1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
// SPDX-FileCopyrightText: 2023 The Pion community <https://pion.ly>
// SPDX-License-Identifier: MIT
// Package prf implements TLS 1.2 Pseudorandom functions
package prf
import ( //nolint:gci
ellipticStdlib "crypto/elliptic"
"crypto/hmac"
"encoding/binary"
"errors"
"fmt"
"hash"
"math"
"github.com/pion/dtls/v3/pkg/crypto/elliptic"
"github.com/pion/dtls/v3/pkg/protocol"
"golang.org/x/crypto/curve25519"
)
const (
masterSecretLabel = "master secret"
extendedMasterSecretLabel = "extended master secret"
keyExpansionLabel = "key expansion"
verifyDataClientLabel = "client finished"
verifyDataServerLabel = "server finished"
)
// HashFunc allows callers to decide what hash is used in PRF.
type HashFunc func() hash.Hash
// EncryptionKeys is all the state needed for a TLS CipherSuite.
type EncryptionKeys struct {
MasterSecret []byte
ClientMACKey []byte
ServerMACKey []byte
ClientWriteKey []byte
ServerWriteKey []byte
ClientWriteIV []byte
ServerWriteIV []byte
}
var errInvalidNamedCurve = &protocol.FatalError{Err: errors.New("invalid named curve")} //nolint:goerr113
func (e *EncryptionKeys) String() string {
return fmt.Sprintf(`encryptionKeys:
- masterSecret: %#v
- clientMACKey: %#v
- serverMACKey: %#v
- clientWriteKey: %#v
- serverWriteKey: %#v
- clientWriteIV: %#v
- serverWriteIV: %#v
`,
e.MasterSecret,
e.ClientMACKey,
e.ServerMACKey,
e.ClientWriteKey,
e.ServerWriteKey,
e.ClientWriteIV,
e.ServerWriteIV)
}
// PSKPreMasterSecret generates the PSK Premaster Secret
// The premaster secret is formed as follows: if the PSK is N octets
// long, concatenate a uint16 with the value N, N zero octets, a second
// uint16 with the value N, and the PSK itself.
//
// https://tools.ietf.org/html/rfc4279#section-2
func PSKPreMasterSecret(psk []byte) []byte {
pskLen := uint16(len(psk)) //nolint:gosec // G115
out := append(make([]byte, 2+pskLen+2), psk...)
binary.BigEndian.PutUint16(out, pskLen)
binary.BigEndian.PutUint16(out[2+pskLen:], pskLen)
return out
}
// EcdhePSKPreMasterSecret implements TLS 1.2 Premaster Secret generation given a psk, a keypair and a curve
//
// https://datatracker.ietf.org/doc/html/rfc5489#section-2
func EcdhePSKPreMasterSecret(psk, publicKey, privateKey []byte, curve elliptic.Curve) ([]byte, error) {
preMasterSecret, err := PreMasterSecret(publicKey, privateKey, curve)
if err != nil {
return nil, err
}
out := make([]byte, 2+len(preMasterSecret)+2+len(psk))
// write preMasterSecret length
offset := 0
binary.BigEndian.PutUint16(out[offset:], uint16(len(preMasterSecret))) //nolint:gosec // G115
offset += 2
// write preMasterSecret
copy(out[offset:], preMasterSecret)
offset += len(preMasterSecret)
// write psk length
binary.BigEndian.PutUint16(out[offset:], uint16(len(psk))) //nolint:gosec // G115
offset += 2
// write psk
copy(out[offset:], psk)
return out, nil
}
// PreMasterSecret implements TLS 1.2 Premaster Secret generation given a keypair and a curve.
func PreMasterSecret(publicKey, privateKey []byte, curve elliptic.Curve) ([]byte, error) {
switch curve {
case elliptic.X25519:
return curve25519.X25519(privateKey, publicKey)
case elliptic.P256:
return ellipticCurvePreMasterSecret(publicKey, privateKey, ellipticStdlib.P256(), ellipticStdlib.P256())
case elliptic.P384:
return ellipticCurvePreMasterSecret(publicKey, privateKey, ellipticStdlib.P384(), ellipticStdlib.P384())
default:
return nil, errInvalidNamedCurve
}
}
func ellipticCurvePreMasterSecret(publicKey, privateKey []byte, c1, c2 ellipticStdlib.Curve) ([]byte, error) {
x, y := ellipticStdlib.Unmarshal(c1, publicKey) //nolint:staticcheck
if x == nil || y == nil {
return nil, errInvalidNamedCurve
}
result, _ := c2.ScalarMult(x, y, privateKey)
preMasterSecret := make([]byte, (c2.Params().BitSize+7)>>3)
resultBytes := result.Bytes()
copy(preMasterSecret[len(preMasterSecret)-len(resultBytes):], resultBytes)
return preMasterSecret, nil
}
// PHash is PRF is the SHA-256 hash function is used for all cipher suites
// defined in this TLS 1.2 document and in TLS documents published prior to this
// document when TLS 1.2 is negotiated. New cipher suites MUST explicitly
// specify a PRF and, in general, SHOULD use the TLS PRF with SHA-256 or a
// stronger standard hash function.
//
// P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
// HMAC_hash(secret, A(2) + seed) +
// HMAC_hash(secret, A(3) + seed) + ...
//
// A() is defined as:
//
// A(0) = seed
// A(i) = HMAC_hash(secret, A(i-1))
//
// P_hash can be iterated as many times as necessary to produce the
// required quantity of data. For example, if P_SHA256 is being used to
// create 80 bytes of data, it will have to be iterated three times
// (through A(3)), creating 96 bytes of output data; the last 16 bytes
// of the final iteration will then be discarded, leaving 80 bytes of
// output data.
//
// https://tools.ietf.org/html/rfc4346w
func PHash(secret, seed []byte, requestedLength int, hashFunc HashFunc) ([]byte, error) {
hmacSHA256 := func(key, data []byte) ([]byte, error) {
mac := hmac.New(hashFunc, key)
if _, err := mac.Write(data); err != nil {
return nil, err
}
return mac.Sum(nil), nil
}
var err error
lastRound := seed
out := []byte{}
iterations := int(math.Ceil(float64(requestedLength) / float64(hashFunc().Size())))
for i := 0; i < iterations; i++ {
lastRound, err = hmacSHA256(secret, lastRound)
if err != nil {
return nil, err
}
withSecret, err := hmacSHA256(secret, append(lastRound, seed...))
if err != nil {
return nil, err
}
out = append(out, withSecret...)
}
return out[:requestedLength], nil
}
// ExtendedMasterSecret generates a Extended MasterSecret as defined in
// https://tools.ietf.org/html/rfc7627
func ExtendedMasterSecret(preMasterSecret, sessionHash []byte, h HashFunc) ([]byte, error) {
seed := append([]byte(extendedMasterSecretLabel), sessionHash...)
return PHash(preMasterSecret, seed, 48, h)
}
// MasterSecret generates a TLS 1.2 MasterSecret.
func MasterSecret(preMasterSecret, clientRandom, serverRandom []byte, h HashFunc) ([]byte, error) {
seed := append(append([]byte(masterSecretLabel), clientRandom...), serverRandom...)
return PHash(preMasterSecret, seed, 48, h)
}
// GenerateEncryptionKeys is the final step TLS 1.2 PRF. Given all state generated so far generates
// the final keys need for encryption.
func GenerateEncryptionKeys(
masterSecret, clientRandom, serverRandom []byte,
macLen, keyLen, ivLen int,
h HashFunc,
) (*EncryptionKeys, error) {
seed := append(append([]byte(keyExpansionLabel), serverRandom...), clientRandom...)
keyMaterial, err := PHash(masterSecret, seed, (2*macLen)+(2*keyLen)+(2*ivLen), h)
if err != nil {
return nil, err
}
clientMACKey := keyMaterial[:macLen]
keyMaterial = keyMaterial[macLen:]
serverMACKey := keyMaterial[:macLen]
keyMaterial = keyMaterial[macLen:]
clientWriteKey := keyMaterial[:keyLen]
keyMaterial = keyMaterial[keyLen:]
serverWriteKey := keyMaterial[:keyLen]
keyMaterial = keyMaterial[keyLen:]
clientWriteIV := keyMaterial[:ivLen]
keyMaterial = keyMaterial[ivLen:]
serverWriteIV := keyMaterial[:ivLen]
return &EncryptionKeys{
MasterSecret: masterSecret,
ClientMACKey: clientMACKey,
ServerMACKey: serverMACKey,
ClientWriteKey: clientWriteKey,
ServerWriteKey: serverWriteKey,
ClientWriteIV: clientWriteIV,
ServerWriteIV: serverWriteIV,
}, nil
}
func prfVerifyData(masterSecret, handshakeBodies []byte, label string, hashFunc HashFunc) ([]byte, error) {
h := hashFunc()
if _, err := h.Write(handshakeBodies); err != nil {
return nil, err
}
seed := append([]byte(label), h.Sum(nil)...)
return PHash(masterSecret, seed, 12, hashFunc)
}
// VerifyDataClient is caled on the Client Side to either verify or generate the VerifyData message.
func VerifyDataClient(masterSecret, handshakeBodies []byte, h HashFunc) ([]byte, error) {
return prfVerifyData(masterSecret, handshakeBodies, verifyDataClientLabel, h)
}
// VerifyDataServer is caled on the Server Side to either verify or generate the VerifyData message.
func VerifyDataServer(masterSecret, handshakeBodies []byte, h HashFunc) ([]byte, error) {
return prfVerifyData(masterSecret, handshakeBodies, verifyDataServerLabel, h)
}
|