1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
|
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"math"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
dto "github.com/prometheus/client_model/go"
"google.golang.org/protobuf/proto"
"google.golang.org/protobuf/types/known/timestamppb"
)
// nativeHistogramBounds for the frac of observed values. Only relevant for
// schema > 0. The position in the slice is the schema. (0 is never used, just
// here for convenience of using the schema directly as the index.)
//
// TODO(beorn7): Currently, we do a binary search into these slices. There are
// ways to turn it into a small number of simple array lookups. It probably only
// matters for schema 5 and beyond, but should be investigated. See this comment
// as a starting point:
// https://github.com/open-telemetry/opentelemetry-specification/issues/1776#issuecomment-870164310
var nativeHistogramBounds = [][]float64{
// Schema "0":
{0.5},
// Schema 1:
{0.5, 0.7071067811865475},
// Schema 2:
{0.5, 0.5946035575013605, 0.7071067811865475, 0.8408964152537144},
// Schema 3:
{
0.5, 0.5452538663326288, 0.5946035575013605, 0.6484197773255048,
0.7071067811865475, 0.7711054127039704, 0.8408964152537144, 0.9170040432046711,
},
// Schema 4:
{
0.5, 0.5221368912137069, 0.5452538663326288, 0.5693943173783458,
0.5946035575013605, 0.620928906036742, 0.6484197773255048, 0.6771277734684463,
0.7071067811865475, 0.7384130729697496, 0.7711054127039704, 0.805245165974627,
0.8408964152537144, 0.8781260801866495, 0.9170040432046711, 0.9576032806985735,
},
// Schema 5:
{
0.5, 0.5109485743270583, 0.5221368912137069, 0.5335702003384117,
0.5452538663326288, 0.5571933712979462, 0.5693943173783458, 0.5818624293887887,
0.5946035575013605, 0.6076236799902344, 0.620928906036742, 0.6345254785958666,
0.6484197773255048, 0.6626183215798706, 0.6771277734684463, 0.6919549409819159,
0.7071067811865475, 0.7225904034885232, 0.7384130729697496, 0.7545822137967112,
0.7711054127039704, 0.7879904225539431, 0.805245165974627, 0.8228777390769823,
0.8408964152537144, 0.8593096490612387, 0.8781260801866495, 0.8973545375015533,
0.9170040432046711, 0.9370838170551498, 0.9576032806985735, 0.9785720620876999,
},
// Schema 6:
{
0.5, 0.5054446430258502, 0.5109485743270583, 0.5165124395106142,
0.5221368912137069, 0.5278225891802786, 0.5335702003384117, 0.5393803988785598,
0.5452538663326288, 0.5511912916539204, 0.5571933712979462, 0.5632608093041209,
0.5693943173783458, 0.5755946149764913, 0.5818624293887887, 0.5881984958251406,
0.5946035575013605, 0.6010783657263515, 0.6076236799902344, 0.6142402680534349,
0.620928906036742, 0.6276903785123455, 0.6345254785958666, 0.6414350080393891,
0.6484197773255048, 0.6554806057623822, 0.6626183215798706, 0.6698337620266515,
0.6771277734684463, 0.6845012114872953, 0.6919549409819159, 0.6994898362691555,
0.7071067811865475, 0.7148066691959849, 0.7225904034885232, 0.7304588970903234,
0.7384130729697496, 0.7464538641456323, 0.7545822137967112, 0.762799075372269,
0.7711054127039704, 0.7795022001189185, 0.7879904225539431, 0.7965710756711334,
0.805245165974627, 0.8140137109286738, 0.8228777390769823, 0.8318382901633681,
0.8408964152537144, 0.8500531768592616, 0.8593096490612387, 0.8686669176368529,
0.8781260801866495, 0.8876882462632604, 0.8973545375015533, 0.9071260877501991,
0.9170040432046711, 0.9269895625416926, 0.9370838170551498, 0.9472879907934827,
0.9576032806985735, 0.9680308967461471, 0.9785720620876999, 0.9892280131939752,
},
// Schema 7:
{
0.5, 0.5027149505564014, 0.5054446430258502, 0.5081891574554764,
0.5109485743270583, 0.5137229745593818, 0.5165124395106142, 0.5193170509806894,
0.5221368912137069, 0.5249720429003435, 0.5278225891802786, 0.5306886136446309,
0.5335702003384117, 0.5364674337629877, 0.5393803988785598, 0.5423091811066545,
0.5452538663326288, 0.5482145409081883, 0.5511912916539204, 0.5541842058618393,
0.5571933712979462, 0.5602188762048033, 0.5632608093041209, 0.5663192597993595,
0.5693943173783458, 0.572486072215902, 0.5755946149764913, 0.5787200368168754,
0.5818624293887887, 0.585021884841625, 0.5881984958251406, 0.5913923554921704,
0.5946035575013605, 0.5978321960199137, 0.6010783657263515, 0.6043421618132907,
0.6076236799902344, 0.6109230164863786, 0.6142402680534349, 0.6175755319684665,
0.620928906036742, 0.6243004885946023, 0.6276903785123455, 0.6310986751971253,
0.6345254785958666, 0.637970889198196, 0.6414350080393891, 0.6449179367033329,
0.6484197773255048, 0.6519406325959679, 0.6554806057623822, 0.659039800633032,
0.6626183215798706, 0.6662162735415805, 0.6698337620266515, 0.6734708931164728,
0.6771277734684463, 0.6808045103191123, 0.6845012114872953, 0.688217985377265,
0.6919549409819159, 0.6957121878859629, 0.6994898362691555, 0.7032879969095076,
0.7071067811865475, 0.7109463010845827, 0.7148066691959849, 0.718687998724491,
0.7225904034885232, 0.7265139979245261, 0.7304588970903234, 0.7344252166684908,
0.7384130729697496, 0.7424225829363761, 0.7464538641456323, 0.7505070348132126,
0.7545822137967112, 0.7586795205991071, 0.762799075372269, 0.7669409989204777,
0.7711054127039704, 0.7752924388424999, 0.7795022001189185, 0.7837348199827764,
0.7879904225539431, 0.7922691326262467, 0.7965710756711334, 0.8008963778413465,
0.805245165974627, 0.8096175675974316, 0.8140137109286738, 0.8184337248834821,
0.8228777390769823, 0.8273458838280969, 0.8318382901633681, 0.8363550898207981,
0.8408964152537144, 0.8454623996346523, 0.8500531768592616, 0.8546688815502312,
0.8593096490612387, 0.8639756154809185, 0.8686669176368529, 0.8733836930995842,
0.8781260801866495, 0.8828942179666361, 0.8876882462632604, 0.8925083056594671,
0.8973545375015533, 0.9022270839033115, 0.9071260877501991, 0.9120516927035263,
0.9170040432046711, 0.9219832844793128, 0.9269895625416926, 0.9320230241988943,
0.9370838170551498, 0.9421720895161669, 0.9472879907934827, 0.9524316709088368,
0.9576032806985735, 0.9628029718180622, 0.9680308967461471, 0.9732872087896164,
0.9785720620876999, 0.9838856116165875, 0.9892280131939752, 0.9945994234836328,
},
// Schema 8:
{
0.5, 0.5013556375251013, 0.5027149505564014, 0.5040779490592088,
0.5054446430258502, 0.5068150424757447, 0.5081891574554764, 0.509566998038869,
0.5109485743270583, 0.5123338964485679, 0.5137229745593818, 0.5151158188430205,
0.5165124395106142, 0.5179128468009786, 0.5193170509806894, 0.520725062344158,
0.5221368912137069, 0.5235525479396449, 0.5249720429003435, 0.526395386502313,
0.5278225891802786, 0.5292536613972564, 0.5306886136446309, 0.5321274564422321,
0.5335702003384117, 0.5350168559101208, 0.5364674337629877, 0.5379219445313954,
0.5393803988785598, 0.5408428074966075, 0.5423091811066545, 0.5437795304588847,
0.5452538663326288, 0.5467321995364429, 0.5482145409081883, 0.549700901315111,
0.5511912916539204, 0.5526857228508706, 0.5541842058618393, 0.5556867516724088,
0.5571933712979462, 0.5587040757836845, 0.5602188762048033, 0.5617377836665098,
0.5632608093041209, 0.564787964283144, 0.5663192597993595, 0.5678547070789026,
0.5693943173783458, 0.5709381019847808, 0.572486072215902, 0.5740382394200894,
0.5755946149764913, 0.5771552102951081, 0.5787200368168754, 0.5802891060137493,
0.5818624293887887, 0.5834400184762408, 0.585021884841625, 0.5866080400818185,
0.5881984958251406, 0.5897932637314379, 0.5913923554921704, 0.5929957828304968,
0.5946035575013605, 0.5962156912915756, 0.5978321960199137, 0.5994530835371903,
0.6010783657263515, 0.6027080545025619, 0.6043421618132907, 0.6059806996384005,
0.6076236799902344, 0.6092711149137041, 0.6109230164863786, 0.6125793968185725,
0.6142402680534349, 0.6159056423670379, 0.6175755319684665, 0.6192499490999082,
0.620928906036742, 0.622612415087629, 0.6243004885946023, 0.6259931389331581,
0.6276903785123455, 0.6293922197748583, 0.6310986751971253, 0.6328097572894031,
0.6345254785958666, 0.6362458516947014, 0.637970889198196, 0.6397006037528346,
0.6414350080393891, 0.6431741147730128, 0.6449179367033329, 0.6466664866145447,
0.6484197773255048, 0.6501778216898253, 0.6519406325959679, 0.6537082229673385,
0.6554806057623822, 0.6572577939746774, 0.659039800633032, 0.6608266388015788,
0.6626183215798706, 0.6644148621029772, 0.6662162735415805, 0.6680225691020727,
0.6698337620266515, 0.6716498655934177, 0.6734708931164728, 0.6752968579460171,
0.6771277734684463, 0.6789636531064505, 0.6808045103191123, 0.6826503586020058,
0.6845012114872953, 0.6863570825438342, 0.688217985377265, 0.690083933630119,
0.6919549409819159, 0.6938310211492645, 0.6957121878859629, 0.6975984549830999,
0.6994898362691555, 0.7013863456101023, 0.7032879969095076, 0.7051948041086352,
0.7071067811865475, 0.7090239421602076, 0.7109463010845827, 0.7128738720527471,
0.7148066691959849, 0.7167447066838943, 0.718687998724491, 0.7206365595643126,
0.7225904034885232, 0.7245495448210174, 0.7265139979245261, 0.7284837772007218,
0.7304588970903234, 0.7324393720732029, 0.7344252166684908, 0.7364164454346837,
0.7384130729697496, 0.7404151139112358, 0.7424225829363761, 0.7444354947621984,
0.7464538641456323, 0.7484777058836176, 0.7505070348132126, 0.7525418658117031,
0.7545822137967112, 0.7566280937263048, 0.7586795205991071, 0.7607365094544071,
0.762799075372269, 0.7648672334736434, 0.7669409989204777, 0.7690203869158282,
0.7711054127039704, 0.7731960915705107, 0.7752924388424999, 0.7773944698885442,
0.7795022001189185, 0.7816156449856788, 0.7837348199827764, 0.7858597406461707,
0.7879904225539431, 0.7901268813264122, 0.7922691326262467, 0.7944171921585818,
0.7965710756711334, 0.7987307989543135, 0.8008963778413465, 0.8030678282083853,
0.805245165974627, 0.8074284071024302, 0.8096175675974316, 0.8118126635086642,
0.8140137109286738, 0.8162207259936375, 0.8184337248834821, 0.820652723822003,
0.8228777390769823, 0.8251087869603088, 0.8273458838280969, 0.8295890460808079,
0.8318382901633681, 0.8340936325652911, 0.8363550898207981, 0.8386226785089391,
0.8408964152537144, 0.8431763167241966, 0.8454623996346523, 0.8477546807446661,
0.8500531768592616, 0.8523579048290255, 0.8546688815502312, 0.8569861239649629,
0.8593096490612387, 0.8616394738731368, 0.8639756154809185, 0.8663180910111553,
0.8686669176368529, 0.871022112577578, 0.8733836930995842, 0.8757516765159389,
0.8781260801866495, 0.8805069215187917, 0.8828942179666361, 0.8852879870317771,
0.8876882462632604, 0.890095013257712, 0.8925083056594671, 0.8949281411607002,
0.8973545375015533, 0.8997875124702672, 0.9022270839033115, 0.9046732696855155,
0.9071260877501991, 0.909585556079304, 0.9120516927035263, 0.9145245157024483,
0.9170040432046711, 0.9194902933879467, 0.9219832844793128, 0.9244830347552253,
0.9269895625416926, 0.92950288621441, 0.9320230241988943, 0.9345499949706191,
0.9370838170551498, 0.93962450902828, 0.9421720895161669, 0.9447265771954693,
0.9472879907934827, 0.9498563490882775, 0.9524316709088368, 0.9550139751351947,
0.9576032806985735, 0.9601996065815236, 0.9628029718180622, 0.9654133954938133,
0.9680308967461471, 0.9706554947643201, 0.9732872087896164, 0.9759260581154889,
0.9785720620876999, 0.9812252401044634, 0.9838856116165875, 0.9865531961276168,
0.9892280131939752, 0.9919100824251095, 0.9945994234836328, 0.9972960560854698,
},
}
// The nativeHistogramBounds above can be generated with the code below.
//
// TODO(beorn7): It's tempting to actually use `go generate` to generate the
// code above. However, this could lead to slightly different numbers on
// different architectures. We still need to come to terms if we are fine with
// that, or if we might prefer to specify precise numbers in the standard.
//
// var nativeHistogramBounds [][]float64 = make([][]float64, 9)
//
// func init() {
// // Populate nativeHistogramBounds.
// numBuckets := 1
// for i := range nativeHistogramBounds {
// bounds := []float64{0.5}
// factor := math.Exp2(math.Exp2(float64(-i)))
// for j := 0; j < numBuckets-1; j++ {
// var bound float64
// if (j+1)%2 == 0 {
// // Use previously calculated value for increased precision.
// bound = nativeHistogramBounds[i-1][j/2+1]
// } else {
// bound = bounds[j] * factor
// }
// bounds = append(bounds, bound)
// }
// numBuckets *= 2
// nativeHistogramBounds[i] = bounds
// }
// }
// A Histogram counts individual observations from an event or sample stream in
// configurable static buckets (or in dynamic sparse buckets as part of the
// experimental Native Histograms, see below for more details). Similar to a
// Summary, it also provides a sum of observations and an observation count.
//
// On the Prometheus server, quantiles can be calculated from a Histogram using
// the histogram_quantile PromQL function.
//
// Note that Histograms, in contrast to Summaries, can be aggregated in PromQL
// (see the documentation for detailed procedures). However, Histograms require
// the user to pre-define suitable buckets, and they are in general less
// accurate. (Both problems are addressed by the experimental Native
// Histograms. To use them, configure a NativeHistogramBucketFactor in the
// HistogramOpts. They also require a Prometheus server v2.40+ with the
// corresponding feature flag enabled.)
//
// The Observe method of a Histogram has a very low performance overhead in
// comparison with the Observe method of a Summary.
//
// To create Histogram instances, use NewHistogram.
type Histogram interface {
Metric
Collector
// Observe adds a single observation to the histogram. Observations are
// usually positive or zero. Negative observations are accepted but
// prevent current versions of Prometheus from properly detecting
// counter resets in the sum of observations. (The experimental Native
// Histograms handle negative observations properly.) See
// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
// for details.
Observe(float64)
}
// bucketLabel is used for the label that defines the upper bound of a
// bucket of a histogram ("le" -> "less or equal").
const bucketLabel = "le"
// DefBuckets are the default Histogram buckets. The default buckets are
// tailored to broadly measure the response time (in seconds) of a network
// service. Most likely, however, you will be required to define buckets
// customized to your use case.
var DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
// DefNativeHistogramZeroThreshold is the default value for
// NativeHistogramZeroThreshold in the HistogramOpts.
//
// The value is 2^-128 (or 0.5*2^-127 in the actual IEEE 754 representation),
// which is a bucket boundary at all possible resolutions.
const DefNativeHistogramZeroThreshold = 2.938735877055719e-39
// NativeHistogramZeroThresholdZero can be used as NativeHistogramZeroThreshold
// in the HistogramOpts to create a zero bucket of width zero, i.e. a zero
// bucket that only receives observations of precisely zero.
const NativeHistogramZeroThresholdZero = -1
var errBucketLabelNotAllowed = fmt.Errorf(
"%q is not allowed as label name in histograms", bucketLabel,
)
// LinearBuckets creates 'count' regular buckets, each 'width' wide, where the
// lowest bucket has an upper bound of 'start'. The final +Inf bucket is not
// counted and not included in the returned slice. The returned slice is meant
// to be used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is zero or negative.
func LinearBuckets(start, width float64, count int) []float64 {
if count < 1 {
panic("LinearBuckets needs a positive count")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start += width
}
return buckets
}
// ExponentialBuckets creates 'count' regular buckets, where the lowest bucket
// has an upper bound of 'start' and each following bucket's upper bound is
// 'factor' times the previous bucket's upper bound. The final +Inf bucket is
// not counted and not included in the returned slice. The returned slice is
// meant to be used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
// or if 'factor' is less than or equal 1.
func ExponentialBuckets(start, factor float64, count int) []float64 {
if count < 1 {
panic("ExponentialBuckets needs a positive count")
}
if start <= 0 {
panic("ExponentialBuckets needs a positive start value")
}
if factor <= 1 {
panic("ExponentialBuckets needs a factor greater than 1")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start *= factor
}
return buckets
}
// ExponentialBucketsRange creates 'count' buckets, where the lowest bucket is
// 'min' and the highest bucket is 'max'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'min' is 0 or negative.
func ExponentialBucketsRange(min, max float64, count int) []float64 {
if count < 1 {
panic("ExponentialBucketsRange count needs a positive count")
}
if min <= 0 {
panic("ExponentialBucketsRange min needs to be greater than 0")
}
// Formula for exponential buckets.
// max = min*growthFactor^(bucketCount-1)
// We know max/min and highest bucket. Solve for growthFactor.
growthFactor := math.Pow(max/min, 1.0/float64(count-1))
// Now that we know growthFactor, solve for each bucket.
buckets := make([]float64, count)
for i := 1; i <= count; i++ {
buckets[i-1] = min * math.Pow(growthFactor, float64(i-1))
}
return buckets
}
// HistogramOpts bundles the options for creating a Histogram metric. It is
// mandatory to set Name to a non-empty string. All other fields are optional
// and can safely be left at their zero value, although it is strongly
// encouraged to set a Help string.
type HistogramOpts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Histogram (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the Histogram must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this Histogram.
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this metric. Metrics
// with the same fully-qualified name must have the same label names in
// their ConstLabels.
//
// ConstLabels are only used rarely. In particular, do not use them to
// attach the same labels to all your metrics. Those use cases are
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
ConstLabels Labels
// Buckets defines the buckets into which observations are counted. Each
// element in the slice is the upper inclusive bound of a bucket. The
// values must be sorted in strictly increasing order. There is no need
// to add a highest bucket with +Inf bound, it will be added
// implicitly. If Buckets is left as nil or set to a slice of length
// zero, it is replaced by default buckets. The default buckets are
// DefBuckets if no buckets for a native histogram (see below) are used,
// otherwise the default is no buckets. (In other words, if you want to
// use both regular buckets and buckets for a native histogram, you have
// to define the regular buckets here explicitly.)
Buckets []float64
// If NativeHistogramBucketFactor is greater than one, so-called sparse
// buckets are used (in addition to the regular buckets, if defined
// above). A Histogram with sparse buckets will be ingested as a Native
// Histogram by a Prometheus server with that feature enabled (requires
// Prometheus v2.40+). Sparse buckets are exponential buckets covering
// the whole float64 range (with the exception of the “zero” bucket, see
// NativeHistogramZeroThreshold below). From any one bucket to the next,
// the width of the bucket grows by a constant
// factor. NativeHistogramBucketFactor provides an upper bound for this
// factor (exception see below). The smaller
// NativeHistogramBucketFactor, the more buckets will be used and thus
// the more costly the histogram will become. A generally good trade-off
// between cost and accuracy is a value of 1.1 (each bucket is at most
// 10% wider than the previous one), which will result in each power of
// two divided into 8 buckets (e.g. there will be 8 buckets between 1
// and 2, same as between 2 and 4, and 4 and 8, etc.).
//
// Details about the actually used factor: The factor is calculated as
// 2^(2^-n), where n is an integer number between (and including) -4 and
// 8. n is chosen so that the resulting factor is the largest that is
// still smaller or equal to NativeHistogramBucketFactor. Note that the
// smallest possible factor is therefore approx. 1.00271 (i.e. 2^(2^-8)
// ). If NativeHistogramBucketFactor is greater than 1 but smaller than
// 2^(2^-8), then the actually used factor is still 2^(2^-8) even though
// it is larger than the provided NativeHistogramBucketFactor.
//
// NOTE: Native Histograms are still an experimental feature. Their
// behavior might still change without a major version
// bump. Subsequently, all NativeHistogram... options here might still
// change their behavior or name (or might completely disappear) without
// a major version bump.
NativeHistogramBucketFactor float64
// All observations with an absolute value of less or equal
// NativeHistogramZeroThreshold are accumulated into a “zero” bucket.
// For best results, this should be close to a bucket boundary. This is
// usually the case if picking a power of two. If
// NativeHistogramZeroThreshold is left at zero,
// DefNativeHistogramZeroThreshold is used as the threshold. To
// configure a zero bucket with an actual threshold of zero (i.e. only
// observations of precisely zero will go into the zero bucket), set
// NativeHistogramZeroThreshold to the NativeHistogramZeroThresholdZero
// constant (or any negative float value).
NativeHistogramZeroThreshold float64
// The remaining fields define a strategy to limit the number of
// populated sparse buckets. If NativeHistogramMaxBucketNumber is left
// at zero, the number of buckets is not limited. (Note that this might
// lead to unbounded memory consumption if the values observed by the
// Histogram are sufficiently wide-spread. In particular, this could be
// used as a DoS attack vector. Where the observed values depend on
// external inputs, it is highly recommended to set a
// NativeHistogramMaxBucketNumber.) Once the set
// NativeHistogramMaxBucketNumber is exceeded, the following strategy is
// enacted:
// - First, if the last reset (or the creation) of the histogram is at
// least NativeHistogramMinResetDuration ago, then the whole
// histogram is reset to its initial state (including regular
// buckets).
// - If less time has passed, or if NativeHistogramMinResetDuration is
// zero, no reset is performed. Instead, the zero threshold is
// increased sufficiently to reduce the number of buckets to or below
// NativeHistogramMaxBucketNumber, but not to more than
// NativeHistogramMaxZeroThreshold. Thus, if
// NativeHistogramMaxZeroThreshold is already at or below the current
// zero threshold, nothing happens at this step.
// - After that, if the number of buckets still exceeds
// NativeHistogramMaxBucketNumber, the resolution of the histogram is
// reduced by doubling the width of the sparse buckets (up to a
// growth factor between one bucket to the next of 2^(2^4) = 65536,
// see above).
// - Any increased zero threshold or reduced resolution is reset back
// to their original values once NativeHistogramMinResetDuration has
// passed (since the last reset or the creation of the histogram).
NativeHistogramMaxBucketNumber uint32
NativeHistogramMinResetDuration time.Duration
NativeHistogramMaxZeroThreshold float64
// now is for testing purposes, by default it's time.Now.
now func() time.Time
// afterFunc is for testing purposes, by default it's time.AfterFunc.
afterFunc func(time.Duration, func()) *time.Timer
}
// HistogramVecOpts bundles the options to create a HistogramVec metric.
// It is mandatory to set HistogramOpts, see there for mandatory fields. VariableLabels
// is optional and can safely be left to its default value.
type HistogramVecOpts struct {
HistogramOpts
// VariableLabels are used to partition the metric vector by the given set
// of labels. Each label value will be constrained with the optional Constraint
// function, if provided.
VariableLabels ConstrainableLabels
}
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
//
// The returned implementation also implements ExemplarObserver. It is safe to
// perform the corresponding type assertion. Exemplars are tracked separately
// for each bucket.
func NewHistogram(opts HistogramOpts) Histogram {
return newHistogram(
NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
),
opts,
)
}
func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
if len(desc.variableLabels.names) != len(labelValues) {
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels.names, labelValues))
}
for _, n := range desc.variableLabels.names {
if n == bucketLabel {
panic(errBucketLabelNotAllowed)
}
}
for _, lp := range desc.constLabelPairs {
if lp.GetName() == bucketLabel {
panic(errBucketLabelNotAllowed)
}
}
if opts.now == nil {
opts.now = time.Now
}
if opts.afterFunc == nil {
opts.afterFunc = time.AfterFunc
}
h := &histogram{
desc: desc,
upperBounds: opts.Buckets,
labelPairs: MakeLabelPairs(desc, labelValues),
nativeHistogramMaxBuckets: opts.NativeHistogramMaxBucketNumber,
nativeHistogramMaxZeroThreshold: opts.NativeHistogramMaxZeroThreshold,
nativeHistogramMinResetDuration: opts.NativeHistogramMinResetDuration,
lastResetTime: opts.now(),
now: opts.now,
afterFunc: opts.afterFunc,
}
if len(h.upperBounds) == 0 && opts.NativeHistogramBucketFactor <= 1 {
h.upperBounds = DefBuckets
}
if opts.NativeHistogramBucketFactor <= 1 {
h.nativeHistogramSchema = math.MinInt32 // To mark that there are no sparse buckets.
} else {
switch {
case opts.NativeHistogramZeroThreshold > 0:
h.nativeHistogramZeroThreshold = opts.NativeHistogramZeroThreshold
case opts.NativeHistogramZeroThreshold == 0:
h.nativeHistogramZeroThreshold = DefNativeHistogramZeroThreshold
} // Leave h.nativeHistogramZeroThreshold at 0 otherwise.
h.nativeHistogramSchema = pickSchema(opts.NativeHistogramBucketFactor)
}
for i, upperBound := range h.upperBounds {
if i < len(h.upperBounds)-1 {
if upperBound >= h.upperBounds[i+1] {
panic(fmt.Errorf(
"histogram buckets must be in increasing order: %f >= %f",
upperBound, h.upperBounds[i+1],
))
}
} else {
if math.IsInf(upperBound, +1) {
// The +Inf bucket is implicit. Remove it here.
h.upperBounds = h.upperBounds[:i]
}
}
}
// Finally we know the final length of h.upperBounds and can make buckets
// for both counts as well as exemplars:
h.counts[0] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))}
atomic.StoreUint64(&h.counts[0].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
atomic.StoreInt32(&h.counts[0].nativeHistogramSchema, h.nativeHistogramSchema)
h.counts[1] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))}
atomic.StoreUint64(&h.counts[1].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
atomic.StoreInt32(&h.counts[1].nativeHistogramSchema, h.nativeHistogramSchema)
h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)
h.init(h) // Init self-collection.
return h
}
type histogramCounts struct {
// Order in this struct matters for the alignment required by atomic
// operations, see http://golang.org/pkg/sync/atomic/#pkg-note-BUG
// sumBits contains the bits of the float64 representing the sum of all
// observations.
sumBits uint64
count uint64
// nativeHistogramZeroBucket counts all (positive and negative)
// observations in the zero bucket (with an absolute value less or equal
// the current threshold, see next field.
nativeHistogramZeroBucket uint64
// nativeHistogramZeroThresholdBits is the bit pattern of the current
// threshold for the zero bucket. It's initially equal to
// nativeHistogramZeroThreshold but may change according to the bucket
// count limitation strategy.
nativeHistogramZeroThresholdBits uint64
// nativeHistogramSchema may change over time according to the bucket
// count limitation strategy and therefore has to be saved here.
nativeHistogramSchema int32
// Number of (positive and negative) sparse buckets.
nativeHistogramBucketsNumber uint32
// Regular buckets.
buckets []uint64
// The sparse buckets for native histograms are implemented with a
// sync.Map for now. A dedicated data structure will likely be more
// efficient. There are separate maps for negative and positive
// observations. The map's value is an *int64, counting observations in
// that bucket. (Note that we don't use uint64 as an int64 won't
// overflow in practice, and working with signed numbers from the
// beginning simplifies the handling of deltas.) The map's key is the
// index of the bucket according to the used
// nativeHistogramSchema. Index 0 is for an upper bound of 1.
nativeHistogramBucketsPositive, nativeHistogramBucketsNegative sync.Map
}
// observe manages the parts of observe that only affects
// histogramCounts. doSparse is true if sparse buckets should be done,
// too.
func (hc *histogramCounts) observe(v float64, bucket int, doSparse bool) {
if bucket < len(hc.buckets) {
atomic.AddUint64(&hc.buckets[bucket], 1)
}
atomicAddFloat(&hc.sumBits, v)
if doSparse && !math.IsNaN(v) {
var (
key int
schema = atomic.LoadInt32(&hc.nativeHistogramSchema)
zeroThreshold = math.Float64frombits(atomic.LoadUint64(&hc.nativeHistogramZeroThresholdBits))
bucketCreated, isInf bool
)
if math.IsInf(v, 0) {
// Pretend v is MaxFloat64 but later increment key by one.
if math.IsInf(v, +1) {
v = math.MaxFloat64
} else {
v = -math.MaxFloat64
}
isInf = true
}
frac, exp := math.Frexp(math.Abs(v))
if schema > 0 {
bounds := nativeHistogramBounds[schema]
key = sort.SearchFloat64s(bounds, frac) + (exp-1)*len(bounds)
} else {
key = exp
if frac == 0.5 {
key--
}
offset := (1 << -schema) - 1
key = (key + offset) >> -schema
}
if isInf {
key++
}
switch {
case v > zeroThreshold:
bucketCreated = addToBucket(&hc.nativeHistogramBucketsPositive, key, 1)
case v < -zeroThreshold:
bucketCreated = addToBucket(&hc.nativeHistogramBucketsNegative, key, 1)
default:
atomic.AddUint64(&hc.nativeHistogramZeroBucket, 1)
}
if bucketCreated {
atomic.AddUint32(&hc.nativeHistogramBucketsNumber, 1)
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hc.count, 1)
}
type histogram struct {
// countAndHotIdx enables lock-free writes with use of atomic updates.
// The most significant bit is the hot index [0 or 1] of the count field
// below. Observe calls update the hot one. All remaining bits count the
// number of Observe calls. Observe starts by incrementing this counter,
// and finish by incrementing the count field in the respective
// histogramCounts, as a marker for completion.
//
// Calls of the Write method (which are non-mutating reads from the
// perspective of the histogram) swap the hot–cold under the writeMtx
// lock. A cooldown is awaited (while locked) by comparing the number of
// observations with the initiation count. Once they match, then the
// last observation on the now cool one has completed. All cold fields must
// be merged into the new hot before releasing writeMtx.
//
// Fields with atomic access first! See alignment constraint:
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
countAndHotIdx uint64
selfCollector
desc *Desc
// Only used in the Write method and for sparse bucket management.
mtx sync.Mutex
// Two counts, one is "hot" for lock-free observations, the other is
// "cold" for writing out a dto.Metric. It has to be an array of
// pointers to guarantee 64bit alignment of the histogramCounts, see
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
counts [2]*histogramCounts
upperBounds []float64
labelPairs []*dto.LabelPair
exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
nativeHistogramSchema int32 // The initial schema. Set to math.MinInt32 if no sparse buckets are used.
nativeHistogramZeroThreshold float64 // The initial zero threshold.
nativeHistogramMaxZeroThreshold float64
nativeHistogramMaxBuckets uint32
nativeHistogramMinResetDuration time.Duration
// lastResetTime is protected by mtx. It is also used as created timestamp.
lastResetTime time.Time
// resetScheduled is protected by mtx. It is true if a reset is
// scheduled for a later time (when nativeHistogramMinResetDuration has
// passed).
resetScheduled bool
// now is for testing purposes, by default it's time.Now.
now func() time.Time
// afterFunc is for testing purposes, by default it's time.AfterFunc.
afterFunc func(time.Duration, func()) *time.Timer
}
func (h *histogram) Desc() *Desc {
return h.desc
}
func (h *histogram) Observe(v float64) {
h.observe(v, h.findBucket(v))
}
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
i := h.findBucket(v)
h.observe(v, i)
h.updateExemplar(v, i, e)
}
func (h *histogram) Write(out *dto.Metric) error {
// For simplicity, we protect this whole method by a mutex. It is not in
// the hot path, i.e. Observe is called much more often than Write. The
// complication of making Write lock-free isn't worth it, if possible at
// all.
h.mtx.Lock()
defer h.mtx.Unlock()
// Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0)
// without touching the count bits. See the struct comments for a full
// description of the algorithm.
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
// count is contained unchanged in the lower 63 bits.
count := n & ((1 << 63) - 1)
// The most significant bit tells us which counts is hot. The complement
// is thus the cold one.
hotCounts := h.counts[n>>63]
coldCounts := h.counts[(^n)>>63]
waitForCooldown(count, coldCounts)
his := &dto.Histogram{
Bucket: make([]*dto.Bucket, len(h.upperBounds)),
SampleCount: proto.Uint64(count),
SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))),
CreatedTimestamp: timestamppb.New(h.lastResetTime),
}
out.Histogram = his
out.Label = h.labelPairs
var cumCount uint64
for i, upperBound := range h.upperBounds {
cumCount += atomic.LoadUint64(&coldCounts.buckets[i])
his.Bucket[i] = &dto.Bucket{
CumulativeCount: proto.Uint64(cumCount),
UpperBound: proto.Float64(upperBound),
}
if e := h.exemplars[i].Load(); e != nil {
his.Bucket[i].Exemplar = e.(*dto.Exemplar)
}
}
// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
b := &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(math.Inf(1)),
Exemplar: e.(*dto.Exemplar),
}
his.Bucket = append(his.Bucket, b)
}
if h.nativeHistogramSchema > math.MinInt32 {
his.ZeroThreshold = proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.nativeHistogramZeroThresholdBits)))
his.Schema = proto.Int32(atomic.LoadInt32(&coldCounts.nativeHistogramSchema))
zeroBucket := atomic.LoadUint64(&coldCounts.nativeHistogramZeroBucket)
defer func() {
coldCounts.nativeHistogramBucketsPositive.Range(addAndReset(&hotCounts.nativeHistogramBucketsPositive, &hotCounts.nativeHistogramBucketsNumber))
coldCounts.nativeHistogramBucketsNegative.Range(addAndReset(&hotCounts.nativeHistogramBucketsNegative, &hotCounts.nativeHistogramBucketsNumber))
}()
his.ZeroCount = proto.Uint64(zeroBucket)
his.NegativeSpan, his.NegativeDelta = makeBuckets(&coldCounts.nativeHistogramBucketsNegative)
his.PositiveSpan, his.PositiveDelta = makeBuckets(&coldCounts.nativeHistogramBucketsPositive)
// Add a no-op span to a histogram without observations and with
// a zero threshold of zero. Otherwise, a native histogram would
// look like a classic histogram to scrapers.
if *his.ZeroThreshold == 0 && *his.ZeroCount == 0 && len(his.PositiveSpan) == 0 && len(his.NegativeSpan) == 0 {
his.PositiveSpan = []*dto.BucketSpan{{
Offset: proto.Int32(0),
Length: proto.Uint32(0),
}}
}
}
addAndResetCounts(hotCounts, coldCounts)
return nil
}
// findBucket returns the index of the bucket for the provided value, or
// len(h.upperBounds) for the +Inf bucket.
func (h *histogram) findBucket(v float64) int {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
return sort.SearchFloat64s(h.upperBounds, v)
}
// observe is the implementation for Observe without the findBucket part.
func (h *histogram) observe(v float64, bucket int) {
// Do not add to sparse buckets for NaN observations.
doSparse := h.nativeHistogramSchema > math.MinInt32 && !math.IsNaN(v)
// We increment h.countAndHotIdx so that the counter in the lower
// 63 bits gets incremented. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1)
hotCounts := h.counts[n>>63]
hotCounts.observe(v, bucket, doSparse)
if doSparse {
h.limitBuckets(hotCounts, v, bucket)
}
}
// limitBuckets applies a strategy to limit the number of populated sparse
// buckets. It's generally best effort, and there are situations where the
// number can go higher (if even the lowest resolution isn't enough to reduce
// the number sufficiently, or if the provided counts aren't fully updated yet
// by a concurrently happening Write call).
func (h *histogram) limitBuckets(counts *histogramCounts, value float64, bucket int) {
if h.nativeHistogramMaxBuckets == 0 {
return // No limit configured.
}
if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&counts.nativeHistogramBucketsNumber) {
return // Bucket limit not exceeded yet.
}
h.mtx.Lock()
defer h.mtx.Unlock()
// The hot counts might have been swapped just before we acquired the
// lock. Re-fetch the hot counts first...
n := atomic.LoadUint64(&h.countAndHotIdx)
hotIdx := n >> 63
coldIdx := (^n) >> 63
hotCounts := h.counts[hotIdx]
coldCounts := h.counts[coldIdx]
// ...and then check again if we really have to reduce the bucket count.
if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&hotCounts.nativeHistogramBucketsNumber) {
return // Bucket limit not exceeded after all.
}
// Try the various strategies in order.
if h.maybeReset(hotCounts, coldCounts, coldIdx, value, bucket) {
return
}
// One of the other strategies will happen. To undo what they will do as
// soon as enough time has passed to satisfy
// h.nativeHistogramMinResetDuration, schedule a reset at the right time
// if we haven't done so already.
if h.nativeHistogramMinResetDuration > 0 && !h.resetScheduled {
h.resetScheduled = true
h.afterFunc(h.nativeHistogramMinResetDuration-h.now().Sub(h.lastResetTime), h.reset)
}
if h.maybeWidenZeroBucket(hotCounts, coldCounts) {
return
}
h.doubleBucketWidth(hotCounts, coldCounts)
}
// maybeReset resets the whole histogram if at least
// h.nativeHistogramMinResetDuration has been passed. It returns true if the
// histogram has been reset. The caller must have locked h.mtx.
func (h *histogram) maybeReset(
hot, cold *histogramCounts, coldIdx uint64, value float64, bucket int,
) bool {
// We are using the possibly mocked h.now() rather than
// time.Since(h.lastResetTime) to enable testing.
if h.nativeHistogramMinResetDuration == 0 || // No reset configured.
h.resetScheduled || // Do not interefere if a reset is already scheduled.
h.now().Sub(h.lastResetTime) < h.nativeHistogramMinResetDuration {
return false
}
// Completely reset coldCounts.
h.resetCounts(cold)
// Repeat the latest observation to not lose it completely.
cold.observe(value, bucket, true)
// Make coldCounts the new hot counts while resetting countAndHotIdx.
n := atomic.SwapUint64(&h.countAndHotIdx, (coldIdx<<63)+1)
count := n & ((1 << 63) - 1)
waitForCooldown(count, hot)
// Finally, reset the formerly hot counts, too.
h.resetCounts(hot)
h.lastResetTime = h.now()
return true
}
// reset resets the whole histogram. It locks h.mtx itself, i.e. it has to be
// called without having locked h.mtx.
func (h *histogram) reset() {
h.mtx.Lock()
defer h.mtx.Unlock()
n := atomic.LoadUint64(&h.countAndHotIdx)
hotIdx := n >> 63
coldIdx := (^n) >> 63
hot := h.counts[hotIdx]
cold := h.counts[coldIdx]
// Completely reset coldCounts.
h.resetCounts(cold)
// Make coldCounts the new hot counts while resetting countAndHotIdx.
n = atomic.SwapUint64(&h.countAndHotIdx, coldIdx<<63)
count := n & ((1 << 63) - 1)
waitForCooldown(count, hot)
// Finally, reset the formerly hot counts, too.
h.resetCounts(hot)
h.lastResetTime = h.now()
h.resetScheduled = false
}
// maybeWidenZeroBucket widens the zero bucket until it includes the existing
// buckets closest to the zero bucket (which could be two, if an equidistant
// negative and a positive bucket exists, but usually it's only one bucket to be
// merged into the new wider zero bucket). h.nativeHistogramMaxZeroThreshold
// limits how far the zero bucket can be extended, and if that's not enough to
// include an existing bucket, the method returns false. The caller must have
// locked h.mtx.
func (h *histogram) maybeWidenZeroBucket(hot, cold *histogramCounts) bool {
currentZeroThreshold := math.Float64frombits(atomic.LoadUint64(&hot.nativeHistogramZeroThresholdBits))
if currentZeroThreshold >= h.nativeHistogramMaxZeroThreshold {
return false
}
// Find the key of the bucket closest to zero.
smallestKey := findSmallestKey(&hot.nativeHistogramBucketsPositive)
smallestNegativeKey := findSmallestKey(&hot.nativeHistogramBucketsNegative)
if smallestNegativeKey < smallestKey {
smallestKey = smallestNegativeKey
}
if smallestKey == math.MaxInt32 {
return false
}
newZeroThreshold := getLe(smallestKey, atomic.LoadInt32(&hot.nativeHistogramSchema))
if newZeroThreshold > h.nativeHistogramMaxZeroThreshold {
return false // New threshold would exceed the max threshold.
}
atomic.StoreUint64(&cold.nativeHistogramZeroThresholdBits, math.Float64bits(newZeroThreshold))
// Remove applicable buckets.
if _, loaded := cold.nativeHistogramBucketsNegative.LoadAndDelete(smallestKey); loaded {
atomicDecUint32(&cold.nativeHistogramBucketsNumber)
}
if _, loaded := cold.nativeHistogramBucketsPositive.LoadAndDelete(smallestKey); loaded {
atomicDecUint32(&cold.nativeHistogramBucketsNumber)
}
// Make cold counts the new hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
count := n & ((1 << 63) - 1)
// Swap the pointer names to represent the new roles and make
// the rest less confusing.
hot, cold = cold, hot
waitForCooldown(count, cold)
// Add all the now cold counts to the new hot counts...
addAndResetCounts(hot, cold)
// ...adjust the new zero threshold in the cold counts, too...
atomic.StoreUint64(&cold.nativeHistogramZeroThresholdBits, math.Float64bits(newZeroThreshold))
// ...and then merge the newly deleted buckets into the wider zero
// bucket.
mergeAndDeleteOrAddAndReset := func(hotBuckets, coldBuckets *sync.Map) func(k, v interface{}) bool {
return func(k, v interface{}) bool {
key := k.(int)
bucket := v.(*int64)
if key == smallestKey {
// Merge into hot zero bucket...
atomic.AddUint64(&hot.nativeHistogramZeroBucket, uint64(atomic.LoadInt64(bucket)))
// ...and delete from cold counts.
coldBuckets.Delete(key)
atomicDecUint32(&cold.nativeHistogramBucketsNumber)
} else {
// Add to corresponding hot bucket...
if addToBucket(hotBuckets, key, atomic.LoadInt64(bucket)) {
atomic.AddUint32(&hot.nativeHistogramBucketsNumber, 1)
}
// ...and reset cold bucket.
atomic.StoreInt64(bucket, 0)
}
return true
}
}
cold.nativeHistogramBucketsPositive.Range(mergeAndDeleteOrAddAndReset(&hot.nativeHistogramBucketsPositive, &cold.nativeHistogramBucketsPositive))
cold.nativeHistogramBucketsNegative.Range(mergeAndDeleteOrAddAndReset(&hot.nativeHistogramBucketsNegative, &cold.nativeHistogramBucketsNegative))
return true
}
// doubleBucketWidth doubles the bucket width (by decrementing the schema
// number). Note that very sparse buckets could lead to a low reduction of the
// bucket count (or even no reduction at all). The method does nothing if the
// schema is already -4.
func (h *histogram) doubleBucketWidth(hot, cold *histogramCounts) {
coldSchema := atomic.LoadInt32(&cold.nativeHistogramSchema)
if coldSchema == -4 {
return // Already at lowest resolution.
}
coldSchema--
atomic.StoreInt32(&cold.nativeHistogramSchema, coldSchema)
// Play it simple and just delete all cold buckets.
atomic.StoreUint32(&cold.nativeHistogramBucketsNumber, 0)
deleteSyncMap(&cold.nativeHistogramBucketsNegative)
deleteSyncMap(&cold.nativeHistogramBucketsPositive)
// Make coldCounts the new hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
count := n & ((1 << 63) - 1)
// Swap the pointer names to represent the new roles and make
// the rest less confusing.
hot, cold = cold, hot
waitForCooldown(count, cold)
// Add all the now cold counts to the new hot counts...
addAndResetCounts(hot, cold)
// ...adjust the schema in the cold counts, too...
atomic.StoreInt32(&cold.nativeHistogramSchema, coldSchema)
// ...and then merge the cold buckets into the wider hot buckets.
merge := func(hotBuckets *sync.Map) func(k, v interface{}) bool {
return func(k, v interface{}) bool {
key := k.(int)
bucket := v.(*int64)
// Adjust key to match the bucket to merge into.
if key > 0 {
key++
}
key /= 2
// Add to corresponding hot bucket.
if addToBucket(hotBuckets, key, atomic.LoadInt64(bucket)) {
atomic.AddUint32(&hot.nativeHistogramBucketsNumber, 1)
}
return true
}
}
cold.nativeHistogramBucketsPositive.Range(merge(&hot.nativeHistogramBucketsPositive))
cold.nativeHistogramBucketsNegative.Range(merge(&hot.nativeHistogramBucketsNegative))
// Play it simple again and just delete all cold buckets.
atomic.StoreUint32(&cold.nativeHistogramBucketsNumber, 0)
deleteSyncMap(&cold.nativeHistogramBucketsNegative)
deleteSyncMap(&cold.nativeHistogramBucketsPositive)
}
func (h *histogram) resetCounts(counts *histogramCounts) {
atomic.StoreUint64(&counts.sumBits, 0)
atomic.StoreUint64(&counts.count, 0)
atomic.StoreUint64(&counts.nativeHistogramZeroBucket, 0)
atomic.StoreUint64(&counts.nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
atomic.StoreInt32(&counts.nativeHistogramSchema, h.nativeHistogramSchema)
atomic.StoreUint32(&counts.nativeHistogramBucketsNumber, 0)
for i := range h.upperBounds {
atomic.StoreUint64(&counts.buckets[i], 0)
}
deleteSyncMap(&counts.nativeHistogramBucketsNegative)
deleteSyncMap(&counts.nativeHistogramBucketsPositive)
}
// updateExemplar replaces the exemplar for the provided bucket. With empty
// labels, it's a no-op. It panics if any of the labels is invalid.
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
if l == nil {
return
}
e, err := newExemplar(v, h.now(), l)
if err != nil {
panic(err)
}
h.exemplars[bucket].Store(e)
}
// HistogramVec is a Collector that bundles a set of Histograms that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewHistogramVec.
type HistogramVec struct {
*MetricVec
}
// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
// partitioned by the given label names.
func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
return V2.NewHistogramVec(HistogramVecOpts{
HistogramOpts: opts,
VariableLabels: UnconstrainedLabels(labelNames),
})
}
// NewHistogramVec creates a new HistogramVec based on the provided HistogramVecOpts.
func (v2) NewHistogramVec(opts HistogramVecOpts) *HistogramVec {
desc := V2.NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
opts.VariableLabels,
opts.ConstLabels,
)
return &HistogramVec{
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
return newHistogram(desc, opts.HistogramOpts, lvs...)
}),
}
}
// GetMetricWithLabelValues returns the Histogram for the given slice of label
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Histogram is created.
//
// It is possible to call this method without using the returned Histogram to only
// create the new Histogram but leave it at its starting value, a Histogram without
// any observations.
//
// Keeping the Histogram for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Histogram from the HistogramVec. In that case, the
// Histogram will still exist, but it will not be exported anymore, even if a
// Histogram with the same label values is created later. See also the CounterVec
// example.
//
// An error is returned if the number of label values is not the same as the
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// GetMetricWith returns the Histogram for the given Labels map (the label names
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Histogram is created. Implications of
// creating a Histogram without using it and keeping the Histogram for later use
// are the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) {
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. Not returning an
// error allows shortcuts like
//
// myVec.WithLabelValues("404", "GET").Observe(42.21)
func (v *HistogramVec) WithLabelValues(lvs ...string) Observer {
h, err := v.GetMetricWithLabelValues(lvs...)
if err != nil {
panic(err)
}
return h
}
// With works as GetMetricWith but panics where GetMetricWithLabels would have
// returned an error. Not returning an error allows shortcuts like
//
// myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21)
func (v *HistogramVec) With(labels Labels) Observer {
h, err := v.GetMetricWith(labels)
if err != nil {
panic(err)
}
return h
}
// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence – which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the HistogramVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) {
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &HistogramVec{vec}, err
}
return nil, err
}
// MustCurryWith works as CurryWith but panics where CurryWith would have
// returned an error.
func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec {
vec, err := v.CurryWith(labels)
if err != nil {
panic(err)
}
return vec
}
type constHistogram struct {
desc *Desc
count uint64
sum float64
buckets map[float64]uint64
labelPairs []*dto.LabelPair
createdTs *timestamppb.Timestamp
}
func (h *constHistogram) Desc() *Desc {
return h.desc
}
func (h *constHistogram) Write(out *dto.Metric) error {
his := &dto.Histogram{
CreatedTimestamp: h.createdTs,
}
buckets := make([]*dto.Bucket, 0, len(h.buckets))
his.SampleCount = proto.Uint64(h.count)
his.SampleSum = proto.Float64(h.sum)
for upperBound, count := range h.buckets {
buckets = append(buckets, &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(upperBound),
})
}
if len(buckets) > 0 {
sort.Sort(buckSort(buckets))
}
his.Bucket = buckets
out.Histogram = his
out.Label = h.labelPairs
return nil
}
// NewConstHistogram returns a metric representing a Prometheus histogram with
// fixed values for the count, sum, and bucket counts. As those parameters
// cannot be changed, the returned value does not implement the Histogram
// interface (but only the Metric interface). Users of this package will not
// have much use for it in regular operations. However, when implementing custom
// Collectors, it is useful as a throw-away metric that is generated on the fly
// to send it to Prometheus in the Collect method.
//
// buckets is a map of upper bounds to cumulative counts, excluding the +Inf
// bucket. The +Inf bucket is implicit, and its value is equal to the provided count.
//
// NewConstHistogram returns an error if the length of labelValues is not
// consistent with the variable labels in Desc or if Desc is invalid.
func NewConstHistogram(
desc *Desc,
count uint64,
sum float64,
buckets map[float64]uint64,
labelValues ...string,
) (Metric, error) {
if desc.err != nil {
return nil, desc.err
}
if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil {
return nil, err
}
return &constHistogram{
desc: desc,
count: count,
sum: sum,
buckets: buckets,
labelPairs: MakeLabelPairs(desc, labelValues),
}, nil
}
// MustNewConstHistogram is a version of NewConstHistogram that panics where
// NewConstHistogram would have returned an error.
func MustNewConstHistogram(
desc *Desc,
count uint64,
sum float64,
buckets map[float64]uint64,
labelValues ...string,
) Metric {
m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...)
if err != nil {
panic(err)
}
return m
}
type buckSort []*dto.Bucket
func (s buckSort) Len() int {
return len(s)
}
func (s buckSort) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s buckSort) Less(i, j int) bool {
return s[i].GetUpperBound() < s[j].GetUpperBound()
}
// pickSchema returns the largest number n between -4 and 8 such that
// 2^(2^-n) is less or equal the provided bucketFactor.
//
// Special cases:
// - bucketFactor <= 1: panics.
// - bucketFactor < 2^(2^-8) (but > 1): still returns 8.
func pickSchema(bucketFactor float64) int32 {
if bucketFactor <= 1 {
panic(fmt.Errorf("bucketFactor %f is <=1", bucketFactor))
}
floor := math.Floor(math.Log2(math.Log2(bucketFactor)))
switch {
case floor <= -8:
return 8
case floor >= 4:
return -4
default:
return -int32(floor)
}
}
func makeBuckets(buckets *sync.Map) ([]*dto.BucketSpan, []int64) {
var ii []int
buckets.Range(func(k, v interface{}) bool {
ii = append(ii, k.(int))
return true
})
sort.Ints(ii)
if len(ii) == 0 {
return nil, nil
}
var (
spans []*dto.BucketSpan
deltas []int64
prevCount int64
nextI int
)
appendDelta := func(count int64) {
*spans[len(spans)-1].Length++
deltas = append(deltas, count-prevCount)
prevCount = count
}
for n, i := range ii {
v, _ := buckets.Load(i)
count := atomic.LoadInt64(v.(*int64))
// Multiple spans with only small gaps in between are probably
// encoded more efficiently as one larger span with a few empty
// buckets. Needs some research to find the sweet spot. For now,
// we assume that gaps of one or two buckets should not create
// a new span.
iDelta := int32(i - nextI)
if n == 0 || iDelta > 2 {
// We have to create a new span, either because we are
// at the very beginning, or because we have found a gap
// of more than two buckets.
spans = append(spans, &dto.BucketSpan{
Offset: proto.Int32(iDelta),
Length: proto.Uint32(0),
})
} else {
// We have found a small gap (or no gap at all).
// Insert empty buckets as needed.
for j := int32(0); j < iDelta; j++ {
appendDelta(0)
}
}
appendDelta(count)
nextI = i + 1
}
return spans, deltas
}
// addToBucket increments the sparse bucket at key by the provided amount. It
// returns true if a new sparse bucket had to be created for that.
func addToBucket(buckets *sync.Map, key int, increment int64) bool {
if existingBucket, ok := buckets.Load(key); ok {
// Fast path without allocation.
atomic.AddInt64(existingBucket.(*int64), increment)
return false
}
// Bucket doesn't exist yet. Slow path allocating new counter.
newBucket := increment // TODO(beorn7): Check if this is sufficient to not let increment escape.
if actualBucket, loaded := buckets.LoadOrStore(key, &newBucket); loaded {
// The bucket was created concurrently in another goroutine.
// Have to increment after all.
atomic.AddInt64(actualBucket.(*int64), increment)
return false
}
return true
}
// addAndReset returns a function to be used with sync.Map.Range of spare
// buckets in coldCounts. It increments the buckets in the provided hotBuckets
// according to the buckets ranged through. It then resets all buckets ranged
// through to 0 (but leaves them in place so that they don't need to get
// recreated on the next scrape).
func addAndReset(hotBuckets *sync.Map, bucketNumber *uint32) func(k, v interface{}) bool {
return func(k, v interface{}) bool {
bucket := v.(*int64)
if addToBucket(hotBuckets, k.(int), atomic.LoadInt64(bucket)) {
atomic.AddUint32(bucketNumber, 1)
}
atomic.StoreInt64(bucket, 0)
return true
}
}
func deleteSyncMap(m *sync.Map) {
m.Range(func(k, v interface{}) bool {
m.Delete(k)
return true
})
}
func findSmallestKey(m *sync.Map) int {
result := math.MaxInt32
m.Range(func(k, v interface{}) bool {
key := k.(int)
if key < result {
result = key
}
return true
})
return result
}
func getLe(key int, schema int32) float64 {
// Here a bit of context about the behavior for the last bucket counting
// regular numbers (called simply "last bucket" below) and the bucket
// counting observations of ±Inf (called "inf bucket" below, with a key
// one higher than that of the "last bucket"):
//
// If we apply the usual formula to the last bucket, its upper bound
// would be calculated as +Inf. The reason is that the max possible
// regular float64 number (math.MaxFloat64) doesn't coincide with one of
// the calculated bucket boundaries. So the calculated boundary has to
// be larger than math.MaxFloat64, and the only float64 larger than
// math.MaxFloat64 is +Inf. However, we want to count actual
// observations of ±Inf in the inf bucket. Therefore, we have to treat
// the upper bound of the last bucket specially and set it to
// math.MaxFloat64. (The upper bound of the inf bucket, with its key
// being one higher than that of the last bucket, naturally comes out as
// +Inf by the usual formula. So that's fine.)
//
// math.MaxFloat64 has a frac of 0.9999999999999999 and an exp of
// 1024. If there were a float64 number following math.MaxFloat64, it
// would have a frac of 1.0 and an exp of 1024, or equivalently a frac
// of 0.5 and an exp of 1025. However, since frac must be smaller than
// 1, and exp must be smaller than 1025, either representation overflows
// a float64. (Which, in turn, is the reason that math.MaxFloat64 is the
// largest possible float64. Q.E.D.) However, the formula for
// calculating the upper bound from the idx and schema of the last
// bucket results in precisely that. It is either frac=1.0 & exp=1024
// (for schema < 0) or frac=0.5 & exp=1025 (for schema >=0). (This is,
// by the way, a power of two where the exponent itself is a power of
// two, 2¹⁰ in fact, which coinicides with a bucket boundary in all
// schemas.) So these are the special cases we have to catch below.
if schema < 0 {
exp := key << -schema
if exp == 1024 {
// This is the last bucket before the overflow bucket
// (for ±Inf observations). Return math.MaxFloat64 as
// explained above.
return math.MaxFloat64
}
return math.Ldexp(1, exp)
}
fracIdx := key & ((1 << schema) - 1)
frac := nativeHistogramBounds[schema][fracIdx]
exp := (key >> schema) + 1
if frac == 0.5 && exp == 1025 {
// This is the last bucket before the overflow bucket (for ±Inf
// observations). Return math.MaxFloat64 as explained above.
return math.MaxFloat64
}
return math.Ldexp(frac, exp)
}
// waitForCooldown returns after the count field in the provided histogramCounts
// has reached the provided count value.
func waitForCooldown(count uint64, counts *histogramCounts) {
for count != atomic.LoadUint64(&counts.count) {
runtime.Gosched() // Let observations get work done.
}
}
// atomicAddFloat adds the provided float atomically to another float
// represented by the bit pattern the bits pointer is pointing to.
func atomicAddFloat(bits *uint64, v float64) {
for {
loadedBits := atomic.LoadUint64(bits)
newBits := math.Float64bits(math.Float64frombits(loadedBits) + v)
if atomic.CompareAndSwapUint64(bits, loadedBits, newBits) {
break
}
}
}
// atomicDecUint32 atomically decrements the uint32 p points to. See
// https://pkg.go.dev/sync/atomic#AddUint32 to understand how this is done.
func atomicDecUint32(p *uint32) {
atomic.AddUint32(p, ^uint32(0))
}
// addAndResetCounts adds certain fields (count, sum, conventional buckets, zero
// bucket) from the cold counts to the corresponding fields in the hot
// counts. Those fields are then reset to 0 in the cold counts.
func addAndResetCounts(hot, cold *histogramCounts) {
atomic.AddUint64(&hot.count, atomic.LoadUint64(&cold.count))
atomic.StoreUint64(&cold.count, 0)
coldSum := math.Float64frombits(atomic.LoadUint64(&cold.sumBits))
atomicAddFloat(&hot.sumBits, coldSum)
atomic.StoreUint64(&cold.sumBits, 0)
for i := range hot.buckets {
atomic.AddUint64(&hot.buckets[i], atomic.LoadUint64(&cold.buckets[i]))
atomic.StoreUint64(&cold.buckets[i], 0)
}
atomic.AddUint64(&hot.nativeHistogramZeroBucket, atomic.LoadUint64(&cold.nativeHistogramZeroBucket))
atomic.StoreUint64(&cold.nativeHistogramZeroBucket, 0)
}
|