1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.17
// +build go1.17
package internal
import (
"math"
"path"
"runtime/metrics"
"strings"
"github.com/prometheus/common/model"
)
// RuntimeMetricsToProm produces a Prometheus metric name from a runtime/metrics
// metric description and validates whether the metric is suitable for integration
// with Prometheus.
//
// Returns false if a name could not be produced, or if Prometheus does not understand
// the runtime/metrics Kind.
//
// Note that the main reason a name couldn't be produced is if the runtime/metrics
// package exports a name with characters outside the valid Prometheus metric name
// character set. This is theoretically possible, but should never happen in practice.
// Still, don't rely on it.
func RuntimeMetricsToProm(d *metrics.Description) (string, string, string, bool) {
namespace := "go"
comp := strings.SplitN(d.Name, ":", 2)
key := comp[0]
unit := comp[1]
// The last path element in the key is the name,
// the rest is the subsystem.
subsystem := path.Dir(key[1:] /* remove leading / */)
name := path.Base(key)
// subsystem is translated by replacing all / and - with _.
subsystem = strings.ReplaceAll(subsystem, "/", "_")
subsystem = strings.ReplaceAll(subsystem, "-", "_")
// unit is translated assuming that the unit contains no
// non-ASCII characters.
unit = strings.ReplaceAll(unit, "-", "_")
unit = strings.ReplaceAll(unit, "*", "_")
unit = strings.ReplaceAll(unit, "/", "_per_")
// name has - replaced with _ and is concatenated with the unit and
// other data.
name = strings.ReplaceAll(name, "-", "_")
name += "_" + unit
if d.Cumulative && d.Kind != metrics.KindFloat64Histogram {
name += "_total"
}
// Our current conversion moves to legacy naming, so use legacy validation.
valid := model.IsValidLegacyMetricName(namespace + "_" + subsystem + "_" + name)
switch d.Kind {
case metrics.KindUint64:
case metrics.KindFloat64:
case metrics.KindFloat64Histogram:
default:
valid = false
}
return namespace, subsystem, name, valid
}
// RuntimeMetricsBucketsForUnit takes a set of buckets obtained for a runtime/metrics histogram
// type (so, lower-bound inclusive) and a unit from a runtime/metrics name, and produces
// a reduced set of buckets. This function always removes any -Inf bucket as it's represented
// as the bottom-most upper-bound inclusive bucket in Prometheus.
func RuntimeMetricsBucketsForUnit(buckets []float64, unit string) []float64 {
switch unit {
case "bytes":
// Re-bucket as powers of 2.
return reBucketExp(buckets, 2)
case "seconds":
// Re-bucket as powers of 10 and then merge all buckets greater
// than 1 second into the +Inf bucket.
b := reBucketExp(buckets, 10)
for i := range b {
if b[i] <= 1 {
continue
}
b[i] = math.Inf(1)
b = b[:i+1]
break
}
return b
}
return buckets
}
// reBucketExp takes a list of bucket boundaries (lower bound inclusive) and
// downsamples the buckets to those a multiple of base apart. The end result
// is a roughly exponential (in many cases, perfectly exponential) bucketing
// scheme.
func reBucketExp(buckets []float64, base float64) []float64 {
bucket := buckets[0]
var newBuckets []float64
// We may see a -Inf here, in which case, add it and skip it
// since we risk producing NaNs otherwise.
//
// We need to preserve -Inf values to maintain runtime/metrics
// conventions. We'll strip it out later.
if bucket == math.Inf(-1) {
newBuckets = append(newBuckets, bucket)
buckets = buckets[1:]
bucket = buckets[0]
}
// From now on, bucket should always have a non-Inf value because
// Infs are only ever at the ends of the bucket lists, so
// arithmetic operations on it are non-NaN.
for i := 1; i < len(buckets); i++ {
if bucket >= 0 && buckets[i] < bucket*base {
// The next bucket we want to include is at least bucket*base.
continue
} else if bucket < 0 && buckets[i] < bucket/base {
// In this case the bucket we're targeting is negative, and since
// we're ascending through buckets here, we need to divide to get
// closer to zero exponentially.
continue
}
// The +Inf bucket will always be the last one, and we'll always
// end up including it here because bucket
newBuckets = append(newBuckets, bucket)
bucket = buckets[i]
}
return append(newBuckets, bucket)
}
|