fields
}
fieldName = tag
hasTag = true
}
// Handle embedded structs and embedded pointers to structs
if field.Anonymous && handleEmbeddedField(
field, hasTag, &queue, &seen, fieldIndex, entry.depth,
) {
continue
}
// Add field to collection with optimization hints
fieldType := field.Type
isFast := isFastDecodeType(fieldType)
allFields = append(allFields, fieldInfo{
index: fieldIndex, // Will be reindexed later for optimization
name: fieldName,
hasTag: hasTag,
depth: entry.depth,
fieldType: fieldType,
isFastType: isFast,
})
}
}
// Apply precedence rules to resolve field conflicts
// Pre-size the map based on field count for better memory efficiency
namedFields := make(map[string]*fieldInfo, len(allFields))
fieldsByName := make(map[string][]fieldInfo, len(allFields))
// Group fields by name
for _, field := range allFields {
fieldsByName[field.name] = append(fieldsByName[field.name], field)
}
// Apply precedence rules for each field name
// Store results in a flattened slice to allow pointer references
flatFields := make([]fieldInfo, 0, len(fieldsByName))
for name, fields := range fieldsByName {
if len(fields) == 1 {
// No conflict, use the field
flatFields = append(flatFields, fields[0])
namedFields[name] = &flatFields[len(flatFields)-1]
continue
}
// Find the dominant field using json/v2 precedence rules:
// 1. Shallowest depth wins
// 2. Among same depth, explicitly tagged field wins
// 3. Among same depth with same tag status, first declared wins
dominant := fields[0]
for i := 1; i < len(fields); i++ {
candidate := fields[i]
// Shallowest depth wins
if candidate.depth < dominant.depth {
dominant = candidate
continue
}
if candidate.depth > dominant.depth {
continue
}
// Same depth: explicitly tagged field wins
if candidate.hasTag && !dominant.hasTag {
dominant = candidate
continue
}
if !candidate.hasTag && dominant.hasTag {
continue
}
// Same depth and tag status: first declared wins (keep current dominant)
}
flatFields = append(flatFields, dominant)
namedFields[name] = &flatFields[len(flatFields)-1]
}
fields := &fieldsType{
namedFields: namedFields,
}
// Reindex all fields for optimized access
fields.reindex()
return fields
}
// reindex optimizes field indices to avoid bounds checks during runtime.
// This follows the json/v2 pattern of splitting the first index from the remainder.
func (fs *fieldsType) reindex() {
for _, field := range fs.namedFields {
if len(field.index) > 0 {
field.index0 = field.index[0]
field.index = field.index[1:]
if len(field.index) == 0 {
field.index = nil // avoid pinning the backing slice
}
}
}
}
// addressableValue wraps a reflect.Value to optimize field access and
// embedded pointer handling. Based on encoding/json/v2 patterns.
type addressableValue struct {
reflect.Value
forcedAddr bool
}
// newAddressableValue creates an addressable value wrapper.
// If the value is not addressable, it wraps it to make it addressable.
func newAddressableValue(v reflect.Value) addressableValue {
if v.CanAddr() {
return addressableValue{Value: v, forcedAddr: false}
}
// Make non-addressable values addressable by boxing them
addressable := reflect.New(v.Type()).Elem()
addressable.Set(v)
return addressableValue{Value: addressable, forcedAddr: true}
}
// makeAddressable efficiently converts a reflect.Value to addressableValue
// with minimal allocations when possible.
func makeAddressable(v reflect.Value) addressableValue {
// Fast path for already addressable values
if v.CanAddr() {
return addressableValue{Value: v, forcedAddr: false}
}
return newAddressableValue(v)
}
// isFastDecodeType determines if a field type can use optimized decode paths.
func isFastDecodeType(t reflect.Type) bool {
switch t.Kind() {
case reflect.String,
reflect.Bool,
reflect.Uint16,
reflect.Uint32,
reflect.Uint64,
reflect.Float64:
return true
case reflect.Ptr:
// Pointer to fast types are also fast
return isFastDecodeType(t.Elem())
default:
return false
}
}
// fieldByIndex efficiently accesses a field by its index path,
// initializing embedded pointers as needed.
func (av addressableValue) fieldByIndex(
index0 int,
remainingIndex []int,
mayAlloc bool,
) addressableValue {
// First field access (optimized with no bounds check)
av = addressableValue{av.Field(index0), av.forcedAddr}
// Handle remaining indices if any
if len(remainingIndex) > 0 {
for _, i := range remainingIndex {
av = av.indirect(mayAlloc)
if !av.IsValid() {
return av
}
av = addressableValue{av.Field(i), av.forcedAddr}
}
}
return av
}
// indirect handles pointer dereferencing and initialization.
func (av addressableValue) indirect(mayAlloc bool) addressableValue {
if av.Kind() == reflect.Ptr {
if av.IsNil() {
if !mayAlloc || !av.CanSet() {
return addressableValue{} // Return invalid value
}
av.Set(reflect.New(av.Type().Elem()))
}
av = addressableValue{av.Elem(), false}
}
return av
}
// tryFastDecodeTyped attempts to decode using pre-computed type information.
func (d *ReflectionDecoder) tryFastDecodeTyped(
offset uint,
result addressableValue,
expectedType reflect.Type,
) (uint, bool) {
typeNum, size, newOffset, err := d.decodeCtrlData(offset)
if err != nil {
return 0, false
}
// Use pre-computed type information for faster matching
switch expectedType.Kind() {
case reflect.String:
if typeNum == KindString {
value, finalOffset, err := d.decodeString(size, newOffset)
if err != nil {
return 0, false
}
result.SetString(value)
return finalOffset, true
}
case reflect.Uint32:
if typeNum == KindUint32 {
value, finalOffset, err := d.decodeUint32(size, newOffset)
if err != nil {
return 0, false
}
result.SetUint(uint64(value))
return finalOffset, true
}
case reflect.Uint16:
if typeNum == KindUint16 {
value, finalOffset, err := d.decodeUint16(size, newOffset)
if err != nil {
return 0, false
}
result.SetUint(uint64(value))
return finalOffset, true
}
case reflect.Uint64:
if typeNum == KindUint64 {
value, finalOffset, err := d.decodeUint64(size, newOffset)
if err != nil {
return 0, false
}
result.SetUint(value)
return finalOffset, true
}
case reflect.Bool:
if typeNum == KindBool {
value, finalOffset, err := d.decodeBool(size, newOffset)
if err != nil {
return 0, false
}
result.SetBool(value)
return finalOffset, true
}
case reflect.Float64:
if typeNum == KindFloat64 {
value, finalOffset, err := d.decodeFloat64(size, newOffset)
if err != nil {
return 0, false
}
result.SetFloat(value)
return finalOffset, true
}
case reflect.Ptr:
// Handle pointer to fast types
if result.IsNil() {
result.Set(reflect.New(expectedType.Elem()))
}
return d.tryFastDecodeTyped(
offset,
addressableValue{result.Elem(), false},
expectedType.Elem(),
)
default:
// Type not supported for fast path
}
return 0, false
}
|