File: histogram.go

package info (click to toggle)
golang-github-prometheus-client-golang 1.23.0-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental, forky, sid
  • size: 3,192 kB
  • sloc: makefile: 68; ansic: 46; sh: 21
file content (2056 lines) | stat: -rw-r--r-- 82,189 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package prometheus

import (
	"errors"
	"fmt"
	"math"
	"runtime"
	"sort"
	"sync"
	"sync/atomic"
	"time"

	dto "github.com/prometheus/client_model/go"

	"google.golang.org/protobuf/proto"
	"google.golang.org/protobuf/types/known/timestamppb"
)

const (
	nativeHistogramSchemaMaximum = 8
	nativeHistogramSchemaMinimum = -4
)

// nativeHistogramBounds for the frac of observed values. Only relevant for
// schema > 0. The position in the slice is the schema. (0 is never used, just
// here for convenience of using the schema directly as the index.)
//
// TODO(beorn7): Currently, we do a binary search into these slices. There are
// ways to turn it into a small number of simple array lookups. It probably only
// matters for schema 5 and beyond, but should be investigated. See this comment
// as a starting point:
// https://github.com/open-telemetry/opentelemetry-specification/issues/1776#issuecomment-870164310
var nativeHistogramBounds = [][]float64{
	// Schema "0":
	{0.5},
	// Schema 1:
	{0.5, 0.7071067811865475},
	// Schema 2:
	{0.5, 0.5946035575013605, 0.7071067811865475, 0.8408964152537144},
	// Schema 3:
	{
		0.5, 0.5452538663326288, 0.5946035575013605, 0.6484197773255048,
		0.7071067811865475, 0.7711054127039704, 0.8408964152537144, 0.9170040432046711,
	},
	// Schema 4:
	{
		0.5, 0.5221368912137069, 0.5452538663326288, 0.5693943173783458,
		0.5946035575013605, 0.620928906036742, 0.6484197773255048, 0.6771277734684463,
		0.7071067811865475, 0.7384130729697496, 0.7711054127039704, 0.805245165974627,
		0.8408964152537144, 0.8781260801866495, 0.9170040432046711, 0.9576032806985735,
	},
	// Schema 5:
	{
		0.5, 0.5109485743270583, 0.5221368912137069, 0.5335702003384117,
		0.5452538663326288, 0.5571933712979462, 0.5693943173783458, 0.5818624293887887,
		0.5946035575013605, 0.6076236799902344, 0.620928906036742, 0.6345254785958666,
		0.6484197773255048, 0.6626183215798706, 0.6771277734684463, 0.6919549409819159,
		0.7071067811865475, 0.7225904034885232, 0.7384130729697496, 0.7545822137967112,
		0.7711054127039704, 0.7879904225539431, 0.805245165974627, 0.8228777390769823,
		0.8408964152537144, 0.8593096490612387, 0.8781260801866495, 0.8973545375015533,
		0.9170040432046711, 0.9370838170551498, 0.9576032806985735, 0.9785720620876999,
	},
	// Schema 6:
	{
		0.5, 0.5054446430258502, 0.5109485743270583, 0.5165124395106142,
		0.5221368912137069, 0.5278225891802786, 0.5335702003384117, 0.5393803988785598,
		0.5452538663326288, 0.5511912916539204, 0.5571933712979462, 0.5632608093041209,
		0.5693943173783458, 0.5755946149764913, 0.5818624293887887, 0.5881984958251406,
		0.5946035575013605, 0.6010783657263515, 0.6076236799902344, 0.6142402680534349,
		0.620928906036742, 0.6276903785123455, 0.6345254785958666, 0.6414350080393891,
		0.6484197773255048, 0.6554806057623822, 0.6626183215798706, 0.6698337620266515,
		0.6771277734684463, 0.6845012114872953, 0.6919549409819159, 0.6994898362691555,
		0.7071067811865475, 0.7148066691959849, 0.7225904034885232, 0.7304588970903234,
		0.7384130729697496, 0.7464538641456323, 0.7545822137967112, 0.762799075372269,
		0.7711054127039704, 0.7795022001189185, 0.7879904225539431, 0.7965710756711334,
		0.805245165974627, 0.8140137109286738, 0.8228777390769823, 0.8318382901633681,
		0.8408964152537144, 0.8500531768592616, 0.8593096490612387, 0.8686669176368529,
		0.8781260801866495, 0.8876882462632604, 0.8973545375015533, 0.9071260877501991,
		0.9170040432046711, 0.9269895625416926, 0.9370838170551498, 0.9472879907934827,
		0.9576032806985735, 0.9680308967461471, 0.9785720620876999, 0.9892280131939752,
	},
	// Schema 7:
	{
		0.5, 0.5027149505564014, 0.5054446430258502, 0.5081891574554764,
		0.5109485743270583, 0.5137229745593818, 0.5165124395106142, 0.5193170509806894,
		0.5221368912137069, 0.5249720429003435, 0.5278225891802786, 0.5306886136446309,
		0.5335702003384117, 0.5364674337629877, 0.5393803988785598, 0.5423091811066545,
		0.5452538663326288, 0.5482145409081883, 0.5511912916539204, 0.5541842058618393,
		0.5571933712979462, 0.5602188762048033, 0.5632608093041209, 0.5663192597993595,
		0.5693943173783458, 0.572486072215902, 0.5755946149764913, 0.5787200368168754,
		0.5818624293887887, 0.585021884841625, 0.5881984958251406, 0.5913923554921704,
		0.5946035575013605, 0.5978321960199137, 0.6010783657263515, 0.6043421618132907,
		0.6076236799902344, 0.6109230164863786, 0.6142402680534349, 0.6175755319684665,
		0.620928906036742, 0.6243004885946023, 0.6276903785123455, 0.6310986751971253,
		0.6345254785958666, 0.637970889198196, 0.6414350080393891, 0.6449179367033329,
		0.6484197773255048, 0.6519406325959679, 0.6554806057623822, 0.659039800633032,
		0.6626183215798706, 0.6662162735415805, 0.6698337620266515, 0.6734708931164728,
		0.6771277734684463, 0.6808045103191123, 0.6845012114872953, 0.688217985377265,
		0.6919549409819159, 0.6957121878859629, 0.6994898362691555, 0.7032879969095076,
		0.7071067811865475, 0.7109463010845827, 0.7148066691959849, 0.718687998724491,
		0.7225904034885232, 0.7265139979245261, 0.7304588970903234, 0.7344252166684908,
		0.7384130729697496, 0.7424225829363761, 0.7464538641456323, 0.7505070348132126,
		0.7545822137967112, 0.7586795205991071, 0.762799075372269, 0.7669409989204777,
		0.7711054127039704, 0.7752924388424999, 0.7795022001189185, 0.7837348199827764,
		0.7879904225539431, 0.7922691326262467, 0.7965710756711334, 0.8008963778413465,
		0.805245165974627, 0.8096175675974316, 0.8140137109286738, 0.8184337248834821,
		0.8228777390769823, 0.8273458838280969, 0.8318382901633681, 0.8363550898207981,
		0.8408964152537144, 0.8454623996346523, 0.8500531768592616, 0.8546688815502312,
		0.8593096490612387, 0.8639756154809185, 0.8686669176368529, 0.8733836930995842,
		0.8781260801866495, 0.8828942179666361, 0.8876882462632604, 0.8925083056594671,
		0.8973545375015533, 0.9022270839033115, 0.9071260877501991, 0.9120516927035263,
		0.9170040432046711, 0.9219832844793128, 0.9269895625416926, 0.9320230241988943,
		0.9370838170551498, 0.9421720895161669, 0.9472879907934827, 0.9524316709088368,
		0.9576032806985735, 0.9628029718180622, 0.9680308967461471, 0.9732872087896164,
		0.9785720620876999, 0.9838856116165875, 0.9892280131939752, 0.9945994234836328,
	},
	// Schema 8:
	{
		0.5, 0.5013556375251013, 0.5027149505564014, 0.5040779490592088,
		0.5054446430258502, 0.5068150424757447, 0.5081891574554764, 0.509566998038869,
		0.5109485743270583, 0.5123338964485679, 0.5137229745593818, 0.5151158188430205,
		0.5165124395106142, 0.5179128468009786, 0.5193170509806894, 0.520725062344158,
		0.5221368912137069, 0.5235525479396449, 0.5249720429003435, 0.526395386502313,
		0.5278225891802786, 0.5292536613972564, 0.5306886136446309, 0.5321274564422321,
		0.5335702003384117, 0.5350168559101208, 0.5364674337629877, 0.5379219445313954,
		0.5393803988785598, 0.5408428074966075, 0.5423091811066545, 0.5437795304588847,
		0.5452538663326288, 0.5467321995364429, 0.5482145409081883, 0.549700901315111,
		0.5511912916539204, 0.5526857228508706, 0.5541842058618393, 0.5556867516724088,
		0.5571933712979462, 0.5587040757836845, 0.5602188762048033, 0.5617377836665098,
		0.5632608093041209, 0.564787964283144, 0.5663192597993595, 0.5678547070789026,
		0.5693943173783458, 0.5709381019847808, 0.572486072215902, 0.5740382394200894,
		0.5755946149764913, 0.5771552102951081, 0.5787200368168754, 0.5802891060137493,
		0.5818624293887887, 0.5834400184762408, 0.585021884841625, 0.5866080400818185,
		0.5881984958251406, 0.5897932637314379, 0.5913923554921704, 0.5929957828304968,
		0.5946035575013605, 0.5962156912915756, 0.5978321960199137, 0.5994530835371903,
		0.6010783657263515, 0.6027080545025619, 0.6043421618132907, 0.6059806996384005,
		0.6076236799902344, 0.6092711149137041, 0.6109230164863786, 0.6125793968185725,
		0.6142402680534349, 0.6159056423670379, 0.6175755319684665, 0.6192499490999082,
		0.620928906036742, 0.622612415087629, 0.6243004885946023, 0.6259931389331581,
		0.6276903785123455, 0.6293922197748583, 0.6310986751971253, 0.6328097572894031,
		0.6345254785958666, 0.6362458516947014, 0.637970889198196, 0.6397006037528346,
		0.6414350080393891, 0.6431741147730128, 0.6449179367033329, 0.6466664866145447,
		0.6484197773255048, 0.6501778216898253, 0.6519406325959679, 0.6537082229673385,
		0.6554806057623822, 0.6572577939746774, 0.659039800633032, 0.6608266388015788,
		0.6626183215798706, 0.6644148621029772, 0.6662162735415805, 0.6680225691020727,
		0.6698337620266515, 0.6716498655934177, 0.6734708931164728, 0.6752968579460171,
		0.6771277734684463, 0.6789636531064505, 0.6808045103191123, 0.6826503586020058,
		0.6845012114872953, 0.6863570825438342, 0.688217985377265, 0.690083933630119,
		0.6919549409819159, 0.6938310211492645, 0.6957121878859629, 0.6975984549830999,
		0.6994898362691555, 0.7013863456101023, 0.7032879969095076, 0.7051948041086352,
		0.7071067811865475, 0.7090239421602076, 0.7109463010845827, 0.7128738720527471,
		0.7148066691959849, 0.7167447066838943, 0.718687998724491, 0.7206365595643126,
		0.7225904034885232, 0.7245495448210174, 0.7265139979245261, 0.7284837772007218,
		0.7304588970903234, 0.7324393720732029, 0.7344252166684908, 0.7364164454346837,
		0.7384130729697496, 0.7404151139112358, 0.7424225829363761, 0.7444354947621984,
		0.7464538641456323, 0.7484777058836176, 0.7505070348132126, 0.7525418658117031,
		0.7545822137967112, 0.7566280937263048, 0.7586795205991071, 0.7607365094544071,
		0.762799075372269, 0.7648672334736434, 0.7669409989204777, 0.7690203869158282,
		0.7711054127039704, 0.7731960915705107, 0.7752924388424999, 0.7773944698885442,
		0.7795022001189185, 0.7816156449856788, 0.7837348199827764, 0.7858597406461707,
		0.7879904225539431, 0.7901268813264122, 0.7922691326262467, 0.7944171921585818,
		0.7965710756711334, 0.7987307989543135, 0.8008963778413465, 0.8030678282083853,
		0.805245165974627, 0.8074284071024302, 0.8096175675974316, 0.8118126635086642,
		0.8140137109286738, 0.8162207259936375, 0.8184337248834821, 0.820652723822003,
		0.8228777390769823, 0.8251087869603088, 0.8273458838280969, 0.8295890460808079,
		0.8318382901633681, 0.8340936325652911, 0.8363550898207981, 0.8386226785089391,
		0.8408964152537144, 0.8431763167241966, 0.8454623996346523, 0.8477546807446661,
		0.8500531768592616, 0.8523579048290255, 0.8546688815502312, 0.8569861239649629,
		0.8593096490612387, 0.8616394738731368, 0.8639756154809185, 0.8663180910111553,
		0.8686669176368529, 0.871022112577578, 0.8733836930995842, 0.8757516765159389,
		0.8781260801866495, 0.8805069215187917, 0.8828942179666361, 0.8852879870317771,
		0.8876882462632604, 0.890095013257712, 0.8925083056594671, 0.8949281411607002,
		0.8973545375015533, 0.8997875124702672, 0.9022270839033115, 0.9046732696855155,
		0.9071260877501991, 0.909585556079304, 0.9120516927035263, 0.9145245157024483,
		0.9170040432046711, 0.9194902933879467, 0.9219832844793128, 0.9244830347552253,
		0.9269895625416926, 0.92950288621441, 0.9320230241988943, 0.9345499949706191,
		0.9370838170551498, 0.93962450902828, 0.9421720895161669, 0.9447265771954693,
		0.9472879907934827, 0.9498563490882775, 0.9524316709088368, 0.9550139751351947,
		0.9576032806985735, 0.9601996065815236, 0.9628029718180622, 0.9654133954938133,
		0.9680308967461471, 0.9706554947643201, 0.9732872087896164, 0.9759260581154889,
		0.9785720620876999, 0.9812252401044634, 0.9838856116165875, 0.9865531961276168,
		0.9892280131939752, 0.9919100824251095, 0.9945994234836328, 0.9972960560854698,
	},
}

// The nativeHistogramBounds above can be generated with the code below.
//
// TODO(beorn7): It's tempting to actually use `go generate` to generate the
// code above. However, this could lead to slightly different numbers on
// different architectures. We still need to come to terms if we are fine with
// that, or if we might prefer to specify precise numbers in the standard.
//
// var nativeHistogramBounds [][]float64 = make([][]float64, 9)
//
// func init() {
// 	// Populate nativeHistogramBounds.
// 	numBuckets := 1
// 	for i := range nativeHistogramBounds {
// 		bounds := []float64{0.5}
// 		factor := math.Exp2(math.Exp2(float64(-i)))
// 		for j := 0; j < numBuckets-1; j++ {
// 			var bound float64
// 			if (j+1)%2 == 0 {
// 				// Use previously calculated value for increased precision.
// 				bound = nativeHistogramBounds[i-1][j/2+1]
// 			} else {
// 				bound = bounds[j] * factor
// 			}
// 			bounds = append(bounds, bound)
// 		}
// 		numBuckets *= 2
// 		nativeHistogramBounds[i] = bounds
// 	}
// }

// A Histogram counts individual observations from an event or sample stream in
// configurable static buckets (or in dynamic sparse buckets as part of the
// experimental Native Histograms, see below for more details). Similar to a
// Summary, it also provides a sum of observations and an observation count.
//
// On the Prometheus server, quantiles can be calculated from a Histogram using
// the histogram_quantile PromQL function.
//
// Note that Histograms, in contrast to Summaries, can be aggregated in PromQL
// (see the documentation for detailed procedures). However, Histograms require
// the user to pre-define suitable buckets, and they are in general less
// accurate. (Both problems are addressed by the experimental Native
// Histograms. To use them, configure a NativeHistogramBucketFactor in the
// HistogramOpts. They also require a Prometheus server v2.40+ with the
// corresponding feature flag enabled.)
//
// The Observe method of a Histogram has a very low performance overhead in
// comparison with the Observe method of a Summary.
//
// To create Histogram instances, use NewHistogram.
type Histogram interface {
	Metric
	Collector

	// Observe adds a single observation to the histogram. Observations are
	// usually positive or zero. Negative observations are accepted but
	// prevent current versions of Prometheus from properly detecting
	// counter resets in the sum of observations. (The experimental Native
	// Histograms handle negative observations properly.) See
	// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
	// for details.
	Observe(float64)
}

// bucketLabel is used for the label that defines the upper bound of a
// bucket of a histogram ("le" -> "less or equal").
const bucketLabel = "le"

// DefBuckets are the default Histogram buckets. The default buckets are
// tailored to broadly measure the response time (in seconds) of a network
// service. Most likely, however, you will be required to define buckets
// customized to your use case.
var DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}

// DefNativeHistogramZeroThreshold is the default value for
// NativeHistogramZeroThreshold in the HistogramOpts.
//
// The value is 2^-128 (or 0.5*2^-127 in the actual IEEE 754 representation),
// which is a bucket boundary at all possible resolutions.
const DefNativeHistogramZeroThreshold = 2.938735877055719e-39

// NativeHistogramZeroThresholdZero can be used as NativeHistogramZeroThreshold
// in the HistogramOpts to create a zero bucket of width zero, i.e. a zero
// bucket that only receives observations of precisely zero.
const NativeHistogramZeroThresholdZero = -1

var errBucketLabelNotAllowed = fmt.Errorf(
	"%q is not allowed as label name in histograms", bucketLabel,
)

// LinearBuckets creates 'count' regular buckets, each 'width' wide, where the
// lowest bucket has an upper bound of 'start'. The final +Inf bucket is not
// counted and not included in the returned slice. The returned slice is meant
// to be used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is zero or negative.
func LinearBuckets(start, width float64, count int) []float64 {
	if count < 1 {
		panic("LinearBuckets needs a positive count")
	}
	buckets := make([]float64, count)
	for i := range buckets {
		buckets[i] = start
		start += width
	}
	return buckets
}

// ExponentialBuckets creates 'count' regular buckets, where the lowest bucket
// has an upper bound of 'start' and each following bucket's upper bound is
// 'factor' times the previous bucket's upper bound. The final +Inf bucket is
// not counted and not included in the returned slice. The returned slice is
// meant to be used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
// or if 'factor' is less than or equal 1.
func ExponentialBuckets(start, factor float64, count int) []float64 {
	if count < 1 {
		panic("ExponentialBuckets needs a positive count")
	}
	if start <= 0 {
		panic("ExponentialBuckets needs a positive start value")
	}
	if factor <= 1 {
		panic("ExponentialBuckets needs a factor greater than 1")
	}
	buckets := make([]float64, count)
	for i := range buckets {
		buckets[i] = start
		start *= factor
	}
	return buckets
}

// ExponentialBucketsRange creates 'count' buckets, where the lowest bucket is
// 'min' and the highest bucket is 'max'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'min' is 0 or negative.
func ExponentialBucketsRange(minBucket, maxBucket float64, count int) []float64 {
	if count < 1 {
		panic("ExponentialBucketsRange count needs a positive count")
	}
	if minBucket <= 0 {
		panic("ExponentialBucketsRange min needs to be greater than 0")
	}

	// Formula for exponential buckets.
	// max = min*growthFactor^(bucketCount-1)

	// We know max/min and highest bucket. Solve for growthFactor.
	growthFactor := math.Pow(maxBucket/minBucket, 1.0/float64(count-1))

	// Now that we know growthFactor, solve for each bucket.
	buckets := make([]float64, count)
	for i := 1; i <= count; i++ {
		buckets[i-1] = minBucket * math.Pow(growthFactor, float64(i-1))
	}
	return buckets
}

// HistogramOpts bundles the options for creating a Histogram metric. It is
// mandatory to set Name to a non-empty string. All other fields are optional
// and can safely be left at their zero value, although it is strongly
// encouraged to set a Help string.
type HistogramOpts struct {
	// Namespace, Subsystem, and Name are components of the fully-qualified
	// name of the Histogram (created by joining these components with
	// "_"). Only Name is mandatory, the others merely help structuring the
	// name. Note that the fully-qualified name of the Histogram must be a
	// valid Prometheus metric name.
	Namespace string
	Subsystem string
	Name      string

	// Help provides information about this Histogram.
	//
	// Metrics with the same fully-qualified name must have the same Help
	// string.
	Help string

	// ConstLabels are used to attach fixed labels to this metric. Metrics
	// with the same fully-qualified name must have the same label names in
	// their ConstLabels.
	//
	// ConstLabels are only used rarely. In particular, do not use them to
	// attach the same labels to all your metrics. Those use cases are
	// better covered by target labels set by the scraping Prometheus
	// server, or by one specific metric (e.g. a build_info or a
	// machine_role metric). See also
	// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
	ConstLabels Labels

	// Buckets defines the buckets into which observations are counted. Each
	// element in the slice is the upper inclusive bound of a bucket. The
	// values must be sorted in strictly increasing order. There is no need
	// to add a highest bucket with +Inf bound, it will be added
	// implicitly. If Buckets is left as nil or set to a slice of length
	// zero, it is replaced by default buckets. The default buckets are
	// DefBuckets if no buckets for a native histogram (see below) are used,
	// otherwise the default is no buckets. (In other words, if you want to
	// use both regular buckets and buckets for a native histogram, you have
	// to define the regular buckets here explicitly.)
	Buckets []float64

	// If NativeHistogramBucketFactor is greater than one, so-called sparse
	// buckets are used (in addition to the regular buckets, if defined
	// above). A Histogram with sparse buckets will be ingested as a Native
	// Histogram by a Prometheus server with that feature enabled (requires
	// Prometheus v2.40+). Sparse buckets are exponential buckets covering
	// the whole float64 range (with the exception of the “zero” bucket, see
	// NativeHistogramZeroThreshold below). From any one bucket to the next,
	// the width of the bucket grows by a constant
	// factor. NativeHistogramBucketFactor provides an upper bound for this
	// factor (exception see below). The smaller
	// NativeHistogramBucketFactor, the more buckets will be used and thus
	// the more costly the histogram will become. A generally good trade-off
	// between cost and accuracy is a value of 1.1 (each bucket is at most
	// 10% wider than the previous one), which will result in each power of
	// two divided into 8 buckets (e.g. there will be 8 buckets between 1
	// and 2, same as between 2 and 4, and 4 and 8, etc.).
	//
	// Details about the actually used factor: The factor is calculated as
	// 2^(2^-n), where n is an integer number between (and including) -4 and
	// 8. n is chosen so that the resulting factor is the largest that is
	// still smaller or equal to NativeHistogramBucketFactor. Note that the
	// smallest possible factor is therefore approx. 1.00271 (i.e. 2^(2^-8)
	// ). If NativeHistogramBucketFactor is greater than 1 but smaller than
	// 2^(2^-8), then the actually used factor is still 2^(2^-8) even though
	// it is larger than the provided NativeHistogramBucketFactor.
	//
	// NOTE: Native Histograms are still an experimental feature. Their
	// behavior might still change without a major version
	// bump. Subsequently, all NativeHistogram... options here might still
	// change their behavior or name (or might completely disappear) without
	// a major version bump.
	NativeHistogramBucketFactor float64
	// All observations with an absolute value of less or equal
	// NativeHistogramZeroThreshold are accumulated into a “zero” bucket.
	// For best results, this should be close to a bucket boundary. This is
	// usually the case if picking a power of two. If
	// NativeHistogramZeroThreshold is left at zero,
	// DefNativeHistogramZeroThreshold is used as the threshold. To
	// configure a zero bucket with an actual threshold of zero (i.e. only
	// observations of precisely zero will go into the zero bucket), set
	// NativeHistogramZeroThreshold to the NativeHistogramZeroThresholdZero
	// constant (or any negative float value).
	NativeHistogramZeroThreshold float64

	// The next three fields define a strategy to limit the number of
	// populated sparse buckets. If NativeHistogramMaxBucketNumber is left
	// at zero, the number of buckets is not limited. (Note that this might
	// lead to unbounded memory consumption if the values observed by the
	// Histogram are sufficiently wide-spread. In particular, this could be
	// used as a DoS attack vector. Where the observed values depend on
	// external inputs, it is highly recommended to set a
	// NativeHistogramMaxBucketNumber.) Once the set
	// NativeHistogramMaxBucketNumber is exceeded, the following strategy is
	// enacted:
	//  - First, if the last reset (or the creation) of the histogram is at
	//    least NativeHistogramMinResetDuration ago, then the whole
	//    histogram is reset to its initial state (including regular
	//    buckets).
	//  - If less time has passed, or if NativeHistogramMinResetDuration is
	//    zero, no reset is performed. Instead, the zero threshold is
	//    increased sufficiently to reduce the number of buckets to or below
	//    NativeHistogramMaxBucketNumber, but not to more than
	//    NativeHistogramMaxZeroThreshold. Thus, if
	//    NativeHistogramMaxZeroThreshold is already at or below the current
	//    zero threshold, nothing happens at this step.
	//  - After that, if the number of buckets still exceeds
	//    NativeHistogramMaxBucketNumber, the resolution of the histogram is
	//    reduced by doubling the width of the sparse buckets (up to a
	//    growth factor between one bucket to the next of 2^(2^4) = 65536,
	//    see above).
	//  - Any increased zero threshold or reduced resolution is reset back
	//    to their original values once NativeHistogramMinResetDuration has
	//    passed (since the last reset or the creation of the histogram).
	NativeHistogramMaxBucketNumber  uint32
	NativeHistogramMinResetDuration time.Duration
	NativeHistogramMaxZeroThreshold float64

	// NativeHistogramMaxExemplars limits the number of exemplars
	// that are kept in memory for each native histogram. If you leave it at
	// zero, a default value of 10 is used. If no exemplars should be kept specifically
	// for native histograms, set it to a negative value. (Scrapers can
	// still use the exemplars exposed for classic buckets, which are managed
	// independently.)
	NativeHistogramMaxExemplars int
	// NativeHistogramExemplarTTL is only checked once
	// NativeHistogramMaxExemplars is exceeded. In that case, the
	// oldest exemplar is removed if it is older than NativeHistogramExemplarTTL.
	// Otherwise, the older exemplar in the pair of exemplars that are closest
	// together (on an exponential scale) is removed.
	// If NativeHistogramExemplarTTL is left at its zero value, a default value of
	// 5m is used. To always delete the oldest exemplar, set it to a negative value.
	NativeHistogramExemplarTTL time.Duration

	// now is for testing purposes, by default it's time.Now.
	now func() time.Time

	// afterFunc is for testing purposes, by default it's time.AfterFunc.
	afterFunc func(time.Duration, func()) *time.Timer
}

// HistogramVecOpts bundles the options to create a HistogramVec metric.
// It is mandatory to set HistogramOpts, see there for mandatory fields. VariableLabels
// is optional and can safely be left to its default value.
type HistogramVecOpts struct {
	HistogramOpts

	// VariableLabels are used to partition the metric vector by the given set
	// of labels. Each label value will be constrained with the optional Constraint
	// function, if provided.
	VariableLabels ConstrainableLabels
}

// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
//
// The returned implementation also implements ExemplarObserver. It is safe to
// perform the corresponding type assertion. Exemplars are tracked separately
// for each bucket.
func NewHistogram(opts HistogramOpts) Histogram {
	return newHistogram(
		NewDesc(
			BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
			opts.Help,
			nil,
			opts.ConstLabels,
		),
		opts,
	)
}

func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
	if len(desc.variableLabels.names) != len(labelValues) {
		panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels.names, labelValues))
	}

	for _, n := range desc.variableLabels.names {
		if n == bucketLabel {
			panic(errBucketLabelNotAllowed)
		}
	}
	for _, lp := range desc.constLabelPairs {
		if lp.GetName() == bucketLabel {
			panic(errBucketLabelNotAllowed)
		}
	}

	if opts.now == nil {
		opts.now = time.Now
	}
	if opts.afterFunc == nil {
		opts.afterFunc = time.AfterFunc
	}

	h := &histogram{
		desc:                            desc,
		upperBounds:                     opts.Buckets,
		labelPairs:                      MakeLabelPairs(desc, labelValues),
		nativeHistogramMaxBuckets:       opts.NativeHistogramMaxBucketNumber,
		nativeHistogramMaxZeroThreshold: opts.NativeHistogramMaxZeroThreshold,
		nativeHistogramMinResetDuration: opts.NativeHistogramMinResetDuration,
		lastResetTime:                   opts.now(),
		now:                             opts.now,
		afterFunc:                       opts.afterFunc,
	}
	if len(h.upperBounds) == 0 && opts.NativeHistogramBucketFactor <= 1 {
		h.upperBounds = DefBuckets
	}
	if opts.NativeHistogramBucketFactor <= 1 {
		h.nativeHistogramSchema = math.MinInt32 // To mark that there are no sparse buckets.
	} else {
		switch {
		case opts.NativeHistogramZeroThreshold > 0:
			h.nativeHistogramZeroThreshold = opts.NativeHistogramZeroThreshold
		case opts.NativeHistogramZeroThreshold == 0:
			h.nativeHistogramZeroThreshold = DefNativeHistogramZeroThreshold
		} // Leave h.nativeHistogramZeroThreshold at 0 otherwise.
		h.nativeHistogramSchema = pickSchema(opts.NativeHistogramBucketFactor)
		h.nativeExemplars = makeNativeExemplars(opts.NativeHistogramExemplarTTL, opts.NativeHistogramMaxExemplars)
	}
	for i, upperBound := range h.upperBounds {
		if i < len(h.upperBounds)-1 {
			if upperBound >= h.upperBounds[i+1] {
				panic(fmt.Errorf(
					"histogram buckets must be in increasing order: %f >= %f",
					upperBound, h.upperBounds[i+1],
				))
			}
		} else {
			if math.IsInf(upperBound, +1) {
				// The +Inf bucket is implicit. Remove it here.
				h.upperBounds = h.upperBounds[:i]
			}
		}
	}
	// Finally we know the final length of h.upperBounds and can make buckets
	// for both counts as well as exemplars:
	h.counts[0] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))}
	atomic.StoreUint64(&h.counts[0].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
	atomic.StoreInt32(&h.counts[0].nativeHistogramSchema, h.nativeHistogramSchema)
	h.counts[1] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))}
	atomic.StoreUint64(&h.counts[1].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
	atomic.StoreInt32(&h.counts[1].nativeHistogramSchema, h.nativeHistogramSchema)
	h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)

	h.init(h) // Init self-collection.
	return h
}

type histogramCounts struct {
	// Order in this struct matters for the alignment required by atomic
	// operations, see http://golang.org/pkg/sync/atomic/#pkg-note-BUG

	// sumBits contains the bits of the float64 representing the sum of all
	// observations.
	sumBits uint64
	count   uint64

	// nativeHistogramZeroBucket counts all (positive and negative)
	// observations in the zero bucket (with an absolute value less or equal
	// the current threshold, see next field.
	nativeHistogramZeroBucket uint64
	// nativeHistogramZeroThresholdBits is the bit pattern of the current
	// threshold for the zero bucket. It's initially equal to
	// nativeHistogramZeroThreshold but may change according to the bucket
	// count limitation strategy.
	nativeHistogramZeroThresholdBits uint64
	// nativeHistogramSchema may change over time according to the bucket
	// count limitation strategy and therefore has to be saved here.
	nativeHistogramSchema int32
	// Number of (positive and negative) sparse buckets.
	nativeHistogramBucketsNumber uint32

	// Regular buckets.
	buckets []uint64

	// The sparse buckets for native histograms are implemented with a
	// sync.Map for now. A dedicated data structure will likely be more
	// efficient. There are separate maps for negative and positive
	// observations. The map's value is an *int64, counting observations in
	// that bucket. (Note that we don't use uint64 as an int64 won't
	// overflow in practice, and working with signed numbers from the
	// beginning simplifies the handling of deltas.) The map's key is the
	// index of the bucket according to the used
	// nativeHistogramSchema. Index 0 is for an upper bound of 1.
	nativeHistogramBucketsPositive, nativeHistogramBucketsNegative sync.Map
}

// observe manages the parts of observe that only affects
// histogramCounts. doSparse is true if sparse buckets should be done,
// too.
func (hc *histogramCounts) observe(v float64, bucket int, doSparse bool) {
	if bucket < len(hc.buckets) {
		atomic.AddUint64(&hc.buckets[bucket], 1)
	}
	atomicAddFloat(&hc.sumBits, v)
	if doSparse && !math.IsNaN(v) {
		var (
			key                  int
			schema               = atomic.LoadInt32(&hc.nativeHistogramSchema)
			zeroThreshold        = math.Float64frombits(atomic.LoadUint64(&hc.nativeHistogramZeroThresholdBits))
			bucketCreated, isInf bool
		)
		if math.IsInf(v, 0) {
			// Pretend v is MaxFloat64 but later increment key by one.
			if math.IsInf(v, +1) {
				v = math.MaxFloat64
			} else {
				v = -math.MaxFloat64
			}
			isInf = true
		}
		frac, exp := math.Frexp(math.Abs(v))
		if schema > 0 {
			bounds := nativeHistogramBounds[schema]
			key = sort.SearchFloat64s(bounds, frac) + (exp-1)*len(bounds)
		} else {
			key = exp
			if frac == 0.5 {
				key--
			}
			offset := (1 << -schema) - 1
			key = (key + offset) >> -schema
		}
		if isInf {
			key++
		}
		switch {
		case v > zeroThreshold:
			bucketCreated = addToBucket(&hc.nativeHistogramBucketsPositive, key, 1)
		case v < -zeroThreshold:
			bucketCreated = addToBucket(&hc.nativeHistogramBucketsNegative, key, 1)
		default:
			atomic.AddUint64(&hc.nativeHistogramZeroBucket, 1)
		}
		if bucketCreated {
			atomic.AddUint32(&hc.nativeHistogramBucketsNumber, 1)
		}
	}
	// Increment count last as we take it as a signal that the observation
	// is complete.
	atomic.AddUint64(&hc.count, 1)
}

type histogram struct {
	// countAndHotIdx enables lock-free writes with use of atomic updates.
	// The most significant bit is the hot index [0 or 1] of the count field
	// below. Observe calls update the hot one. All remaining bits count the
	// number of Observe calls. Observe starts by incrementing this counter,
	// and finish by incrementing the count field in the respective
	// histogramCounts, as a marker for completion.
	//
	// Calls of the Write method (which are non-mutating reads from the
	// perspective of the histogram) swap the hot–cold under the writeMtx
	// lock. A cooldown is awaited (while locked) by comparing the number of
	// observations with the initiation count. Once they match, then the
	// last observation on the now cool one has completed. All cold fields must
	// be merged into the new hot before releasing writeMtx.
	//
	// Fields with atomic access first! See alignment constraint:
	// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
	countAndHotIdx uint64

	selfCollector
	desc *Desc

	// Only used in the Write method and for sparse bucket management.
	mtx sync.Mutex

	// Two counts, one is "hot" for lock-free observations, the other is
	// "cold" for writing out a dto.Metric. It has to be an array of
	// pointers to guarantee 64bit alignment of the histogramCounts, see
	// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
	counts [2]*histogramCounts

	upperBounds                     []float64
	labelPairs                      []*dto.LabelPair
	exemplars                       []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
	nativeHistogramSchema           int32          // The initial schema. Set to math.MinInt32 if no sparse buckets are used.
	nativeHistogramZeroThreshold    float64        // The initial zero threshold.
	nativeHistogramMaxZeroThreshold float64
	nativeHistogramMaxBuckets       uint32
	nativeHistogramMinResetDuration time.Duration
	// lastResetTime is protected by mtx. It is also used as created timestamp.
	lastResetTime time.Time
	// resetScheduled is protected by mtx. It is true if a reset is
	// scheduled for a later time (when nativeHistogramMinResetDuration has
	// passed).
	resetScheduled  bool
	nativeExemplars nativeExemplars

	// now is for testing purposes, by default it's time.Now.
	now func() time.Time

	// afterFunc is for testing purposes, by default it's time.AfterFunc.
	afterFunc func(time.Duration, func()) *time.Timer
}

func (h *histogram) Desc() *Desc {
	return h.desc
}

func (h *histogram) Observe(v float64) {
	h.observe(v, h.findBucket(v))
}

// ObserveWithExemplar should not be called in a high-frequency setting
// for a native histogram with configured exemplars. For this case,
// the implementation isn't lock-free and might suffer from lock contention.
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
	i := h.findBucket(v)
	h.observe(v, i)
	h.updateExemplar(v, i, e)
}

func (h *histogram) Write(out *dto.Metric) error {
	// For simplicity, we protect this whole method by a mutex. It is not in
	// the hot path, i.e. Observe is called much more often than Write. The
	// complication of making Write lock-free isn't worth it, if possible at
	// all.
	h.mtx.Lock()
	defer h.mtx.Unlock()

	// Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0)
	// without touching the count bits. See the struct comments for a full
	// description of the algorithm.
	n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
	// count is contained unchanged in the lower 63 bits.
	count := n & ((1 << 63) - 1)
	// The most significant bit tells us which counts is hot. The complement
	// is thus the cold one.
	hotCounts := h.counts[n>>63]
	coldCounts := h.counts[(^n)>>63]

	waitForCooldown(count, coldCounts)

	his := &dto.Histogram{
		Bucket:           make([]*dto.Bucket, len(h.upperBounds)),
		SampleCount:      proto.Uint64(count),
		SampleSum:        proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))),
		CreatedTimestamp: timestamppb.New(h.lastResetTime),
	}
	out.Histogram = his
	out.Label = h.labelPairs

	var cumCount uint64
	for i, upperBound := range h.upperBounds {
		cumCount += atomic.LoadUint64(&coldCounts.buckets[i])
		his.Bucket[i] = &dto.Bucket{
			CumulativeCount: proto.Uint64(cumCount),
			UpperBound:      proto.Float64(upperBound),
		}
		if e := h.exemplars[i].Load(); e != nil {
			his.Bucket[i].Exemplar = e.(*dto.Exemplar)
		}
	}
	// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
	if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
		b := &dto.Bucket{
			CumulativeCount: proto.Uint64(count),
			UpperBound:      proto.Float64(math.Inf(1)),
			Exemplar:        e.(*dto.Exemplar),
		}
		his.Bucket = append(his.Bucket, b)
	}
	if h.nativeHistogramSchema > math.MinInt32 {
		his.ZeroThreshold = proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.nativeHistogramZeroThresholdBits)))
		his.Schema = proto.Int32(atomic.LoadInt32(&coldCounts.nativeHistogramSchema))
		zeroBucket := atomic.LoadUint64(&coldCounts.nativeHistogramZeroBucket)

		defer func() {
			coldCounts.nativeHistogramBucketsPositive.Range(addAndReset(&hotCounts.nativeHistogramBucketsPositive, &hotCounts.nativeHistogramBucketsNumber))
			coldCounts.nativeHistogramBucketsNegative.Range(addAndReset(&hotCounts.nativeHistogramBucketsNegative, &hotCounts.nativeHistogramBucketsNumber))
		}()

		his.ZeroCount = proto.Uint64(zeroBucket)
		his.NegativeSpan, his.NegativeDelta = makeBuckets(&coldCounts.nativeHistogramBucketsNegative)
		his.PositiveSpan, his.PositiveDelta = makeBuckets(&coldCounts.nativeHistogramBucketsPositive)

		// Add a no-op span to a histogram without observations and with
		// a zero threshold of zero. Otherwise, a native histogram would
		// look like a classic histogram to scrapers.
		if *his.ZeroThreshold == 0 && *his.ZeroCount == 0 && len(his.PositiveSpan) == 0 && len(his.NegativeSpan) == 0 {
			his.PositiveSpan = []*dto.BucketSpan{{
				Offset: proto.Int32(0),
				Length: proto.Uint32(0),
			}}
		}

		if h.nativeExemplars.isEnabled() {
			h.nativeExemplars.Lock()
			his.Exemplars = append(his.Exemplars, h.nativeExemplars.exemplars...)
			h.nativeExemplars.Unlock()
		}

	}
	addAndResetCounts(hotCounts, coldCounts)
	return nil
}

// findBucket returns the index of the bucket for the provided value, or
// len(h.upperBounds) for the +Inf bucket.
func (h *histogram) findBucket(v float64) int {
	n := len(h.upperBounds)
	if n == 0 {
		return 0
	}

	// Early exit: if v is less than or equal to the first upper bound, return 0
	if v <= h.upperBounds[0] {
		return 0
	}

	// Early exit: if v is greater than the last upper bound, return len(h.upperBounds)
	if v > h.upperBounds[n-1] {
		return n
	}

	// For small arrays, use simple linear search
	// "magic number" 35 is result of tests on couple different (AWS and baremetal) servers
	// see more details here: https://github.com/prometheus/client_golang/pull/1662
	if n < 35 {
		for i, bound := range h.upperBounds {
			if v <= bound {
				return i
			}
		}
		// If v is greater than all upper bounds, return len(h.upperBounds)
		return n
	}

	// For larger arrays, use stdlib's binary search
	return sort.SearchFloat64s(h.upperBounds, v)
}

// observe is the implementation for Observe without the findBucket part.
func (h *histogram) observe(v float64, bucket int) {
	// Do not add to sparse buckets for NaN observations.
	doSparse := h.nativeHistogramSchema > math.MinInt32 && !math.IsNaN(v)
	// We increment h.countAndHotIdx so that the counter in the lower
	// 63 bits gets incremented. At the same time, we get the new value
	// back, which we can use to find the currently-hot counts.
	n := atomic.AddUint64(&h.countAndHotIdx, 1)
	hotCounts := h.counts[n>>63]
	hotCounts.observe(v, bucket, doSparse)
	if doSparse {
		h.limitBuckets(hotCounts, v, bucket)
	}
}

// limitBuckets applies a strategy to limit the number of populated sparse
// buckets. It's generally best effort, and there are situations where the
// number can go higher (if even the lowest resolution isn't enough to reduce
// the number sufficiently, or if the provided counts aren't fully updated yet
// by a concurrently happening Write call).
func (h *histogram) limitBuckets(counts *histogramCounts, value float64, bucket int) {
	if h.nativeHistogramMaxBuckets == 0 {
		return // No limit configured.
	}
	if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&counts.nativeHistogramBucketsNumber) {
		return // Bucket limit not exceeded yet.
	}

	h.mtx.Lock()
	defer h.mtx.Unlock()

	// The hot counts might have been swapped just before we acquired the
	// lock. Re-fetch the hot counts first...
	n := atomic.LoadUint64(&h.countAndHotIdx)
	hotIdx := n >> 63
	coldIdx := (^n) >> 63
	hotCounts := h.counts[hotIdx]
	coldCounts := h.counts[coldIdx]
	// ...and then check again if we really have to reduce the bucket count.
	if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&hotCounts.nativeHistogramBucketsNumber) {
		return // Bucket limit not exceeded after all.
	}
	// Try the various strategies in order.
	if h.maybeReset(hotCounts, coldCounts, coldIdx, value, bucket) {
		return
	}
	// One of the other strategies will happen. To undo what they will do as
	// soon as enough time has passed to satisfy
	// h.nativeHistogramMinResetDuration, schedule a reset at the right time
	// if we haven't done so already.
	if h.nativeHistogramMinResetDuration > 0 && !h.resetScheduled {
		h.resetScheduled = true
		h.afterFunc(h.nativeHistogramMinResetDuration-h.now().Sub(h.lastResetTime), h.reset)
	}

	if h.maybeWidenZeroBucket(hotCounts, coldCounts) {
		return
	}
	h.doubleBucketWidth(hotCounts, coldCounts)
}

// maybeReset resets the whole histogram if at least
// h.nativeHistogramMinResetDuration has been passed. It returns true if the
// histogram has been reset. The caller must have locked h.mtx.
func (h *histogram) maybeReset(
	hot, cold *histogramCounts, coldIdx uint64, value float64, bucket int,
) bool {
	// We are using the possibly mocked h.now() rather than
	// time.Since(h.lastResetTime) to enable testing.
	if h.nativeHistogramMinResetDuration == 0 || // No reset configured.
		h.resetScheduled || // Do not interefere if a reset is already scheduled.
		h.now().Sub(h.lastResetTime) < h.nativeHistogramMinResetDuration {
		return false
	}
	// Completely reset coldCounts.
	h.resetCounts(cold)
	// Repeat the latest observation to not lose it completely.
	cold.observe(value, bucket, true)
	// Make coldCounts the new hot counts while resetting countAndHotIdx.
	n := atomic.SwapUint64(&h.countAndHotIdx, (coldIdx<<63)+1)
	count := n & ((1 << 63) - 1)
	waitForCooldown(count, hot)
	// Finally, reset the formerly hot counts, too.
	h.resetCounts(hot)
	h.lastResetTime = h.now()
	return true
}

// reset resets the whole histogram. It locks h.mtx itself, i.e. it has to be
// called without having locked h.mtx.
func (h *histogram) reset() {
	h.mtx.Lock()
	defer h.mtx.Unlock()

	n := atomic.LoadUint64(&h.countAndHotIdx)
	hotIdx := n >> 63
	coldIdx := (^n) >> 63
	hot := h.counts[hotIdx]
	cold := h.counts[coldIdx]
	// Completely reset coldCounts.
	h.resetCounts(cold)
	// Make coldCounts the new hot counts while resetting countAndHotIdx.
	n = atomic.SwapUint64(&h.countAndHotIdx, coldIdx<<63)
	count := n & ((1 << 63) - 1)
	waitForCooldown(count, hot)
	// Finally, reset the formerly hot counts, too.
	h.resetCounts(hot)
	h.lastResetTime = h.now()
	h.resetScheduled = false
}

// maybeWidenZeroBucket widens the zero bucket until it includes the existing
// buckets closest to the zero bucket (which could be two, if an equidistant
// negative and a positive bucket exists, but usually it's only one bucket to be
// merged into the new wider zero bucket). h.nativeHistogramMaxZeroThreshold
// limits how far the zero bucket can be extended, and if that's not enough to
// include an existing bucket, the method returns false. The caller must have
// locked h.mtx.
func (h *histogram) maybeWidenZeroBucket(hot, cold *histogramCounts) bool {
	currentZeroThreshold := math.Float64frombits(atomic.LoadUint64(&hot.nativeHistogramZeroThresholdBits))
	if currentZeroThreshold >= h.nativeHistogramMaxZeroThreshold {
		return false
	}
	// Find the key of the bucket closest to zero.
	smallestKey := findSmallestKey(&hot.nativeHistogramBucketsPositive)
	smallestNegativeKey := findSmallestKey(&hot.nativeHistogramBucketsNegative)
	if smallestNegativeKey < smallestKey {
		smallestKey = smallestNegativeKey
	}
	if smallestKey == math.MaxInt32 {
		return false
	}
	newZeroThreshold := getLe(smallestKey, atomic.LoadInt32(&hot.nativeHistogramSchema))
	if newZeroThreshold > h.nativeHistogramMaxZeroThreshold {
		return false // New threshold would exceed the max threshold.
	}
	atomic.StoreUint64(&cold.nativeHistogramZeroThresholdBits, math.Float64bits(newZeroThreshold))
	// Remove applicable buckets.
	if _, loaded := cold.nativeHistogramBucketsNegative.LoadAndDelete(smallestKey); loaded {
		atomicDecUint32(&cold.nativeHistogramBucketsNumber)
	}
	if _, loaded := cold.nativeHistogramBucketsPositive.LoadAndDelete(smallestKey); loaded {
		atomicDecUint32(&cold.nativeHistogramBucketsNumber)
	}
	// Make cold counts the new hot counts.
	n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
	count := n & ((1 << 63) - 1)
	// Swap the pointer names to represent the new roles and make
	// the rest less confusing.
	hot, cold = cold, hot
	waitForCooldown(count, cold)
	// Add all the now cold counts to the new hot counts...
	addAndResetCounts(hot, cold)
	// ...adjust the new zero threshold in the cold counts, too...
	atomic.StoreUint64(&cold.nativeHistogramZeroThresholdBits, math.Float64bits(newZeroThreshold))
	// ...and then merge the newly deleted buckets into the wider zero
	// bucket.
	mergeAndDeleteOrAddAndReset := func(hotBuckets, coldBuckets *sync.Map) func(k, v interface{}) bool {
		return func(k, v interface{}) bool {
			key := k.(int)
			bucket := v.(*int64)
			if key == smallestKey {
				// Merge into hot zero bucket...
				atomic.AddUint64(&hot.nativeHistogramZeroBucket, uint64(atomic.LoadInt64(bucket)))
				// ...and delete from cold counts.
				coldBuckets.Delete(key)
				atomicDecUint32(&cold.nativeHistogramBucketsNumber)
			} else {
				// Add to corresponding hot bucket...
				if addToBucket(hotBuckets, key, atomic.LoadInt64(bucket)) {
					atomic.AddUint32(&hot.nativeHistogramBucketsNumber, 1)
				}
				// ...and reset cold bucket.
				atomic.StoreInt64(bucket, 0)
			}
			return true
		}
	}

	cold.nativeHistogramBucketsPositive.Range(mergeAndDeleteOrAddAndReset(&hot.nativeHistogramBucketsPositive, &cold.nativeHistogramBucketsPositive))
	cold.nativeHistogramBucketsNegative.Range(mergeAndDeleteOrAddAndReset(&hot.nativeHistogramBucketsNegative, &cold.nativeHistogramBucketsNegative))
	return true
}

// doubleBucketWidth doubles the bucket width (by decrementing the schema
// number). Note that very sparse buckets could lead to a low reduction of the
// bucket count (or even no reduction at all). The method does nothing if the
// schema is already -4.
func (h *histogram) doubleBucketWidth(hot, cold *histogramCounts) {
	coldSchema := atomic.LoadInt32(&cold.nativeHistogramSchema)
	if coldSchema == -4 {
		return // Already at lowest resolution.
	}
	coldSchema--
	atomic.StoreInt32(&cold.nativeHistogramSchema, coldSchema)
	// Play it simple and just delete all cold buckets.
	atomic.StoreUint32(&cold.nativeHistogramBucketsNumber, 0)
	deleteSyncMap(&cold.nativeHistogramBucketsNegative)
	deleteSyncMap(&cold.nativeHistogramBucketsPositive)
	// Make coldCounts the new hot counts.
	n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
	count := n & ((1 << 63) - 1)
	// Swap the pointer names to represent the new roles and make
	// the rest less confusing.
	hot, cold = cold, hot
	waitForCooldown(count, cold)
	// Add all the now cold counts to the new hot counts...
	addAndResetCounts(hot, cold)
	// ...adjust the schema in the cold counts, too...
	atomic.StoreInt32(&cold.nativeHistogramSchema, coldSchema)
	// ...and then merge the cold buckets into the wider hot buckets.
	merge := func(hotBuckets *sync.Map) func(k, v interface{}) bool {
		return func(k, v interface{}) bool {
			key := k.(int)
			bucket := v.(*int64)
			// Adjust key to match the bucket to merge into.
			if key > 0 {
				key++
			}
			key /= 2
			// Add to corresponding hot bucket.
			if addToBucket(hotBuckets, key, atomic.LoadInt64(bucket)) {
				atomic.AddUint32(&hot.nativeHistogramBucketsNumber, 1)
			}
			return true
		}
	}

	cold.nativeHistogramBucketsPositive.Range(merge(&hot.nativeHistogramBucketsPositive))
	cold.nativeHistogramBucketsNegative.Range(merge(&hot.nativeHistogramBucketsNegative))
	// Play it simple again and just delete all cold buckets.
	atomic.StoreUint32(&cold.nativeHistogramBucketsNumber, 0)
	deleteSyncMap(&cold.nativeHistogramBucketsNegative)
	deleteSyncMap(&cold.nativeHistogramBucketsPositive)
}

func (h *histogram) resetCounts(counts *histogramCounts) {
	atomic.StoreUint64(&counts.sumBits, 0)
	atomic.StoreUint64(&counts.count, 0)
	atomic.StoreUint64(&counts.nativeHistogramZeroBucket, 0)
	atomic.StoreUint64(&counts.nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
	atomic.StoreInt32(&counts.nativeHistogramSchema, h.nativeHistogramSchema)
	atomic.StoreUint32(&counts.nativeHistogramBucketsNumber, 0)
	for i := range h.upperBounds {
		atomic.StoreUint64(&counts.buckets[i], 0)
	}
	deleteSyncMap(&counts.nativeHistogramBucketsNegative)
	deleteSyncMap(&counts.nativeHistogramBucketsPositive)
}

// updateExemplar replaces the exemplar for the provided classic bucket.
// With empty labels, it's a no-op. It panics if any of the labels is invalid.
// If histogram is native, the exemplar will be cached into nativeExemplars,
// which has a limit, and will remove one exemplar when limit is reached.
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
	if l == nil {
		return
	}
	e, err := newExemplar(v, h.now(), l)
	if err != nil {
		panic(err)
	}
	h.exemplars[bucket].Store(e)
	doSparse := h.nativeHistogramSchema > math.MinInt32 && !math.IsNaN(v)
	if doSparse {
		h.nativeExemplars.addExemplar(e)
	}
}

// HistogramVec is a Collector that bundles a set of Histograms that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewHistogramVec.
type HistogramVec struct {
	*MetricVec
}

// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
// partitioned by the given label names.
func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
	return V2.NewHistogramVec(HistogramVecOpts{
		HistogramOpts:  opts,
		VariableLabels: UnconstrainedLabels(labelNames),
	})
}

// NewHistogramVec creates a new HistogramVec based on the provided HistogramVecOpts.
func (v2) NewHistogramVec(opts HistogramVecOpts) *HistogramVec {
	desc := V2.NewDesc(
		BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
		opts.Help,
		opts.VariableLabels,
		opts.ConstLabels,
	)
	return &HistogramVec{
		MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
			return newHistogram(desc, opts.HistogramOpts, lvs...)
		}),
	}
}

// GetMetricWithLabelValues returns the Histogram for the given slice of label
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Histogram is created.
//
// It is possible to call this method without using the returned Histogram to only
// create the new Histogram but leave it at its starting value, a Histogram without
// any observations.
//
// Keeping the Histogram for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Histogram from the HistogramVec. In that case, the
// Histogram will still exist, but it will not be exported anymore, even if a
// Histogram with the same label values is created later. See also the CounterVec
// example.
//
// An error is returned if the number of label values is not the same as the
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
	metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
	if metric != nil {
		return metric.(Observer), err
	}
	return nil, err
}

// GetMetricWith returns the Histogram for the given Labels map (the label names
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Histogram is created. Implications of
// creating a Histogram without using it and keeping the Histogram for later use
// are the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) {
	metric, err := v.MetricVec.GetMetricWith(labels)
	if metric != nil {
		return metric.(Observer), err
	}
	return nil, err
}

// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. Not returning an
// error allows shortcuts like
//
//	myVec.WithLabelValues("404", "GET").Observe(42.21)
func (v *HistogramVec) WithLabelValues(lvs ...string) Observer {
	h, err := v.GetMetricWithLabelValues(lvs...)
	if err != nil {
		panic(err)
	}
	return h
}

// With works as GetMetricWith but panics where GetMetricWithLabels would have
// returned an error. Not returning an error allows shortcuts like
//
//	myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21)
func (v *HistogramVec) With(labels Labels) Observer {
	h, err := v.GetMetricWith(labels)
	if err != nil {
		panic(err)
	}
	return h
}

// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence – which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the HistogramVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) {
	vec, err := v.MetricVec.CurryWith(labels)
	if vec != nil {
		return &HistogramVec{vec}, err
	}
	return nil, err
}

// MustCurryWith works as CurryWith but panics where CurryWith would have
// returned an error.
func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec {
	vec, err := v.CurryWith(labels)
	if err != nil {
		panic(err)
	}
	return vec
}

type constHistogram struct {
	desc       *Desc
	count      uint64
	sum        float64
	buckets    map[float64]uint64
	labelPairs []*dto.LabelPair
	createdTs  *timestamppb.Timestamp
}

func (h *constHistogram) Desc() *Desc {
	return h.desc
}

func (h *constHistogram) Write(out *dto.Metric) error {
	his := &dto.Histogram{
		CreatedTimestamp: h.createdTs,
	}

	buckets := make([]*dto.Bucket, 0, len(h.buckets))

	his.SampleCount = proto.Uint64(h.count)
	his.SampleSum = proto.Float64(h.sum)
	for upperBound, count := range h.buckets {
		buckets = append(buckets, &dto.Bucket{
			CumulativeCount: proto.Uint64(count),
			UpperBound:      proto.Float64(upperBound),
		})
	}

	if len(buckets) > 0 {
		sort.Sort(buckSort(buckets))
	}
	his.Bucket = buckets

	out.Histogram = his
	out.Label = h.labelPairs

	return nil
}

// NewConstHistogram returns a metric representing a Prometheus histogram with
// fixed values for the count, sum, and bucket counts. As those parameters
// cannot be changed, the returned value does not implement the Histogram
// interface (but only the Metric interface). Users of this package will not
// have much use for it in regular operations. However, when implementing custom
// Collectors, it is useful as a throw-away metric that is generated on the fly
// to send it to Prometheus in the Collect method.
//
// buckets is a map of upper bounds to cumulative counts, excluding the +Inf
// bucket. The +Inf bucket is implicit, and its value is equal to the provided count.
//
// NewConstHistogram returns an error if the length of labelValues is not
// consistent with the variable labels in Desc or if Desc is invalid.
func NewConstHistogram(
	desc *Desc,
	count uint64,
	sum float64,
	buckets map[float64]uint64,
	labelValues ...string,
) (Metric, error) {
	if desc.err != nil {
		return nil, desc.err
	}
	if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil {
		return nil, err
	}
	return &constHistogram{
		desc:       desc,
		count:      count,
		sum:        sum,
		buckets:    buckets,
		labelPairs: MakeLabelPairs(desc, labelValues),
	}, nil
}

// MustNewConstHistogram is a version of NewConstHistogram that panics where
// NewConstHistogram would have returned an error.
func MustNewConstHistogram(
	desc *Desc,
	count uint64,
	sum float64,
	buckets map[float64]uint64,
	labelValues ...string,
) Metric {
	m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...)
	if err != nil {
		panic(err)
	}
	return m
}

// NewConstHistogramWithCreatedTimestamp does the same thing as NewConstHistogram but sets the created timestamp.
func NewConstHistogramWithCreatedTimestamp(
	desc *Desc,
	count uint64,
	sum float64,
	buckets map[float64]uint64,
	ct time.Time,
	labelValues ...string,
) (Metric, error) {
	if desc.err != nil {
		return nil, desc.err
	}
	if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil {
		return nil, err
	}
	return &constHistogram{
		desc:       desc,
		count:      count,
		sum:        sum,
		buckets:    buckets,
		labelPairs: MakeLabelPairs(desc, labelValues),
		createdTs:  timestamppb.New(ct),
	}, nil
}

// MustNewConstHistogramWithCreatedTimestamp is a version of NewConstHistogramWithCreatedTimestamp that panics where
// NewConstHistogramWithCreatedTimestamp would have returned an error.
func MustNewConstHistogramWithCreatedTimestamp(
	desc *Desc,
	count uint64,
	sum float64,
	buckets map[float64]uint64,
	ct time.Time,
	labelValues ...string,
) Metric {
	m, err := NewConstHistogramWithCreatedTimestamp(desc, count, sum, buckets, ct, labelValues...)
	if err != nil {
		panic(err)
	}
	return m
}

type buckSort []*dto.Bucket

func (s buckSort) Len() int {
	return len(s)
}

func (s buckSort) Swap(i, j int) {
	s[i], s[j] = s[j], s[i]
}

func (s buckSort) Less(i, j int) bool {
	return s[i].GetUpperBound() < s[j].GetUpperBound()
}

// pickSchema returns the largest number n between -4 and 8 such that
// 2^(2^-n) is less or equal the provided bucketFactor.
//
// Special cases:
//   - bucketFactor <= 1: panics.
//   - bucketFactor < 2^(2^-8) (but > 1): still returns 8.
func pickSchema(bucketFactor float64) int32 {
	if bucketFactor <= 1 {
		panic(fmt.Errorf("bucketFactor %f is <=1", bucketFactor))
	}
	floor := math.Floor(math.Log2(math.Log2(bucketFactor)))
	switch {
	case floor <= -8:
		return nativeHistogramSchemaMaximum
	case floor >= 4:
		return nativeHistogramSchemaMinimum
	default:
		return -int32(floor)
	}
}

func makeBuckets(buckets *sync.Map) ([]*dto.BucketSpan, []int64) {
	var ii []int
	buckets.Range(func(k, v interface{}) bool {
		ii = append(ii, k.(int))
		return true
	})
	sort.Ints(ii)

	if len(ii) == 0 {
		return nil, nil
	}

	var (
		spans     []*dto.BucketSpan
		deltas    []int64
		prevCount int64
		nextI     int
	)

	appendDelta := func(count int64) {
		*spans[len(spans)-1].Length++
		deltas = append(deltas, count-prevCount)
		prevCount = count
	}

	for n, i := range ii {
		v, _ := buckets.Load(i)
		count := atomic.LoadInt64(v.(*int64))
		// Multiple spans with only small gaps in between are probably
		// encoded more efficiently as one larger span with a few empty
		// buckets. Needs some research to find the sweet spot. For now,
		// we assume that gaps of one or two buckets should not create
		// a new span.
		iDelta := int32(i - nextI)
		if n == 0 || iDelta > 2 {
			// We have to create a new span, either because we are
			// at the very beginning, or because we have found a gap
			// of more than two buckets.
			spans = append(spans, &dto.BucketSpan{
				Offset: proto.Int32(iDelta),
				Length: proto.Uint32(0),
			})
		} else {
			// We have found a small gap (or no gap at all).
			// Insert empty buckets as needed.
			for j := int32(0); j < iDelta; j++ {
				appendDelta(0)
			}
		}
		appendDelta(count)
		nextI = i + 1
	}
	return spans, deltas
}

// addToBucket increments the sparse bucket at key by the provided amount. It
// returns true if a new sparse bucket had to be created for that.
func addToBucket(buckets *sync.Map, key int, increment int64) bool {
	if existingBucket, ok := buckets.Load(key); ok {
		// Fast path without allocation.
		atomic.AddInt64(existingBucket.(*int64), increment)
		return false
	}
	// Bucket doesn't exist yet. Slow path allocating new counter.
	newBucket := increment // TODO(beorn7): Check if this is sufficient to not let increment escape.
	if actualBucket, loaded := buckets.LoadOrStore(key, &newBucket); loaded {
		// The bucket was created concurrently in another goroutine.
		// Have to increment after all.
		atomic.AddInt64(actualBucket.(*int64), increment)
		return false
	}
	return true
}

// addAndReset returns a function to be used with sync.Map.Range of spare
// buckets in coldCounts. It increments the buckets in the provided hotBuckets
// according to the buckets ranged through. It then resets all buckets ranged
// through to 0 (but leaves them in place so that they don't need to get
// recreated on the next scrape).
func addAndReset(hotBuckets *sync.Map, bucketNumber *uint32) func(k, v interface{}) bool {
	return func(k, v interface{}) bool {
		bucket := v.(*int64)
		if addToBucket(hotBuckets, k.(int), atomic.LoadInt64(bucket)) {
			atomic.AddUint32(bucketNumber, 1)
		}
		atomic.StoreInt64(bucket, 0)
		return true
	}
}

func deleteSyncMap(m *sync.Map) {
	m.Range(func(k, v interface{}) bool {
		m.Delete(k)
		return true
	})
}

func findSmallestKey(m *sync.Map) int {
	result := math.MaxInt32
	m.Range(func(k, v interface{}) bool {
		key := k.(int)
		if key < result {
			result = key
		}
		return true
	})
	return result
}

func getLe(key int, schema int32) float64 {
	// Here a bit of context about the behavior for the last bucket counting
	// regular numbers (called simply "last bucket" below) and the bucket
	// counting observations of ±Inf (called "inf bucket" below, with a key
	// one higher than that of the "last bucket"):
	//
	// If we apply the usual formula to the last bucket, its upper bound
	// would be calculated as +Inf. The reason is that the max possible
	// regular float64 number (math.MaxFloat64) doesn't coincide with one of
	// the calculated bucket boundaries. So the calculated boundary has to
	// be larger than math.MaxFloat64, and the only float64 larger than
	// math.MaxFloat64 is +Inf. However, we want to count actual
	// observations of ±Inf in the inf bucket. Therefore, we have to treat
	// the upper bound of the last bucket specially and set it to
	// math.MaxFloat64. (The upper bound of the inf bucket, with its key
	// being one higher than that of the last bucket, naturally comes out as
	// +Inf by the usual formula. So that's fine.)
	//
	// math.MaxFloat64 has a frac of 0.9999999999999999 and an exp of
	// 1024. If there were a float64 number following math.MaxFloat64, it
	// would have a frac of 1.0 and an exp of 1024, or equivalently a frac
	// of 0.5 and an exp of 1025. However, since frac must be smaller than
	// 1, and exp must be smaller than 1025, either representation overflows
	// a float64. (Which, in turn, is the reason that math.MaxFloat64 is the
	// largest possible float64. Q.E.D.) However, the formula for
	// calculating the upper bound from the idx and schema of the last
	// bucket results in precisely that. It is either frac=1.0 & exp=1024
	// (for schema < 0) or frac=0.5 & exp=1025 (for schema >=0). (This is,
	// by the way, a power of two where the exponent itself is a power of
	// two, 2¹⁰ in fact, which coinicides with a bucket boundary in all
	// schemas.) So these are the special cases we have to catch below.
	if schema < 0 {
		exp := key << -schema
		if exp == 1024 {
			// This is the last bucket before the overflow bucket
			// (for ±Inf observations). Return math.MaxFloat64 as
			// explained above.
			return math.MaxFloat64
		}
		return math.Ldexp(1, exp)
	}

	fracIdx := key & ((1 << schema) - 1)
	frac := nativeHistogramBounds[schema][fracIdx]
	exp := (key >> schema) + 1
	if frac == 0.5 && exp == 1025 {
		// This is the last bucket before the overflow bucket (for ±Inf
		// observations). Return math.MaxFloat64 as explained above.
		return math.MaxFloat64
	}
	return math.Ldexp(frac, exp)
}

// waitForCooldown returns after the count field in the provided histogramCounts
// has reached the provided count value.
func waitForCooldown(count uint64, counts *histogramCounts) {
	for count != atomic.LoadUint64(&counts.count) {
		runtime.Gosched() // Let observations get work done.
	}
}

// atomicAddFloat adds the provided float atomically to another float
// represented by the bit pattern the bits pointer is pointing to.
func atomicAddFloat(bits *uint64, v float64) {
	for {
		loadedBits := atomic.LoadUint64(bits)
		newBits := math.Float64bits(math.Float64frombits(loadedBits) + v)
		if atomic.CompareAndSwapUint64(bits, loadedBits, newBits) {
			break
		}
	}
}

// atomicDecUint32 atomically decrements the uint32 p points to.  See
// https://pkg.go.dev/sync/atomic#AddUint32 to understand how this is done.
func atomicDecUint32(p *uint32) {
	atomic.AddUint32(p, ^uint32(0))
}

// addAndResetCounts adds certain fields (count, sum, conventional buckets, zero
// bucket) from the cold counts to the corresponding fields in the hot
// counts. Those fields are then reset to 0 in the cold counts.
func addAndResetCounts(hot, cold *histogramCounts) {
	atomic.AddUint64(&hot.count, atomic.LoadUint64(&cold.count))
	atomic.StoreUint64(&cold.count, 0)
	coldSum := math.Float64frombits(atomic.LoadUint64(&cold.sumBits))
	atomicAddFloat(&hot.sumBits, coldSum)
	atomic.StoreUint64(&cold.sumBits, 0)
	for i := range hot.buckets {
		atomic.AddUint64(&hot.buckets[i], atomic.LoadUint64(&cold.buckets[i]))
		atomic.StoreUint64(&cold.buckets[i], 0)
	}
	atomic.AddUint64(&hot.nativeHistogramZeroBucket, atomic.LoadUint64(&cold.nativeHistogramZeroBucket))
	atomic.StoreUint64(&cold.nativeHistogramZeroBucket, 0)
}

type nativeExemplars struct {
	sync.Mutex

	// Time-to-live for exemplars, it is set to -1 if exemplars are disabled, that is NativeHistogramMaxExemplars is below 0.
	// The ttl is used on insertion to remove an exemplar that is older than ttl, if present.
	ttl time.Duration

	exemplars []*dto.Exemplar
}

func (n *nativeExemplars) isEnabled() bool {
	return n.ttl != -1
}

func makeNativeExemplars(ttl time.Duration, maxCount int) nativeExemplars {
	if ttl == 0 {
		ttl = 5 * time.Minute
	}

	if maxCount == 0 {
		maxCount = 10
	}

	if maxCount < 0 {
		maxCount = 0
		ttl = -1
	}

	return nativeExemplars{
		ttl:       ttl,
		exemplars: make([]*dto.Exemplar, 0, maxCount),
	}
}

func (n *nativeExemplars) addExemplar(e *dto.Exemplar) {
	if !n.isEnabled() {
		return
	}

	n.Lock()
	defer n.Unlock()

	// When the number of exemplars has not yet exceeded or
	// is equal to cap(n.exemplars), then
	// insert the new exemplar directly.
	if len(n.exemplars) < cap(n.exemplars) {
		var nIdx int
		for nIdx = 0; nIdx < len(n.exemplars); nIdx++ {
			if *e.Value < *n.exemplars[nIdx].Value {
				break
			}
		}
		n.exemplars = append(n.exemplars[:nIdx], append([]*dto.Exemplar{e}, n.exemplars[nIdx:]...)...)
		return
	}

	if len(n.exemplars) == 1 {
		// When the number of exemplars is 1, then
		// replace the existing exemplar with the new exemplar.
		n.exemplars[0] = e
		return
	}
	// From this point on, the number of exemplars is greater than 1.

	// When the number of exemplars exceeds the limit, remove one exemplar.
	var (
		ot    = time.Time{} // Oldest timestamp seen. Initial value doesn't matter as we replace it due to otIdx == -1 in the loop.
		otIdx = -1          // Index of the exemplar with the oldest timestamp.

		md = -1.0 // Logarithm of the delta of the closest pair of exemplars.

		// The insertion point of the new exemplar in the exemplars slice after insertion.
		// This is calculated purely based on the order of the exemplars by value.
		// nIdx == len(n.exemplars) means the new exemplar is to be inserted after the end.
		nIdx = -1

		// rIdx is ultimately the index for the exemplar that we are replacing with the new exemplar.
		// The aim is to keep a good spread of exemplars by value and not let them bunch up too much.
		// It is calculated in 3 steps:
		//   1. First we set rIdx to the index of the older exemplar within the closest pair by value.
		//      That is the following will be true (on log scale):
		//      either the exemplar pair on index (rIdx-1, rIdx) or (rIdx, rIdx+1) will have
		//      the closest values to each other from all pairs.
		//      For example, suppose the values are distributed like this:
		//        |-----------x-------------x----------------x----x-----|
		//                                                   ^--rIdx as this is older.
		//      Or like this:
		//        |-----------x-------------x----------------x----x-----|
		//                                                        ^--rIdx as this is older.
		//   2. If there is an exemplar that expired, then we simple reset rIdx to that index.
		//   3. We check if by inserting the new exemplar we would create a closer pair at
		//      (nIdx-1, nIdx) or (nIdx, nIdx+1) and set rIdx to nIdx-1 or nIdx accordingly to
		//      keep the spread of exemplars by value; otherwise we keep rIdx as it is.
		rIdx = -1
		cLog float64 // Logarithm of the current exemplar.
		pLog float64 // Logarithm of the previous exemplar.
	)

	for i, exemplar := range n.exemplars {
		// Find the exemplar with the oldest timestamp.
		if otIdx == -1 || exemplar.Timestamp.AsTime().Before(ot) {
			ot = exemplar.Timestamp.AsTime()
			otIdx = i
		}

		// Find the index at which to insert new the exemplar.
		if nIdx == -1 && *e.Value <= *exemplar.Value {
			nIdx = i
		}

		// Find the two closest exemplars and pick the one the with older timestamp.
		pLog = cLog
		cLog = math.Log(exemplar.GetValue())
		if i == 0 {
			continue
		}
		diff := math.Abs(cLog - pLog)
		if md == -1 || diff < md {
			// The closest exemplar pair is at index: i-1, i.
			// Choose the exemplar with the older timestamp for replacement.
			md = diff
			if n.exemplars[i].Timestamp.AsTime().Before(n.exemplars[i-1].Timestamp.AsTime()) {
				rIdx = i
			} else {
				rIdx = i - 1
			}
		}

	}

	// If all existing exemplar are smaller than new exemplar,
	// then the exemplar should be inserted at the end.
	if nIdx == -1 {
		nIdx = len(n.exemplars)
	}
	// Here, we have the following relationships:
	// n.exemplars[nIdx-1].Value < e.Value (if nIdx > 0)
	// e.Value <= n.exemplars[nIdx].Value (if nIdx < len(n.exemplars))

	if otIdx != -1 && e.Timestamp.AsTime().Sub(ot) > n.ttl {
		// If the oldest exemplar has expired, then replace it with the new exemplar.
		rIdx = otIdx
	} else {
		// In the previous for loop, when calculating the closest pair of exemplars,
		// we did not take into account the newly inserted exemplar.
		// So we need to calculate with the newly inserted exemplar again.
		elog := math.Log(e.GetValue())
		if nIdx > 0 {
			diff := math.Abs(elog - math.Log(n.exemplars[nIdx-1].GetValue()))
			if diff < md {
				// The value we are about to insert is closer to the previous exemplar at the insertion point than what we calculated before in rIdx.
				//                                            v--rIdx
				// |-----------x-n-----------x----------------x----x-----|
				//     nIdx-1--^ ^--new exemplar value
				// Do not make the spread worse, replace nIdx-1 and not rIdx.
				md = diff
				rIdx = nIdx - 1
			}
		}
		if nIdx < len(n.exemplars) {
			diff := math.Abs(math.Log(n.exemplars[nIdx].GetValue()) - elog)
			if diff < md {
				// The value we are about to insert is closer to the next exemplar at the insertion point than what we calculated before in rIdx.
				//                                            v--rIdx
				// |-----------x-----------n-x----------------x----x-----|
				//     new exemplar value--^ ^--nIdx
				// Do not make the spread worse, replace nIdx-1 and not rIdx.
				rIdx = nIdx
			}
		}
	}

	// Adjust the slice according to rIdx and nIdx.
	switch {
	case rIdx == nIdx:
		n.exemplars[nIdx] = e
	case rIdx < nIdx:
		n.exemplars = append(n.exemplars[:rIdx], append(n.exemplars[rIdx+1:nIdx], append([]*dto.Exemplar{e}, n.exemplars[nIdx:]...)...)...)
	case rIdx > nIdx:
		n.exemplars = append(n.exemplars[:nIdx], append([]*dto.Exemplar{e}, append(n.exemplars[nIdx:rIdx], n.exemplars[rIdx+1:]...)...)...)
	}
}

type constNativeHistogram struct {
	desc *Desc
	dto.Histogram
	labelPairs []*dto.LabelPair
}

func validateCount(sum float64, count uint64, negativeBuckets, positiveBuckets map[int]int64, zeroBucket uint64) error {
	var bucketPopulationSum int64
	for _, v := range positiveBuckets {
		bucketPopulationSum += v
	}
	for _, v := range negativeBuckets {
		bucketPopulationSum += v
	}
	bucketPopulationSum += int64(zeroBucket)

	// If the sum of observations is NaN, the number of observations must be greater or equal to the sum of all bucket counts.
	// Otherwise, the number of observations must be equal to the sum of all bucket counts .

	if math.IsNaN(sum) && bucketPopulationSum > int64(count) ||
		!math.IsNaN(sum) && bucketPopulationSum != int64(count) {
		return errors.New("the sum of all bucket populations exceeds the count of observations")
	}
	return nil
}

// NewConstNativeHistogram returns a metric representing a Prometheus native histogram with
// fixed values for the count, sum, and positive/negative/zero bucket counts. As those parameters
// cannot be changed, the returned value does not implement the Histogram
// interface (but only the Metric interface). Users of this package will not
// have much use for it in regular operations. However, when implementing custom
// OpenTelemetry Collectors, it is useful as a throw-away metric that is generated on the fly
// to send it to Prometheus in the Collect method.
//
// zeroBucket counts all (positive and negative)
// observations in the zero bucket (with an absolute value less or equal
// the current threshold).
// positiveBuckets and negativeBuckets are separate maps for negative and positive
// observations. The map's value is an int64, counting observations in
// that bucket. The map's key is the
// index of the bucket according to the used
// Schema. Index 0 is for an upper bound of 1 in positive buckets and for a lower bound of -1 in negative buckets.
// NewConstNativeHistogram returns an error if
//   - the length of labelValues is not consistent with the variable labels in Desc or if Desc is invalid.
//   - the schema passed is not between 8 and -4
//   - the sum of counts in all buckets including the zero bucket does not equal the count if sum is not NaN (or exceeds the count if sum is NaN)
//
// See https://opentelemetry.io/docs/specs/otel/compatibility/prometheus_and_openmetrics/#exponential-histograms for more details about the conversion from OTel to Prometheus.
func NewConstNativeHistogram(
	desc *Desc,
	count uint64,
	sum float64,
	positiveBuckets, negativeBuckets map[int]int64,
	zeroBucket uint64,
	schema int32,
	zeroThreshold float64,
	createdTimestamp time.Time,
	labelValues ...string,
) (Metric, error) {
	if desc.err != nil {
		return nil, desc.err
	}
	if err := validateLabelValues(labelValues, len(desc.variableLabels.names)); err != nil {
		return nil, err
	}
	if schema > nativeHistogramSchemaMaximum || schema < nativeHistogramSchemaMinimum {
		return nil, errors.New("invalid native histogram schema")
	}
	if err := validateCount(sum, count, negativeBuckets, positiveBuckets, zeroBucket); err != nil {
		return nil, err
	}

	NegativeSpan, NegativeDelta := makeBucketsFromMap(negativeBuckets)
	PositiveSpan, PositiveDelta := makeBucketsFromMap(positiveBuckets)
	ret := &constNativeHistogram{
		desc: desc,
		Histogram: dto.Histogram{
			CreatedTimestamp: timestamppb.New(createdTimestamp),
			Schema:           &schema,
			ZeroThreshold:    &zeroThreshold,
			SampleCount:      &count,
			SampleSum:        &sum,

			NegativeSpan:  NegativeSpan,
			NegativeDelta: NegativeDelta,

			PositiveSpan:  PositiveSpan,
			PositiveDelta: PositiveDelta,

			ZeroCount: proto.Uint64(zeroBucket),
		},
		labelPairs: MakeLabelPairs(desc, labelValues),
	}
	if *ret.ZeroThreshold == 0 && *ret.ZeroCount == 0 && len(ret.PositiveSpan) == 0 && len(ret.NegativeSpan) == 0 {
		ret.PositiveSpan = []*dto.BucketSpan{{
			Offset: proto.Int32(0),
			Length: proto.Uint32(0),
		}}
	}
	return ret, nil
}

// MustNewConstNativeHistogram is a version of NewConstNativeHistogram that panics where
// NewConstNativeHistogram would have returned an error.
func MustNewConstNativeHistogram(
	desc *Desc,
	count uint64,
	sum float64,
	positiveBuckets, negativeBuckets map[int]int64,
	zeroBucket uint64,
	nativeHistogramSchema int32,
	nativeHistogramZeroThreshold float64,
	createdTimestamp time.Time,
	labelValues ...string,
) Metric {
	nativehistogram, err := NewConstNativeHistogram(desc,
		count,
		sum,
		positiveBuckets,
		negativeBuckets,
		zeroBucket,
		nativeHistogramSchema,
		nativeHistogramZeroThreshold,
		createdTimestamp,
		labelValues...)
	if err != nil {
		panic(err)
	}
	return nativehistogram
}

func (h *constNativeHistogram) Desc() *Desc {
	return h.desc
}

func (h *constNativeHistogram) Write(out *dto.Metric) error {
	out.Histogram = &h.Histogram
	out.Label = h.labelPairs
	return nil
}

func makeBucketsFromMap(buckets map[int]int64) ([]*dto.BucketSpan, []int64) {
	if len(buckets) == 0 {
		return nil, nil
	}
	var ii []int
	for k := range buckets {
		ii = append(ii, k)
	}
	sort.Ints(ii)

	var (
		spans     []*dto.BucketSpan
		deltas    []int64
		prevCount int64
		nextI     int
	)

	appendDelta := func(count int64) {
		*spans[len(spans)-1].Length++
		deltas = append(deltas, count-prevCount)
		prevCount = count
	}

	for n, i := range ii {
		count := buckets[i]
		// Multiple spans with only small gaps in between are probably
		// encoded more efficiently as one larger span with a few empty
		// buckets. Needs some research to find the sweet spot. For now,
		// we assume that gaps of one or two buckets should not create
		// a new span.
		iDelta := int32(i - nextI)
		if n == 0 || iDelta > 2 {
			// We have to create a new span, either because we are
			// at the very beginning, or because we have found a gap
			// of more than two buckets.
			spans = append(spans, &dto.BucketSpan{
				Offset: proto.Int32(iDelta),
				Length: proto.Uint32(0),
			})
		} else {
			// We have found a small gap (or no gap at all).
			// Insert empty buckets as needed.
			for j := int32(0); j < iDelta; j++ {
				appendDelta(0)
			}
		}
		appendDelta(count)
		nextI = i + 1
	}
	return spans, deltas
}