File: try.fxl

package info (click to toggle)
golang-github-pointlander-peg 1.0.0-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, forky, sid, trixie
  • size: 376 kB
  • sloc: makefile: 44
file content (1024 lines) | stat: -rwxr-xr-x 20,877 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
#!../bin/fexl
# ^^^ use that line for the locally built version

#!/usr/bin/fexl
# ^^^ use that line for the installed version


# NOTE: If you run ./try.fxl, it will go through a bunch of tests, including
# one at the end where it asks you to type lines of text and terminate with
# Ctrl-D.  If you'd like to run the test without having to type anything, and
# compare it with the reference output, do this:
#
#   cat try.fxl | ../bin/fexl | cmp - out
#
# That should run quietly with exit code 0.


#####

# This function halts by simply consuming all arguments given to it.
\halt == (\_ halt)

# Useful:
\string_from = (\x
	string_type x x;
	long_type x (long_string x);
	double_type x (double_string x);
	x)

\print = (\item string_put (string_from item))
\nl = (print "
")

\T = (\T\F T)
\F = (\T\F F)

\string_eq=(\x\y string_compare x y F T F)

\long_le = (\x\y long_compare x y T T F)
\long_lt = (\x\y long_compare x y T F F)
\long_ge = (\x\y long_compare x y F T T)
\long_gt = (\x\y long_compare x y F F T)
\long_ne = (\x\y long_compare x y T F T)
\long_min = (\x\y long_compare x y  x x y)

### List functions

# "end" is the empty list.
\end = (\end\item end)

# The "item" (cons) list constructor is built-in, but could be defined thus:
# \item = (\head\tail \end\item item head tail)

# Return the first N items of the list.
\list_prefix == (\list\N
	long_le N 0 end;
	list end \head\tail
	\N = (long_sub N 1)
	item head; list_prefix tail N
	)

# Return the item at position N in the list, or default if no such item.
\list_at == (\list\N\default
	list default \head\tail
	long_compare N 0 default head
	\N = (long_sub N 1)
	list_at tail N default
	)

\list_map == (\next\fun\list
	list next \head\tail fun head; list_map next fun tail)

\list_do = (list_map I)

\list_print = (\fun list_do \x string_put; fun x)

# We don't use char_put because of buffering problems.
\chars_print = (list_print long_char)

\bits_print = (list_print \x x "1" "0")

# Reverse a list.
\reverse=(\list
	\reverse==(\list\result list result \h\t reverse t (item h result))
	reverse list end
	)

########

\test_hello_world==
(
print "hello world" nl;
)

########

\test_cat==
(
print "=== Enter lines of text and I'll echo them.  Press Ctrl-D to stop";nl;

\long_lt = (\x\y long_compare x y T F F)

# The cat program echoes the input to the output.
\cat == (char_get \ch long_lt ch 0 I; char_put ch; cat)
cat
)

########

\test_string_slice==
(
print (string_slice "abcde" 0 1); nl;
print (string_slice "abcde" 0 2); nl;
print (string_slice "abcde" 0 3); nl;
print (string_slice "abcde" 0 4); nl;
print (string_slice "abcde" 0 5); nl;
print (string_slice "abcde" 0 6); nl;
print (string_slice "abcde" 0 700); nl;
print (string_slice "a" 0 0); nl;
print (string_slice "a" 0 1); nl;
print (string_slice "a" 0 2); nl;
print (string_slice "a" -1 0); nl;
print "=====";nl;
print (string_slice "a" 0 1); nl;
print (string_slice "a" -1 2); nl;
print (string_slice "a" -2 3); nl;
print (string_slice "a" -2 4); nl;
print (string_slice "a" -2 0); nl;
print (string_slice "abcde" 0 5); nl;
print (string_slice "abcde" -1 5); nl;
print (string_slice "abcde" -2 5); nl;
print (string_slice "abcde" -3 5); nl;
print (string_slice "abcde" -4 5); nl;
print (string_slice "abcde" -5 5); nl;
print (string_slice "abcde" -5 6); nl;
print (string_slice "abcde" -5 7); nl;
print (string_slice "abcde" -5 8); nl;
print (string_slice "abcde" -5 9); nl;
print (string_slice "abcde" -5 10); nl;
print (string_slice "abcde" -5 11); nl;
print "=====";nl;
print (string_slice "" 0 0); nl;
print (string_slice "" 0 800); nl;
print (string_slice "" -30 800); nl;
#string_put (string_from (string_slice "a" 0 1));nl;
#string_put (string_from (string_slice "a" 0 1));nl;
#string_put (string_from (string_slice "a" 0 1));nl;
#string_put (string_from (string_slice "a" 0 1));nl;

#string_put (string_slice "a" 0 0)
)

########

\test_write_binary ==
(
# Writing binary

\string_3014 =
	(
	string_append (long_char 03);
	string_append (long_char 00);
	string_append (long_char 01);
	string_append (long_char 04);
	""
	)

string_put string_3014;
)

########

\test_string_len==
(
print (string_len ""); nl;
print (string_len "a"); nl;
print (string_len "ab"); nl;
print (string_len "12345678901234567890123456789012"); nl;
)

########

\test_string_at==
(
print (string_at "abc" -1); nl;
print (string_at "abc" 0); nl;
print (string_at "abc" 1); nl;
print (string_at "abc" 2); nl;
print (string_at "abc" 3); nl;
)

########

\test_string_compare==
(
\string_014 =
	(
	string_append (long_char 00);
	string_append (long_char 01);
	string_append (long_char 04);
	""
	)

\string_041 =
	(
	string_append (long_char 00);
	string_append (long_char 04);
	string_append (long_char 01);
	""
	)

\string_0142 = (string_append string_014; long_char 02);

\do_compare=(\x\y\expect
	\result = (string_compare x y "LT" "EQ" "GT")
	print "string_compare "; print x; print " "; print y; print " ";
	print result; print " ";
	print (string_eq result expect "GOOD" "BAD");
	nl;
	)

do_compare string_0142 string_014 "GT";
do_compare string_014 string_0142 "LT";
do_compare string_014 string_014 "EQ";
do_compare string_014 string_041 "LT";
do_compare string_041 string_014 "GT";
do_compare string_041 string_0142 "GT";
)

########
\test_string_common ==
(
\string_eq=(\x\y string_compare x y F T F)
\long_eq=(\x\y long_compare x y F T F)

\check = (\value\expect
	\halt == (\_ halt)
	\ok = (long_eq value expect)
	print " "; print (ok "GOOD" "BAD");nl;
	ok I halt
	)

\test_string_common = (\x\y\expect
	\len = (string_common x y)
	print "string_common ";print x; print " "; print y; print " = "; print len;
	check len expect;
	)

test_string_common "" "" 0;
test_string_common "" "a" 0;
test_string_common "a" "a" 1;
test_string_common "a" "ab" 1;
test_string_common "ab" "a" 1;
test_string_common "ab" "ab" 2;
test_string_common "abc" "abd" 2;
test_string_common "aac" "abd" 1;
test_string_common "abd" "abd" 3;
test_string_common "cbd" "abd" 0;
test_string_common "x" "" 0;
)

########

\test_long_add==
(
\x=(long_add 37 23)
print "The value of x is "; print x; print "."; nl;
)

########
\test_procedural==
(
# Make some abbreviations.
\add=double_add
\sub=double_sub
\mul=double_mul
\div=double_div


print ~@
===
Here we demonstrate an ordinary "procedural" style of programming.  This works
because definitions are NOT recursive by default.  If you want a recursive
definition, you must use "==" instead of just "=".

@;

\show=(\name\value print name; print " = "; print value; nl;)

\x=3.0
\y=4.0
\x=(add x x)
\y=(mul y x)
show "x" x; show "y" y;
\x=(div x; mul y 4.0)
show "x" x; show "y" y;

\z=(mul x; mul y; add 1.0 y)
show "x" x; show "y" y; show "z" z;
\z=(div z 5.0)
show "z" z;
)

\test_eager==
(
\long_le = (\x\y long_compare x y T T F)

\sum == (\total\count
	long_le count 0 total;

	# This form evaluates eagerly:
	\total = (long_add total count)

	# Or if you prefer, you can use "?" to force eager evaluation like this:
	#? (long_add total count) \total

	sum total (long_sub count 1))

\sum = (sum 0)

\count = 100000
print "The sum of 1 .. ";print count; print " is "; print (sum count);nl;
)

\test_double_compare ==
(
\do_compare=(\x\y\expect
	\result = (double_compare x y "LT" "EQ" "GT")
	print "double_compare "; print x; print " "; print y; print " ";
	print result; print " ";
	print (string_eq result expect "GOOD" "BAD");
	nl;
	)
do_compare 23.0 23.0 "EQ"
do_compare 23.0 24.0 "LT"
do_compare 23.1 23.2 "LT"
do_compare 24.0 23.0 "GT"
do_compare 24.0 240.0 "LT"
do_compare -1.0 4.0 "LT"
do_compare 4.0 -1.0 "GT"
do_compare -1.0 -1.0 "EQ"
)

####### Some tests with arbitrary precision arithmetic.

\module_test_arithmetic ==
(

# These put a binary digit 0 or 1 on the front of a list.
\d0 = (item F)
\d1 = (item T)

# the natural numbers 0 and 1
\nat_0 = end
\nat_1 = (d1 nat_0)

# (nat_2x x) is twice x.
\nat_2x=(\x x nat_0 \_\_ d0 x)

# (nat_2x1 x) is twice x plus 1.
\nat_2x1=d1

# (nat_eq0 x) is true iff x = 0
\nat_eq0=(\x x T \_\_ F)

# (nat_inc x) is x+1.  (x incremented by 1).  Both x and the result are of
# type nat.
\nat_inc==(\x x nat_1 \b\n b (d0; nat_inc n) (d1 n))

# (nat_dec x) is x-1 if x > 0, or 0 if x = 0.  (x decremented by 1)  Both x
# and the result are of type nat.
\nat_dec==(\x x nat_0 \b\n b (nat_eq0 n nat_0 (d0 n)) (d1; nat_dec n))

# (nat_add x y) is x+y.  (the sum of x and y)  The x, y, and result are of
# type nat.
\nat_add == (\x\y x y \bx\nx y x \by\ny
	\sum=(nat_add nx ny)
	bx
		(by (d0; nat_inc sum) (d1 sum))
		(item by sum)
	)

# (nat_mul x y) is x*y.  (the product of x and y)  The x, y, and result are
# of type nat.
\nat_mul == (\x\y x nat_0 \bx\nx y nat_0 \by\ny
	bx
		(by (d1; nat_add nx (nat_mul ny x)) (d0; nat_mul ny x))
		(by (d0; nat_mul nx y) (d0; d0; nat_mul nx ny))
	)

# (int_ge0 x) is true if int x >= 0.
\int_ge0=(\x x T \s\_ s)

# (int_abs x) is the absolute value of int x.  The result is a nat.
\int_abs=(\x x nat_0 \_\n n)

\int_0 = end
\int_1 = (d1; d1; int_0)

# (nat_int x) is nat x converted to the int +x.
\nat_int=(\x nat_eq0 x int_0; d1 x)
# (nat_neg x) is nat x converted to the int -x.
\nat_neg=(\x nat_eq0 x int_0; d0 x)

# (int_2x x) is twice x.
\int_2x=(\x x int_0 \b\n item b; d0; n)

# (int_inc x) is int x+1.
\int_inc=(\x x int_1 \b\n b (d1; nat_inc n) (nat_neg (nat_dec n)))

# (int_dec x) is int x-1.
\int_dec=(\x x (d0; nat_1) \b\n b (nat_int (nat_dec n)) (d0; nat_inc n))

# (nat_sub x y) is x-y.  (x minus y)  The x, y are of type nat, but the
# result is of type int because the result might be negative.
\nat_sub==(\x\y x (nat_neg y) \bx\nx y (nat_int x) \by\ny
	\z = (int_2x (nat_sub nx ny))
	bx (by I int_inc) (by int_dec I) z
	)

# (nat_div x y) divides x by y.  It yields a pair <q,r>, where q is the
# quotient and r is the remainder.
#
# The result satisfies the equation x = q*y + r,  0 <= r < y.
#
# NOTE:  If you divide by zero, the function yields the pair <0,0>.

\nat_div==(\x\y\return
	x (return nat_0 nat_0) \bx\nx
	y (return nat_0 nat_0) \by\ny
	by
		(
		# divide by odd
		nat_div nx y \q\r
		\r=(bx nat_2x1 nat_2x r)
		\d=(nat_sub r y)
		int_ge0 d
			(return (nat_2x1 q) (int_abs d))
			(return (nat_2x q) r)
		)
		(
		# divide by even
		nat_div nx ny \q\r
		return q (bx nat_2x1 nat_2x r)
		)
	)

\nat_compare == (\x\y \lt\eq\gt
	x (y eq \_\_ lt) \bx\nx
	y gt \by\ny
	nat_compare nx ny
		lt
		(bx (by eq gt) (by lt eq))
		gt
	)

\nat_le = (\x\y nat_compare x y T T F)
\nat_ge = (\x\y nat_compare x y F T T)

\nat_2 = (d0 nat_1)
\nat_5 = (d1 nat_2)
\nat_10 = (d0 nat_5)

\nat_div10 = (\x nat_div x nat_10)

# Convert a nat into a machine long value, ignoring any overflow.
\nat_long =
	(
	\nat_long == (\sum\pow\bits
		bits sum \bit\bits
		\sum = (bit (long_add pow) I sum)
		\pow = (long_mul 2 pow)
		nat_long sum pow bits
		)

	nat_long 0 1
	)

# (nat_base_10_lo n) is the list of ASCII decimal digits for n starting
# with the least significant digit.
\nat_base_10_lo == (\x
	nat_div10 x \q\r
	\ch = (long_add 48; nat_long r);
	item ch;
	nat_eq0 q end;
	nat_base_10_lo q
	)

# (nat_base_10 n) is the list of ASCII decimal digits for n starting
# with the most significant digit.
\nat_base_10=(\n reverse; nat_base_10_lo n)

\nat_print = (\x chars_print (nat_base_10 x))
\nat_print_lo = (\x chars_print (nat_base_10_lo x))

# for testing:
# show in reverse decimal
#\nat_print = nat_print_lo
# show in binary
#\nat_print = bits_print

\int_base_10 = (\x
	int_ge0 x
		(nat_base_10; int_abs x)
		(item 45; nat_base_10; int_abs x)
		)

\int_print = (\x chars_print (int_base_10 x))

# LATER maybe char constants?  e.g. '0' == 48  '-' == 45
# This would be handled in the standard resolution context.  It would not be
# part of the grammar.  The symbol "'0'" would simply be resolved to the long
# value 48.

######

\nat_2 = (d0 nat_1)
\nat_3 = (d1 nat_1)
\nat_4 = (d0 nat_2)
\nat_5 = (d1 nat_2)
\nat_6 = (d0 nat_3)
\nat_7 = (d1 nat_3)
\nat_8 = (d0 nat_4)
\nat_9 = (d1 nat_4)
\nat_10 = (d0 nat_5)
\nat_11 = (d1 nat_5)
\nat_12 = (d0 nat_6)
\nat_13 = (d1 nat_6)
\nat_14 = (d0 nat_7)
\nat_15 = (d1 nat_7)
\nat_16 = (d0 nat_8)
\nat_17 = (d1 nat_8)
\nat_18 = (d0 nat_9)
\nat_19 = (d1 nat_9)
\nat_32 = (d0 nat_16)
\nat_20 = (d0 nat_10)
\nat_24 = (d0 nat_12)
\nat_31 = (d1 nat_15)
\nat_48 = (d0 nat_24)
\nat_49 = (d1 nat_24)

####

\test_fibonacci ==
(

# This lets you use either built-in arithmetic or arbitrary-precision
# arithmetic.

\test_case ==
(
\if_show_all
\number_type
\num_rounds

if_show_all
(
print "Print the first ";print num_rounds; print " Fibonacci numbers ";
print "using number type ";print number_type;nl;
)
(
print "Print the Fibonacci number at position ";print num_rounds;
print " using number type ";print number_type;nl;
)

\choose =
(
\return
\case = (string_eq number_type)
case "double" (return print double_add 1.0);
case "nat" (return nat_print nat_add nat_1);
halt
)

choose \num_print \num_add \num_1

\nums_print = (list_do \x num_print x; nl)

# Produces the infinite list of all Fibonacci numbers.
\fibonacci =
	(
	\1
	\add

	\fibonacci == (\x\y
		item x;
		\z = (add x y)
		fibonacci y z
		)

	fibonacci 1 1
	)

\fibonacci = (fibonacci num_1 num_add)

if_show_all
(nums_print; list_prefix fibonacci num_rounds)
(num_print; list_at fibonacci (long_sub num_rounds 1) num_1)
nl;
)

#test_case T "nat" 200;
#test_case T "nat" 2000;
#test_case T "nat" 1;
#test_case T "nat" 2;
#test_case T "nat" 3;
#test_case F "nat" 4;
#test_case F "double" 4;
#test_case F "nat" 1000;
#test_case F "nat" 100;
#test_case T "nat" 100;
#test_case F "double" 1000;
#test_case F "nat" 10000;
#test_case T "nat" 100;
#test_case T "nat" 10;
#test_case F "nat" 500;

#test_case T "double" 200;
#test_case T "nat" 200;
#test_case F "nat" 200;
#test_case F "nat" 2000;

test_case T "nat" 300;
test_case F "nat" 1600;   # 10.208s
)

####
\test_binary_counter ==
(

\loop ==
(
\count
\num
long_le count 0 I;
print (nat_long num); print " ";
bits_print num;
nl;
\count = (long_sub count 1)
\num = (nat_inc num)
loop count num
)

loop 50 nat_0
)

\test_divide==
(
# LATER automatically check the constraints
\test_div = (\x\y
	nat_div x y \q\r
	print "test_div";nl;
	\show=(\key\val print key;print " = "; nat_print val; nl;)
	show "x" x;
	show "y" y;
	show "q" q;
	show "r" r;
	nl;
	)

test_div nat_0 nat_0;
test_div nat_0 nat_1;
test_div nat_1 nat_0;
test_div nat_1 nat_1;
test_div nat_2 nat_1;

test_div nat_0 nat_2;
test_div nat_1 nat_2;
test_div nat_2 nat_2;
test_div nat_3 nat_2;
test_div nat_4 nat_2;

test_div nat_0 nat_3;
test_div nat_1 nat_3;
test_div nat_2 nat_3;
test_div nat_3 nat_3;
test_div nat_4 nat_3;
test_div nat_5 nat_3;
test_div nat_6 nat_3;
test_div nat_7 nat_3;
test_div nat_8 nat_3;
test_div nat_9 nat_3;
test_div nat_10 nat_3;
test_div nat_11 nat_3;
test_div nat_12 nat_3;

test_div nat_0 nat_4;
test_div nat_1 nat_4;
test_div nat_2 nat_4;
test_div nat_3 nat_4;
test_div nat_4 nat_4;
test_div nat_5 nat_4;
test_div nat_6 nat_4;
test_div nat_7 nat_4;
test_div nat_8 nat_4;
test_div nat_9 nat_4;
test_div nat_10 nat_4;
test_div nat_11 nat_4;
test_div nat_12 nat_4;
test_div nat_12 nat_4;

test_div nat_0 nat_5;
test_div nat_1 nat_5;
test_div nat_2 nat_5;
test_div nat_3 nat_5;
test_div nat_4 nat_5;
test_div nat_5 nat_5;
test_div nat_6 nat_5;
test_div nat_7 nat_5;
test_div nat_8 nat_5;
test_div nat_9 nat_5;
test_div nat_10 nat_5;
test_div nat_11 nat_5;
test_div nat_12 nat_5;
test_div nat_13 nat_5;
test_div nat_14 nat_5;
test_div nat_15 nat_5;
test_div nat_16 nat_5;
test_div nat_17 nat_5;
test_div nat_18 nat_5;
test_div nat_19 nat_5;

\big_test =
(
\next
\x = (nat_mul nat_31 nat_19)
\churn = (\x nat_add nat_17; nat_mul x x)
\x = (churn x)
\x = (churn x)
\x = (churn x)
\x = (churn x)
\x = (churn x)
\x = (churn x)
\y =nat_10
\y=(nat_mul y y)

test_div x y;
test_div (churn x) (churn; churn; churn; churn; churn; churn y);
next
)

big_test
#big_test;
#big_test;
#big_test;
#big_test;
)

\test_sub ==
(
\test_sub = (\x\y
	\z = (nat_sub x y)
	print "== test_sub: ";
	nat_print x;
	print " - ";
	nat_print y;
	print " = ";
	int_print z;nl;
	)

test_sub nat_0 nat_0
test_sub nat_1 nat_0
test_sub nat_2 nat_0
test_sub nat_3 nat_0
test_sub nat_4 nat_0

test_sub nat_1 nat_1
test_sub nat_0 nat_1

test_sub nat_0 nat_2
test_sub nat_1 nat_2
test_sub nat_2 nat_2
test_sub nat_3 nat_2
test_sub nat_4 nat_2

test_sub nat_0 nat_3
test_sub nat_1 nat_3
test_sub nat_2 nat_3
test_sub nat_3 nat_3
test_sub nat_4 nat_3
test_sub nat_5 nat_3
test_sub nat_6 nat_3

test_sub nat_0 nat_4
test_sub nat_1 nat_4
test_sub nat_2 nat_4
test_sub nat_3 nat_4
test_sub nat_4 nat_4
test_sub nat_5 nat_4
test_sub nat_6 nat_4
test_sub nat_7 nat_4

test_sub nat_0 nat_5
test_sub nat_1 nat_5
test_sub nat_2 nat_5
test_sub nat_3 nat_5
test_sub nat_4 nat_5
test_sub nat_5 nat_5
test_sub nat_6 nat_5
test_sub nat_7 nat_5
test_sub nat_8 nat_5
test_sub nat_9 nat_5

test_sub nat_3 nat_19
test_sub nat_19 nat_19
test_sub nat_49 nat_19
test_sub nat_48 nat_19
)

\return return test_fibonacci test_binary_counter test_divide
	test_sub
)

module_test_arithmetic
\test_fibonacci \test_binary_counter \test_divide \test_sub

########

# Choose your test(s) to run down here.  Comment the ones don't want to run.

\test_string_type==
(
\test_case=(\x\expect
	\result = (string_type x "yes" "no")
	print "string_type "; print result;
	print " [";
	print (string_eq result expect "GOOD" "BAD");
	print "]";
	nl;
	)

test_case 4 "no"
test_case 2.3 "no"
test_case (\x\y y x) "no"
test_case C "no"
test_case (string_append "hello " "world") "yes"
test_case ((\x\y y x) "hi" I) "yes"
test_case "hey!" "yes"
)

\test_double_type==
(
\test_case=(\x\expect
	\result = (double_type x "yes" "no")
	print "double_type "; print result;
	print " [";
	print (string_eq result expect "GOOD" "BAD");
	print "]";
	nl;
	)

test_case 4 "no"
test_case 2.3 "yes"
test_case (\x\y y x) "no"
test_case C "no"
test_case (string_append "hello " "world") "no"
test_case ((\x\y y x) (double_add 4.2 2.6) I) "yes"
test_case "hey!" "no"
)

\test_long_type==
(
\test_case=(\x\expect
	\result = (long_type x "yes" "no")
	print "long_type "; print result;
	print " [";
	print (string_eq result expect "GOOD" "BAD");
	print "]";
	nl;
	)

test_case 4 "yes"
test_case 2.3 "no"
test_case (\x\y y x) "no"
test_case C "no"
test_case (string_append "hello " "world") "no"
test_case ((\x\y y x) (long_add 4 2) I) "yes"
test_case "hey!" "no"
)

\test_string_long ==
(
\test_case=(\x\expect
	\quote = ~@ "@
	\result = (string_long x "no" \n string_append "yes " (long_string n))
	print "string_long ";
	string_put quote; string_put x; string_put quote
	print " : "; print result;
	print " [";
	print (string_eq result expect "GOOD" "BAD");
	print "]";
	nl;
	)

test_case "0" "yes 0"
test_case "1" "yes 1"
test_case "-1" "yes -1"
test_case "123" "yes 123"
test_case "-123" "yes -123"
test_case "x123" "no"
test_case "1x23" "no"
test_case "" "no"
test_case "   456   " "no"
test_case "456   " "no"
test_case "1.6" "no"
test_case "0." "no"
)

\test_string_double ==
(
\test_case=(\x\expect
	\quote = ~@ "@
	\result = (string_double x "no" \n string_append "yes " (double_string n))
	print "string_double ";
	string_put quote; string_put x; string_put quote
	print " : "; print result;
	print " [";
	print (string_eq result expect "GOOD" "BAD");
	print "]";
	nl;
	)

test_case "0" "yes 0"
test_case "1" "yes 1"
test_case "-1" "yes -1"
test_case "123" "yes 123"
test_case "-123" "yes -123"
test_case "x123" "no"
test_case "1x23" "no"
test_case "" "no"
test_case "   456   " "no"
test_case "   456.78   " "no"
test_case "456.78" "yes 456.78"
test_case "456   " "no"
test_case "1.6" "yes 1.6"
test_case "0." "yes 0"
test_case "-0" "yes -0"
test_case "-0.0" "yes -0"
test_case "-0.0123" "yes -0.0123"
)

\test_long_double ==
(
\test_case = (
\x
\y = (long_double x)

\x_str = (long_string x)
\y_str = (double_string y)

print "long x = "; string_put x_str;
print " double y = "; string_put y_str;nl;
)

test_case 4
test_case 0
test_case -1
test_case -37
test_case 126478
)

\test_double_long ==
(
\test_case = (
\x
\y = (double_long x)

\x_str = (double_string x)
\y_str = (long_string y)

print "double x = "; string_put x_str;
print " long y = "; string_put y_str;nl;
)

test_case 4.0
test_case 0.0
test_case -1.0
test_case -37.0
test_case 126478.0
test_case 4.3
test_case 0.3
test_case -1.3
test_case -37.3
test_case 126478.3
test_case 4.9
test_case 0.9
test_case -1.9
test_case -37.9
test_case 126478.9
test_case -126478.9
)

####

test_string_type
test_double_type
test_long_type

test_long_double
test_double_long

test_string_long
test_string_double

test_hello_world
test_string_slice
test_write_binary
test_string_len
test_string_at
test_string_compare
test_string_common
test_long_add
test_double_compare
test_procedural
test_eager

test_binary_counter;
test_divide;
test_sub;
test_fibonacci
test_cat

\\Extra stuff down here becomes input
to the test_cat function.