1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
// Package ccm implements a CCM, Counter with CBC-MAC
// as per RFC 3610.
//
// See https://tools.ietf.org/html/rfc3610
//
// This code was lifted from https://github.com/bocajim/dtls/blob/a3300364a283fcb490d28a93d7fcfa7ba437fbbe/ccm/ccm.go
// and as such was not written by the Pions authors. Like Pions this
// code is licensed under MIT.
//
// A request for including CCM into the Go standard library
// can be found as issue #27484 on the https://github.com/golang/go/
// repository.
package ccm
import (
"crypto/cipher"
"crypto/subtle"
"encoding/binary"
"errors"
"math"
)
// ccm represents a Counter with CBC-MAC with a specific key.
type ccm struct {
b cipher.Block
M uint8
L uint8
}
const ccmBlockSize = 16
// CCM is a block cipher in Counter with CBC-MAC mode.
// Providing authenticated encryption with associated data via the cipher.AEAD interface.
type CCM interface {
cipher.AEAD
// MaxLength returns the maxium length of plaintext in calls to Seal.
// The maximum length of ciphertext in calls to Open is MaxLength()+Overhead().
// The maximum length is related to CCM's `L` parameter (15-noncesize) and
// is 1<<(8*L) - 1 (but also limited by the maxium size of an int).
MaxLength() int
}
var (
errInvalidBlockSize = errors.New("ccm: NewCCM requires 128-bit block cipher")
errInvalidTagSize = errors.New("ccm: tagsize must be 4, 6, 8, 10, 12, 14, or 16")
errInvalidNonceSize = errors.New("ccm: invalid nonce size")
)
// NewCCM returns the given 128-bit block cipher wrapped in CCM.
// The tagsize must be an even integer between 4 and 16 inclusive
// and is used as CCM's `M` parameter.
// The noncesize must be an integer between 7 and 13 inclusive,
// 15-noncesize is used as CCM's `L` parameter.
func NewCCM(b cipher.Block, tagsize, noncesize int) (CCM, error) {
if b.BlockSize() != ccmBlockSize {
return nil, errInvalidBlockSize
}
if tagsize < 4 || tagsize > 16 || tagsize&1 != 0 {
return nil, errInvalidTagSize
}
lensize := 15 - noncesize
if lensize < 2 || lensize > 8 {
return nil, errInvalidNonceSize
}
c := &ccm{b: b, M: uint8(tagsize), L: uint8(lensize)}
return c, nil
}
func (c *ccm) NonceSize() int { return 15 - int(c.L) }
func (c *ccm) Overhead() int { return int(c.M) }
func (c *ccm) MaxLength() int { return maxlen(c.L, c.Overhead()) }
func maxlen(l uint8, tagsize int) int {
max := (uint64(1) << (8 * l)) - 1
if m64 := uint64(math.MaxInt64) - uint64(tagsize); l > 8 || max > m64 {
max = m64 // The maximum lentgh on a 64bit arch
}
if max != uint64(int(max)) {
return math.MaxInt32 - tagsize // We have only 32bit int's
}
return int(max)
}
// MaxNonceLength returns the maximum nonce length for a given plaintext length.
// A return value <= 0 indicates that plaintext length is too large for
// any nonce length.
func MaxNonceLength(pdatalen int) int {
const tagsize = 16
for L := 2; L <= 8; L++ {
if maxlen(uint8(L), tagsize) >= pdatalen {
return 15 - L
}
}
return 0
}
func (c *ccm) cbcRound(mac, data []byte) {
for i := 0; i < ccmBlockSize; i++ {
mac[i] ^= data[i]
}
c.b.Encrypt(mac, mac)
}
func (c *ccm) cbcData(mac, data []byte) {
for len(data) >= ccmBlockSize {
c.cbcRound(mac, data[:ccmBlockSize])
data = data[ccmBlockSize:]
}
if len(data) > 0 {
var block [ccmBlockSize]byte
copy(block[:], data)
c.cbcRound(mac, block[:])
}
}
var errPlaintextTooLong = errors.New("ccm: plaintext too large")
func (c *ccm) tag(nonce, plaintext, adata []byte) ([]byte, error) {
var mac [ccmBlockSize]byte
if len(adata) > 0 {
mac[0] |= 1 << 6
}
mac[0] |= (c.M - 2) << 2
mac[0] |= c.L - 1
if len(nonce) != c.NonceSize() {
return nil, errInvalidNonceSize
}
if len(plaintext) > c.MaxLength() {
return nil, errPlaintextTooLong
}
binary.BigEndian.PutUint64(mac[ccmBlockSize-8:], uint64(len(plaintext)))
copy(mac[1:ccmBlockSize-c.L], nonce)
c.b.Encrypt(mac[:], mac[:])
var block [ccmBlockSize]byte
if n := uint64(len(adata)); n > 0 {
// First adata block includes adata length
i := 2
if n <= 0xfeff {
binary.BigEndian.PutUint16(block[:i], uint16(n))
} else {
block[0] = 0xfe
block[1] = 0xff
if n < uint64(1<<32) {
i = 2 + 4
binary.BigEndian.PutUint32(block[2:i], uint32(n))
} else {
i = 2 + 8
binary.BigEndian.PutUint64(block[2:i], n)
}
}
i = copy(block[i:], adata)
c.cbcRound(mac[:], block[:])
c.cbcData(mac[:], adata[i:])
}
if len(plaintext) > 0 {
c.cbcData(mac[:], plaintext)
}
return mac[:c.M], nil
}
// sliceForAppend takes a slice and a requested number of bytes. It returns a
// slice with the contents of the given slice followed by that many bytes and a
// second slice that aliases into it and contains only the extra bytes. If the
// original slice has sufficient capacity then no allocation is performed.
// From crypto/cipher/gcm.go
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}
// Seal encrypts and authenticates plaintext, authenticates the
// additional data and appends the result to dst, returning the updated
// slice. The nonce must be NonceSize() bytes long and unique for all
// time, for a given key.
// The plaintext must be no longer than MaxLength() bytes long.
//
// The plaintext and dst may alias exactly or not at all.
func (c *ccm) Seal(dst, nonce, plaintext, adata []byte) []byte {
tag, err := c.tag(nonce, plaintext, adata)
if err != nil {
// The cipher.AEAD interface doesn't allow for an error return.
panic(err) // nolint
}
var iv, s0 [ccmBlockSize]byte
iv[0] = c.L - 1
copy(iv[1:ccmBlockSize-c.L], nonce)
c.b.Encrypt(s0[:], iv[:])
for i := 0; i < int(c.M); i++ {
tag[i] ^= s0[i]
}
iv[len(iv)-1] |= 1
stream := cipher.NewCTR(c.b, iv[:])
ret, out := sliceForAppend(dst, len(plaintext)+int(c.M))
stream.XORKeyStream(out, plaintext)
copy(out[len(plaintext):], tag)
return ret
}
var (
errOpen = errors.New("ccm: message authentication failed")
errCiphertextTooShort = errors.New("ccm: ciphertext too short")
errCiphertextTooLong = errors.New("ccm: ciphertext too long")
)
func (c *ccm) Open(dst, nonce, ciphertext, adata []byte) ([]byte, error) {
if len(ciphertext) < int(c.M) {
return nil, errCiphertextTooShort
}
if len(ciphertext) > c.MaxLength()+c.Overhead() {
return nil, errCiphertextTooLong
}
tag := make([]byte, int(c.M))
copy(tag, ciphertext[len(ciphertext)-int(c.M):])
ciphertextWithoutTag := ciphertext[:len(ciphertext)-int(c.M)]
var iv, s0 [ccmBlockSize]byte
iv[0] = c.L - 1
copy(iv[1:ccmBlockSize-c.L], nonce)
c.b.Encrypt(s0[:], iv[:])
for i := 0; i < int(c.M); i++ {
tag[i] ^= s0[i]
}
iv[len(iv)-1] |= 1
stream := cipher.NewCTR(c.b, iv[:])
// Cannot decrypt directly to dst since we're not supposed to
// reveal the plaintext to the caller if authentication fails.
plaintext := make([]byte, len(ciphertextWithoutTag))
stream.XORKeyStream(plaintext, ciphertextWithoutTag)
expectedTag, err := c.tag(nonce, plaintext, adata)
if err != nil {
return nil, err
}
if subtle.ConstantTimeCompare(tag, expectedTag) != 1 {
return nil, errOpen
}
return append(dst, plaintext...), nil
}
|