1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
// SPDX-FileCopyrightText: 2009 The Go Authors. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
/*
Package hmac implements the Keyed-Hash Message Authentication Code (HMAC) as
defined in U.S. Federal Information Processing Standards Publication 198.
An HMAC is a cryptographic hash that uses a key to sign a message.
The receiver verifies the hash by recomputing it using the same key.
Receivers should be careful to use Equal to compare MACs in order to avoid
timing side-channels:
// ValidMAC reports whether messageMAC is a valid HMAC tag for message.
func ValidMAC(message, messageMAC, key []byte) bool {
mac := hmac.New(sha256.New, key)
mac.Write(message)
expectedMAC := mac.Sum(nil)
return hmac.Equal(messageMAC, expectedMAC)
}
*/
package hmac
import (
"crypto/subtle"
"hash"
)
// FIPS 198-1:
// https://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
// key is zero padded to the block size of the hash function
// ipad = 0x36 byte repeated for key length
// opad = 0x5c byte repeated for key length
// hmac = H([key ^ opad] H([key ^ ipad] text))
// Marshalable is the combination of encoding.BinaryMarshaler and
// encoding.BinaryUnmarshaler. Their method definitions are repeated here to
// avoid a dependency on the encoding package.
type marshalable interface {
MarshalBinary() ([]byte, error)
UnmarshalBinary([]byte) error
}
type hmac struct {
opad, ipad []byte
outer, inner hash.Hash
// If marshaled is true, then opad and ipad do not contain a padded
// copy of the key, but rather the marshaled state of outer/inner after
// opad/ipad has been fed into it.
marshaled bool
}
func (h *hmac) Sum(in []byte) []byte {
origLen := len(in)
in = h.inner.Sum(in)
if h.marshaled {
if err := h.outer.(marshalable).UnmarshalBinary(h.opad); err != nil { //nolint:forcetypeassert
panic(err) //nolint
}
} else {
h.outer.Reset()
h.outer.Write(h.opad) //nolint:errcheck,gosec
}
h.outer.Write(in[origLen:]) //nolint:errcheck,gosec
return h.outer.Sum(in[:origLen])
}
func (h *hmac) Write(p []byte) (n int, err error) {
return h.inner.Write(p)
}
func (h *hmac) Size() int { return h.outer.Size() }
func (h *hmac) BlockSize() int { return h.inner.BlockSize() }
func (h *hmac) Reset() {
if h.marshaled {
if err := h.inner.(marshalable).UnmarshalBinary(h.ipad); err != nil { //nolint:forcetypeassert
panic(err) //nolint
}
return
}
h.inner.Reset()
h.inner.Write(h.ipad) //nolint:errcheck,gosec
// If the underlying hash is marshalable, we can save some time by
// saving a copy of the hash state now, and restoring it on future
// calls to Reset and Sum instead of writing ipad/opad every time.
//
// If either hash is unmarshalable for whatever reason,
// it's safe to bail out here.
marshalableInner, innerOK := h.inner.(marshalable)
if !innerOK {
return
}
marshalableOuter, outerOK := h.outer.(marshalable)
if !outerOK {
return
}
imarshal, err := marshalableInner.MarshalBinary()
if err != nil {
return
}
h.outer.Reset()
h.outer.Write(h.opad) //nolint:errcheck,gosec
omarshal, err := marshalableOuter.MarshalBinary()
if err != nil {
return
}
// Marshaling succeeded; save the marshaled state for later
h.ipad = imarshal
h.opad = omarshal
h.marshaled = true
}
// New returns a new HMAC hash using the given hash.Hash type and key.
// Note that unlike other hash implementations in the standard library,
// the returned Hash does not implement encoding.BinaryMarshaler
// or encoding.BinaryUnmarshaler.
func New(h func() hash.Hash, key []byte) hash.Hash {
hm := new(hmac)
hm.outer = h()
hm.inner = h()
blocksize := hm.inner.BlockSize()
hm.ipad = make([]byte, blocksize)
hm.opad = make([]byte, blocksize)
if len(key) > blocksize {
// If key is too big, hash it.
hm.outer.Write(key) //nolint:errcheck,gosec
key = hm.outer.Sum(nil)
}
copy(hm.ipad, key)
copy(hm.opad, key)
for i := range hm.ipad {
hm.ipad[i] ^= 0x36
}
for i := range hm.opad {
hm.opad[i] ^= 0x5c
}
hm.inner.Write(hm.ipad) //nolint:errcheck,gosec
return hm
}
// Equal compares two MACs for equality without leaking timing information.
func Equal(mac1, mac2 []byte) bool {
// We don't have to be constant time if the lengths of the MACs are
// different as that suggests that a completely different hash function
// was used.
return subtle.ConstantTimeCompare(mac1, mac2) == 1
}
|