1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
|
// GENERATED CODE - DO NOT MODIFY BY HAND
declare var $app: c.Handler;type _TygojaDict = { [key:string | number | symbol]: any; }
type _TygojaAny = any
/**
* package a docs
* lorem ipsum dolor...
*/
namespace a {
interface Empty {
[key:string]: any;
}
/**
* unexported interface
*/
interface interfaceA<T> {
[key:string]: any;
/**
* some comment
*/
/**
* some comment above the function
*/
Method0(): void
Method1(): string // inline comment
/**
* multi
* line
* comment
*/
Method2(argA: string, argB: string): [T, number]
Method3(argA: number, ...argB: string[]): [T, Array<string>]
}
/**
* multi
* line
* comment
*/
interface InterfaceB {
[key:string]: any;
/**
* "replace" Method0 from interfaceA
*/
Method0(): void
CustomMethod(): time.Time
}
interface unexported {
Field1: string
}
/**
* structA comment
*/
interface structA {
Field1: string // after
/**
* multi
* line
* comment
* with union type
*/
Field2: string|Array<number>
}
interface structA {
/**
* method comment
*/
Method1(arg1: number): void
}
interface structA {
Method2(arg1: number, ...arg2: string[]): void
}
/**
* structB comment
*/
type _sqJYikd = unexported&structA
interface StructB<T> extends _sqJYikd {
Field3: T
}
/**
* structC with multiple mixed generic types
*/
interface StructC<A,B,C> {
Field4: A
Field5: B
Field6: C
}
interface StructC<A, B, C> {
/**
* StructC.Method4 comment
*/
Method4(arg1: A): [B, C]
}
/**
* type comment
*/
interface SliceAlias<T> extends Array<T>{} // after
/**
* multi
* line
* comment
*/
interface Handler<T> {(): [T, number] } // after
}
/**
* package b
*/
namespace b {
interface Func1 {
/**
* single comment
*/
(): void
}
interface Func2<T> {
/**
* multi
* line
* comment
*/
(arg1: number): T
}
interface Func3<A,B,C> {
/**
* function with multiple generic types
*/
(arg1: A, arg2: B, arg3: number): [A, C]
}
interface Func4 {
/**
* function that returns a function
*/
(arg1: number): () => number
}
interface Func5 {
/**
* function with ommited argument types
*/
(arg0: string, arg1: number, arg2: number): void
}
interface Func6 {
/**
* function with reserved argument name and variadic type
*/
(_arg00: string, ...optional: string[]): void
}
interface Func7 {
/**
* function with ommited argument names
*/
(_arg0: string, _arg1: number, ..._arg2: boolean[]): void
}
interface Func8 {
/**
* function with named return values
*/
(): [number, string]
}
interface Func9 {
/**
* function with shortened return values
*/
(): [string, string]
}
interface Func10 {
/**
* function with named and shortened return values
*/
(): [number, string, string]
}
}
namespace c {
/**
* func type comment
*/
interface Handler {(): string } // after
/**
* Example:
*
* ```
* Some
* code
* sample
* ```
*/
interface Example2 {
Title: string
Json: Raw
Bytes: string|Array<number> // should be union
}
interface Example2 {
DemoEx2(): time.Time
}
interface Example2 {
/**
* Pointer as argument vs return type
*/
DemoEx3(arg: Example1): (Example1)
}
interface Example2 {
/**
* ommited types
*/
DemoEx4(n1: string, n2: string, n3: string): void
}
interface Example2 {
/**
* ommited names
*/
DemoEx5(_arg0: string, _arg1: number): void
}
interface Example2 {
/**
* named return values
*/
DemoEx6(): [number, string]
}
interface Example2 {
/**
* shortened return values
*/
DemoEx7(): [string, string]
}
interface Example2 {
/**
* named and shortened return values
*/
DemoEx8(): [number, string, string]
}
}
/**
* Package time provides functionality for measuring and displaying time.
*
* The calendrical calculations always assume a Gregorian calendar, with
* no leap seconds.
*
* # Monotonic Clocks
*
* Operating systems provide both a “wall clock,” which is subject to
* changes for clock synchronization, and a “monotonic clock,” which is
* not. The general rule is that the wall clock is for telling time and
* the monotonic clock is for measuring time. Rather than split the API,
* in this package the Time returned by [time.Now] contains both a wall
* clock reading and a monotonic clock reading; later time-telling
* operations use the wall clock reading, but later time-measuring
* operations, specifically comparisons and subtractions, use the
* monotonic clock reading.
*
* For example, this code always computes a positive elapsed time of
* approximately 20 milliseconds, even if the wall clock is changed during
* the operation being timed:
*
* ```
* start := time.Now()
* ... operation that takes 20 milliseconds ...
* t := time.Now()
* elapsed := t.Sub(start)
* ```
*
* Other idioms, such as [time.Since](start), [time.Until](deadline), and
* time.Now().Before(deadline), are similarly robust against wall clock
* resets.
*
* The rest of this section gives the precise details of how operations
* use monotonic clocks, but understanding those details is not required
* to use this package.
*
* The Time returned by time.Now contains a monotonic clock reading.
* If Time t has a monotonic clock reading, t.Add adds the same duration to
* both the wall clock and monotonic clock readings to compute the result.
* Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
* computations, they always strip any monotonic clock reading from their results.
* Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
* of the wall time, they also strip any monotonic clock reading from their results.
* The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
*
* If Times t and u both contain monotonic clock readings, the operations
* t.After(u), t.Before(u), t.Equal(u), t.Compare(u), and t.Sub(u) are carried out
* using the monotonic clock readings alone, ignoring the wall clock
* readings. If either t or u contains no monotonic clock reading, these
* operations fall back to using the wall clock readings.
*
* On some systems the monotonic clock will stop if the computer goes to sleep.
* On such a system, t.Sub(u) may not accurately reflect the actual
* time that passed between t and u. The same applies to other functions and
* methods that subtract times, such as [Since], [Until], [Before], [After],
* [Add], [Sub], [Equal] and [Compare]. In some cases, you may need to strip
* the monotonic clock to get accurate results.
*
* Because the monotonic clock reading has no meaning outside
* the current process, the serialized forms generated by t.GobEncode,
* t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
* clock reading, and t.Format provides no format for it. Similarly, the
* constructors [time.Date], [time.Parse], [time.ParseInLocation], and [time.Unix],
* as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
* t.UnmarshalJSON, and t.UnmarshalText always create times with
* no monotonic clock reading.
*
* The monotonic clock reading exists only in [Time] values. It is not
* a part of [Duration] values or the Unix times returned by t.Unix and
* friends.
*
* Note that the Go == operator compares not just the time instant but
* also the [Location] and the monotonic clock reading. See the
* documentation for the Time type for a discussion of equality
* testing for Time values.
*
* For debugging, the result of t.String does include the monotonic
* clock reading if present. If t != u because of different monotonic clock readings,
* that difference will be visible when printing t.String() and u.String().
*
* # Timer Resolution
*
* [Timer] resolution varies depending on the Go runtime, the operating system
* and the underlying hardware.
* On Unix, the resolution is ~1ms.
* On Windows version 1803 and newer, the resolution is ~0.5ms.
* On older Windows versions, the default resolution is ~16ms, but
* a higher resolution may be requested using [golang.org/x/sys/windows.TimeBeginPeriod].
*/
namespace time {
interface Time {
/**
* String returns the time formatted using the format string
*
* ```
* "2006-01-02 15:04:05.999999999 -0700 MST"
* ```
*
* If the time has a monotonic clock reading, the returned string
* includes a final field "m=±<value>", where value is the monotonic
* clock reading formatted as a decimal number of seconds.
*
* The returned string is meant for debugging; for a stable serialized
* representation, use t.MarshalText, t.MarshalBinary, or t.Format
* with an explicit format string.
*/
String(): string
}
interface Time {
/**
* GoString implements [fmt.GoStringer] and formats t to be printed in Go source
* code.
*/
GoString(): string
}
interface Time {
/**
* Format returns a textual representation of the time value formatted according
* to the layout defined by the argument. See the documentation for the
* constant called [Layout] to see how to represent the layout format.
*
* The executable example for [Time.Format] demonstrates the working
* of the layout string in detail and is a good reference.
*/
Format(layout: string): string
}
interface Time {
/**
* AppendFormat is like [Time.Format] but appends the textual
* representation to b and returns the extended buffer.
*/
AppendFormat(b: string|Array<number>, layout: string): string|Array<number>
}
/**
* A Time represents an instant in time with nanosecond precision.
*
* Programs using times should typically store and pass them as values,
* not pointers. That is, time variables and struct fields should be of
* type [time.Time], not *time.Time.
*
* A Time value can be used by multiple goroutines simultaneously except
* that the methods [Time.GobDecode], [Time.UnmarshalBinary], [Time.UnmarshalJSON] and
* [Time.UnmarshalText] are not concurrency-safe.
*
* Time instants can be compared using the [Time.Before], [Time.After], and [Time.Equal] methods.
* The [Time.Sub] method subtracts two instants, producing a [Duration].
* The [Time.Add] method adds a Time and a Duration, producing a Time.
*
* The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
* As this time is unlikely to come up in practice, the [Time.IsZero] method gives
* a simple way of detecting a time that has not been initialized explicitly.
*
* Each time has an associated [Location]. The methods [Time.Local], [Time.UTC], and Time.In return a
* Time with a specific Location. Changing the Location of a Time value with
* these methods does not change the actual instant it represents, only the time
* zone in which to interpret it.
*
* Representations of a Time value saved by the [Time.GobEncode], [Time.MarshalBinary],
* [Time.MarshalJSON], and [Time.MarshalText] methods store the [Time.Location]'s offset, but not
* the location name. They therefore lose information about Daylight Saving Time.
*
* In addition to the required “wall clock” reading, a Time may contain an optional
* reading of the current process's monotonic clock, to provide additional precision
* for comparison or subtraction.
* See the “Monotonic Clocks” section in the package documentation for details.
*
* Note that the Go == operator compares not just the time instant but also the
* Location and the monotonic clock reading. Therefore, Time values should not
* be used as map or database keys without first guaranteeing that the
* identical Location has been set for all values, which can be achieved
* through use of the UTC or Local method, and that the monotonic clock reading
* has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
* to t == u, since t.Equal uses the most accurate comparison available and
* correctly handles the case when only one of its arguments has a monotonic
* clock reading.
*/
interface Time {
}
interface Time {
/**
* After reports whether the time instant t is after u.
*/
After(u: Time): boolean
}
interface Time {
/**
* Before reports whether the time instant t is before u.
*/
Before(u: Time): boolean
}
interface Time {
/**
* Compare compares the time instant t with u. If t is before u, it returns -1;
* if t is after u, it returns +1; if they're the same, it returns 0.
*/
Compare(u: Time): number
}
interface Time {
/**
* Equal reports whether t and u represent the same time instant.
* Two times can be equal even if they are in different locations.
* For example, 6:00 +0200 and 4:00 UTC are Equal.
* See the documentation on the Time type for the pitfalls of using == with
* Time values; most code should use Equal instead.
*/
Equal(u: Time): boolean
}
interface Time {
/**
* IsZero reports whether t represents the zero time instant,
* January 1, year 1, 00:00:00 UTC.
*/
IsZero(): boolean
}
interface Time {
/**
* Date returns the year, month, and day in which t occurs.
*/
Date(): [number, Month, number]
}
interface Time {
/**
* Year returns the year in which t occurs.
*/
Year(): number
}
interface Time {
/**
* Month returns the month of the year specified by t.
*/
Month(): Month
}
interface Time {
/**
* Day returns the day of the month specified by t.
*/
Day(): number
}
interface Time {
/**
* Weekday returns the day of the week specified by t.
*/
Weekday(): Weekday
}
interface Time {
/**
* ISOWeek returns the ISO 8601 year and week number in which t occurs.
* Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
* week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
* of year n+1.
*/
ISOWeek(): [number, number]
}
interface Time {
/**
* Clock returns the hour, minute, and second within the day specified by t.
*/
Clock(): [number, number, number]
}
interface Time {
/**
* Hour returns the hour within the day specified by t, in the range [0, 23].
*/
Hour(): number
}
interface Time {
/**
* Minute returns the minute offset within the hour specified by t, in the range [0, 59].
*/
Minute(): number
}
interface Time {
/**
* Second returns the second offset within the minute specified by t, in the range [0, 59].
*/
Second(): number
}
interface Time {
/**
* Nanosecond returns the nanosecond offset within the second specified by t,
* in the range [0, 999999999].
*/
Nanosecond(): number
}
interface Time {
/**
* YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
* and [1,366] in leap years.
*/
YearDay(): number
}
interface Time {
/**
* Add returns the time t+d.
*/
Add(d: Duration): Time
}
interface Time {
/**
* Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
* value that can be stored in a [Duration], the maximum (or minimum) duration
* will be returned.
* To compute t-d for a duration d, use t.Add(-d).
*/
Sub(u: Time): Duration
}
interface Time {
/**
* AddDate returns the time corresponding to adding the
* given number of years, months, and days to t.
* For example, AddDate(-1, 2, 3) applied to January 1, 2011
* returns March 4, 2010.
*
* Note that dates are fundamentally coupled to timezones, and calendrical
* periods like days don't have fixed durations. AddDate uses the Location of
* the Time value to determine these durations. That means that the same
* AddDate arguments can produce a different shift in absolute time depending on
* the base Time value and its Location. For example, AddDate(0, 0, 1) applied
* to 12:00 on March 27 always returns 12:00 on March 28. At some locations and
* in some years this is a 24 hour shift. In others it's a 23 hour shift due to
* daylight savings time transitions.
*
* AddDate normalizes its result in the same way that Date does,
* so, for example, adding one month to October 31 yields
* December 1, the normalized form for November 31.
*/
AddDate(years: number, months: number, days: number): Time
}
interface Time {
/**
* UTC returns t with the location set to UTC.
*/
UTC(): Time
}
interface Time {
/**
* Local returns t with the location set to local time.
*/
Local(): Time
}
interface Time {
/**
* In returns a copy of t representing the same time instant, but
* with the copy's location information set to loc for display
* purposes.
*
* In panics if loc is nil.
*/
In(loc: Location): Time
}
interface Time {
/**
* Location returns the time zone information associated with t.
*/
Location(): (Location)
}
interface Time {
/**
* Zone computes the time zone in effect at time t, returning the abbreviated
* name of the zone (such as "CET") and its offset in seconds east of UTC.
*/
Zone(): [string, number]
}
interface Time {
/**
* ZoneBounds returns the bounds of the time zone in effect at time t.
* The zone begins at start and the next zone begins at end.
* If the zone begins at the beginning of time, start will be returned as a zero Time.
* If the zone goes on forever, end will be returned as a zero Time.
* The Location of the returned times will be the same as t.
*/
ZoneBounds(): [Time, Time]
}
interface Time {
/**
* Unix returns t as a Unix time, the number of seconds elapsed
* since January 1, 1970 UTC. The result does not depend on the
* location associated with t.
* Unix-like operating systems often record time as a 32-bit
* count of seconds, but since the method here returns a 64-bit
* value it is valid for billions of years into the past or future.
*/
Unix(): number
}
interface Time {
/**
* UnixMilli returns t as a Unix time, the number of milliseconds elapsed since
* January 1, 1970 UTC. The result is undefined if the Unix time in
* milliseconds cannot be represented by an int64 (a date more than 292 million
* years before or after 1970). The result does not depend on the
* location associated with t.
*/
UnixMilli(): number
}
interface Time {
/**
* UnixMicro returns t as a Unix time, the number of microseconds elapsed since
* January 1, 1970 UTC. The result is undefined if the Unix time in
* microseconds cannot be represented by an int64 (a date before year -290307 or
* after year 294246). The result does not depend on the location associated
* with t.
*/
UnixMicro(): number
}
interface Time {
/**
* UnixNano returns t as a Unix time, the number of nanoseconds elapsed
* since January 1, 1970 UTC. The result is undefined if the Unix time
* in nanoseconds cannot be represented by an int64 (a date before the year
* 1678 or after 2262). Note that this means the result of calling UnixNano
* on the zero Time is undefined. The result does not depend on the
* location associated with t.
*/
UnixNano(): number
}
interface Time {
/**
* MarshalBinary implements the encoding.BinaryMarshaler interface.
*/
MarshalBinary(): string|Array<number>
}
interface Time {
/**
* UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
*/
UnmarshalBinary(data: string|Array<number>): void
}
interface Time {
/**
* GobEncode implements the gob.GobEncoder interface.
*/
GobEncode(): string|Array<number>
}
interface Time {
/**
* GobDecode implements the gob.GobDecoder interface.
*/
GobDecode(data: string|Array<number>): void
}
interface Time {
/**
* MarshalJSON implements the [json.Marshaler] interface.
* The time is a quoted string in the RFC 3339 format with sub-second precision.
* If the timestamp cannot be represented as valid RFC 3339
* (e.g., the year is out of range), then an error is reported.
*/
MarshalJSON(): string|Array<number>
}
interface Time {
/**
* UnmarshalJSON implements the [json.Unmarshaler] interface.
* The time must be a quoted string in the RFC 3339 format.
*/
UnmarshalJSON(data: string|Array<number>): void
}
interface Time {
/**
* MarshalText implements the [encoding.TextMarshaler] interface.
* The time is formatted in RFC 3339 format with sub-second precision.
* If the timestamp cannot be represented as valid RFC 3339
* (e.g., the year is out of range), then an error is reported.
*/
MarshalText(): string|Array<number>
}
interface Time {
/**
* UnmarshalText implements the [encoding.TextUnmarshaler] interface.
* The time must be in the RFC 3339 format.
*/
UnmarshalText(data: string|Array<number>): void
}
interface Time {
/**
* IsDST reports whether the time in the configured location is in Daylight Savings Time.
*/
IsDST(): boolean
}
interface Time {
/**
* Truncate returns the result of rounding t down to a multiple of d (since the zero time).
* If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
*
* Truncate operates on the time as an absolute duration since the
* zero time; it does not operate on the presentation form of the
* time. Thus, Truncate(Hour) may return a time with a non-zero
* minute, depending on the time's Location.
*/
Truncate(d: Duration): Time
}
interface Time {
/**
* Round returns the result of rounding t to the nearest multiple of d (since the zero time).
* The rounding behavior for halfway values is to round up.
* If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
*
* Round operates on the time as an absolute duration since the
* zero time; it does not operate on the presentation form of the
* time. Thus, Round(Hour) may return a time with a non-zero
* minute, depending on the time's Location.
*/
Round(d: Duration): Time
}
}
namespace c {
interface Raw extends Array<number>{}
interface Example1 {
Name: string
}
interface Example1 {
DemoEx1(): string
}
}
namespace time {
/**
* A Month specifies a month of the year (January = 1, ...).
*/
interface Month extends Number{}
interface Month {
/**
* String returns the English name of the month ("January", "February", ...).
*/
String(): string
}
/**
* A Weekday specifies a day of the week (Sunday = 0, ...).
*/
interface Weekday extends Number{}
interface Weekday {
/**
* String returns the English name of the day ("Sunday", "Monday", ...).
*/
String(): string
}
/**
* A Duration represents the elapsed time between two instants
* as an int64 nanosecond count. The representation limits the
* largest representable duration to approximately 290 years.
*/
interface Duration extends Number{}
interface Duration {
/**
* String returns a string representing the duration in the form "72h3m0.5s".
* Leading zero units are omitted. As a special case, durations less than one
* second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
* that the leading digit is non-zero. The zero duration formats as 0s.
*/
String(): string
}
interface Duration {
/**
* Nanoseconds returns the duration as an integer nanosecond count.
*/
Nanoseconds(): number
}
interface Duration {
/**
* Microseconds returns the duration as an integer microsecond count.
*/
Microseconds(): number
}
interface Duration {
/**
* Milliseconds returns the duration as an integer millisecond count.
*/
Milliseconds(): number
}
interface Duration {
/**
* Seconds returns the duration as a floating point number of seconds.
*/
Seconds(): number
}
interface Duration {
/**
* Minutes returns the duration as a floating point number of minutes.
*/
Minutes(): number
}
interface Duration {
/**
* Hours returns the duration as a floating point number of hours.
*/
Hours(): number
}
interface Duration {
/**
* Truncate returns the result of rounding d toward zero to a multiple of m.
* If m <= 0, Truncate returns d unchanged.
*/
Truncate(m: Duration): Duration
}
interface Duration {
/**
* Round returns the result of rounding d to the nearest multiple of m.
* The rounding behavior for halfway values is to round away from zero.
* If the result exceeds the maximum (or minimum)
* value that can be stored in a [Duration],
* Round returns the maximum (or minimum) duration.
* If m <= 0, Round returns d unchanged.
*/
Round(m: Duration): Duration
}
interface Duration {
/**
* Abs returns the absolute value of d.
* As a special case, [math.MinInt64] is converted to [math.MaxInt64].
*/
Abs(): Duration
}
/**
* A Location maps time instants to the zone in use at that time.
* Typically, the Location represents the collection of time offsets
* in use in a geographical area. For many Locations the time offset varies
* depending on whether daylight savings time is in use at the time instant.
*
* Location is used to provide a time zone in a printed Time value and for
* calculations involving intervals that may cross daylight savings time
* boundaries.
*/
interface Location {
}
interface Location {
/**
* String returns a descriptive name for the time zone information,
* corresponding to the name argument to [LoadLocation] or [FixedZone].
*/
String(): string
}
}
|