1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
// Package packetio provides packet buffer
package packetio
import (
"errors"
"io"
"sync"
"time"
"github.com/pion/transport/v2/deadline"
)
var errPacketTooBig = errors.New("packet too big")
// BufferPacketType allow the Buffer to know which packet protocol is writing.
type BufferPacketType int
const (
// RTPBufferPacket indicates the Buffer that is handling RTP packets
RTPBufferPacket BufferPacketType = 1
// RTCPBufferPacket indicates the Buffer that is handling RTCP packets
RTCPBufferPacket BufferPacketType = 2
)
// Buffer allows writing packets to an intermediate buffer, which can then be read form.
// This is verify similar to bytes.Buffer but avoids combining multiple writes into a single read.
type Buffer struct {
mutex sync.Mutex
// this is a circular buffer. If head <= tail, then the useful
// data is in the interval [head, tail[. If tail < head, then
// the useful data is the union of [head, len[ and [0, tail[.
// In order to avoid ambiguity when head = tail, we always leave
// an unused byte in the buffer.
data []byte
head, tail int
notify chan struct{}
subs bool
closed bool
count int
limitCount, limitSize int
readDeadline *deadline.Deadline
}
const (
minSize = 2048
cutoffSize = 128 * 1024
maxSize = 4 * 1024 * 1024
)
// NewBuffer creates a new Buffer.
func NewBuffer() *Buffer {
return &Buffer{
notify: make(chan struct{}),
readDeadline: deadline.New(),
}
}
// available returns true if the buffer is large enough to fit a packet
// of the given size, taking overhead into account.
func (b *Buffer) available(size int) bool {
available := b.head - b.tail
if available <= 0 {
available += len(b.data)
}
// we interpret head=tail as empty, so always keep a byte free
if size+2+1 > available {
return false
}
return true
}
// grow increases the size of the buffer. If it returns nil, then the
// buffer has been grown. It returns ErrFull if hits a limit.
func (b *Buffer) grow() error {
var newSize int
if len(b.data) < cutoffSize {
newSize = 2 * len(b.data)
} else {
newSize = 5 * len(b.data) / 4
}
if newSize < minSize {
newSize = minSize
}
if (b.limitSize <= 0 || sizeHardLimit) && newSize > maxSize {
newSize = maxSize
}
// one byte slack
if b.limitSize > 0 && newSize > b.limitSize+1 {
newSize = b.limitSize + 1
}
if newSize <= len(b.data) {
return ErrFull
}
newData := make([]byte, newSize)
var n int
if b.head <= b.tail {
// data was contiguous
n = copy(newData, b.data[b.head:b.tail])
} else {
// data was discontinuous
n = copy(newData, b.data[b.head:])
n += copy(newData[n:], b.data[:b.tail])
}
b.head = 0
b.tail = n
b.data = newData
return nil
}
// Write appends a copy of the packet data to the buffer.
// Returns ErrFull if the packet doesn't fit.
//
// Note that the packet size is limited to 65536 bytes since v0.11.0 due to the internal data structure.
func (b *Buffer) Write(packet []byte) (int, error) {
if len(packet) >= 0x10000 {
return 0, errPacketTooBig
}
b.mutex.Lock()
if b.closed {
b.mutex.Unlock()
return 0, io.ErrClosedPipe
}
if (b.limitCount > 0 && b.count >= b.limitCount) ||
(b.limitSize > 0 && b.size()+2+len(packet) > b.limitSize) {
b.mutex.Unlock()
return 0, ErrFull
}
// grow the buffer until the packet fits
for !b.available(len(packet)) {
err := b.grow()
if err != nil {
b.mutex.Unlock()
return 0, err
}
}
var notify chan struct{}
if b.subs {
// readers are waiting. Prepare to notify, but only
// actually do it after we release the lock.
notify = b.notify
b.notify = make(chan struct{})
b.subs = false
}
// store the length of the packet
b.data[b.tail] = uint8(len(packet) >> 8)
b.tail++
if b.tail >= len(b.data) {
b.tail = 0
}
b.data[b.tail] = uint8(len(packet))
b.tail++
if b.tail >= len(b.data) {
b.tail = 0
}
// store the packet
n := copy(b.data[b.tail:], packet)
b.tail += n
if b.tail >= len(b.data) {
// we reached the end, wrap around
m := copy(b.data, packet[n:])
b.tail = m
}
b.count++
b.mutex.Unlock()
if notify != nil {
close(notify)
}
return len(packet), nil
}
// Read populates the given byte slice, returning the number of bytes read.
// Blocks until data is available or the buffer is closed.
// Returns io.ErrShortBuffer is the packet is too small to copy the Write.
// Returns io.EOF if the buffer is closed.
func (b *Buffer) Read(packet []byte) (n int, err error) {
// Return immediately if the deadline is already exceeded.
select {
case <-b.readDeadline.Done():
return 0, &netError{ErrTimeout, true, true}
default:
}
for {
b.mutex.Lock()
if b.head != b.tail {
// decode the packet size
n1 := b.data[b.head]
b.head++
if b.head >= len(b.data) {
b.head = 0
}
n2 := b.data[b.head]
b.head++
if b.head >= len(b.data) {
b.head = 0
}
count := int((uint16(n1) << 8) | uint16(n2))
// determine the number of bytes we'll actually copy
copied := count
if copied > len(packet) {
copied = len(packet)
}
// copy the data
if b.head+copied < len(b.data) {
copy(packet, b.data[b.head:b.head+copied])
} else {
k := copy(packet, b.data[b.head:])
copy(packet[k:], b.data[:copied-k])
}
// advance head, discarding any data that wasn't copied
b.head += count
if b.head >= len(b.data) {
b.head -= len(b.data)
}
if b.head == b.tail {
// the buffer is empty, reset to beginning
// in order to improve cache locality.
b.head = 0
b.tail = 0
}
b.count--
b.mutex.Unlock()
if copied < count {
return copied, io.ErrShortBuffer
}
return copied, nil
}
if b.closed {
b.mutex.Unlock()
return 0, io.EOF
}
notify := b.notify
b.subs = true
b.mutex.Unlock()
select {
case <-b.readDeadline.Done():
return 0, &netError{ErrTimeout, true, true}
case <-notify:
}
}
}
// Close the buffer, unblocking any pending reads.
// Data in the buffer can still be read, Read will return io.EOF only when empty.
func (b *Buffer) Close() (err error) {
b.mutex.Lock()
if b.closed {
b.mutex.Unlock()
return nil
}
notify := b.notify
b.closed = true
b.mutex.Unlock()
close(notify)
return nil
}
// Count returns the number of packets in the buffer.
func (b *Buffer) Count() int {
b.mutex.Lock()
defer b.mutex.Unlock()
return b.count
}
// SetLimitCount controls the maximum number of packets that can be buffered.
// Causes Write to return ErrFull when this limit is reached.
// A zero value will disable this limit.
func (b *Buffer) SetLimitCount(limit int) {
b.mutex.Lock()
defer b.mutex.Unlock()
b.limitCount = limit
}
// Size returns the total byte size of packets in the buffer, including
// a small amount of administrative overhead.
func (b *Buffer) Size() int {
b.mutex.Lock()
defer b.mutex.Unlock()
return b.size()
}
func (b *Buffer) size() int {
size := b.tail - b.head
if size < 0 {
size += len(b.data)
}
return size
}
// SetLimitSize controls the maximum number of bytes that can be buffered.
// Causes Write to return ErrFull when this limit is reached.
// A zero value means 4MB since v0.11.0.
//
// User can set packetioSizeHardLimit build tag to enable 4MB hard limit.
// When packetioSizeHardLimit build tag is set, SetLimitSize exceeding
// the hard limit will be silently discarded.
func (b *Buffer) SetLimitSize(limit int) {
b.mutex.Lock()
defer b.mutex.Unlock()
b.limitSize = limit
}
// SetReadDeadline sets the deadline for the Read operation.
// Setting to zero means no deadline.
func (b *Buffer) SetReadDeadline(t time.Time) error {
b.readDeadline.Set(t)
return nil
}
|