File: private_key.go

package info (click to toggle)
golang-github-protonmail-go-crypto 0.0~git20230124.0acdc8a-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bookworm-backports
  • size: 1,304 kB
  • sloc: makefile: 7
file content (736 lines) | stat: -rw-r--r-- 19,192 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package packet

import (
	"bytes"
	"crypto"
	"crypto/cipher"
	"crypto/dsa"
	"crypto/rand"
	"crypto/rsa"
	"crypto/sha1"
	"io"
	"io/ioutil"
	"math/big"
	"strconv"
	"time"

	"github.com/ProtonMail/go-crypto/openpgp/ecdh"
	"github.com/ProtonMail/go-crypto/openpgp/ecdsa"
	"github.com/ProtonMail/go-crypto/openpgp/eddsa"
	"github.com/ProtonMail/go-crypto/openpgp/elgamal"
	"github.com/ProtonMail/go-crypto/openpgp/errors"
	"github.com/ProtonMail/go-crypto/openpgp/internal/encoding"
	"github.com/ProtonMail/go-crypto/openpgp/s2k"
)

// PrivateKey represents a possibly encrypted private key. See RFC 4880,
// section 5.5.3.
type PrivateKey struct {
	PublicKey
	Encrypted     bool // if true then the private key is unavailable until Decrypt has been called.
	encryptedData []byte
	cipher        CipherFunction
	s2k           func(out, in []byte)
	// An *{rsa|dsa|elgamal|ecdh|ecdsa|ed25519}.PrivateKey or
	// crypto.Signer/crypto.Decrypter (Decryptor RSA only).
	PrivateKey   interface{}
	sha1Checksum bool
	iv           []byte

	// Type of encryption of the S2K packet
	// Allowed values are 0 (Not encrypted), 254 (SHA1), or
	// 255 (2-byte checksum)
	s2kType S2KType
	// Full parameters of the S2K packet
	s2kParams *s2k.Params
}

//S2KType s2k packet type
type S2KType uint8

const (
	// S2KNON unencrypt
	S2KNON S2KType = 0
	// S2KSHA1 sha1 sum check
	S2KSHA1 S2KType = 254
	// S2KCHECKSUM sum check
	S2KCHECKSUM S2KType = 255
)

func NewRSAPrivateKey(creationTime time.Time, priv *rsa.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewRSAPublicKey(creationTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

func NewDSAPrivateKey(creationTime time.Time, priv *dsa.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewDSAPublicKey(creationTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

func NewElGamalPrivateKey(creationTime time.Time, priv *elgamal.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewElGamalPublicKey(creationTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

func NewECDSAPrivateKey(creationTime time.Time, priv *ecdsa.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewECDSAPublicKey(creationTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

func NewEdDSAPrivateKey(creationTime time.Time, priv *eddsa.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewEdDSAPublicKey(creationTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

func NewECDHPrivateKey(creationTime time.Time, priv *ecdh.PrivateKey) *PrivateKey {
	pk := new(PrivateKey)
	pk.PublicKey = *NewECDHPublicKey(creationTime, &priv.PublicKey)
	pk.PrivateKey = priv
	return pk
}

// NewSignerPrivateKey creates a PrivateKey from a crypto.Signer that
// implements RSA, ECDSA or EdDSA.
func NewSignerPrivateKey(creationTime time.Time, signer interface{}) *PrivateKey {
	pk := new(PrivateKey)
	// In general, the public Keys should be used as pointers. We still
	// type-switch on the values, for backwards-compatibility.
	switch pubkey := signer.(type) {
	case *rsa.PrivateKey:
		pk.PublicKey = *NewRSAPublicKey(creationTime, &pubkey.PublicKey)
	case rsa.PrivateKey:
		pk.PublicKey = *NewRSAPublicKey(creationTime, &pubkey.PublicKey)
	case *ecdsa.PrivateKey:
		pk.PublicKey = *NewECDSAPublicKey(creationTime, &pubkey.PublicKey)
	case ecdsa.PrivateKey:
		pk.PublicKey = *NewECDSAPublicKey(creationTime, &pubkey.PublicKey)
	case *eddsa.PrivateKey:
		pk.PublicKey = *NewEdDSAPublicKey(creationTime, &pubkey.PublicKey)
	case eddsa.PrivateKey:
		pk.PublicKey = *NewEdDSAPublicKey(creationTime, &pubkey.PublicKey)
	default:
		panic("openpgp: unknown signer type in NewSignerPrivateKey")
	}
	pk.PrivateKey = signer
	return pk
}

// NewDecrypterPrivateKey creates a PrivateKey from a *{rsa|elgamal|ecdh}.PrivateKey.
func NewDecrypterPrivateKey(creationTime time.Time, decrypter interface{}) *PrivateKey {
	pk := new(PrivateKey)
	switch priv := decrypter.(type) {
	case *rsa.PrivateKey:
		pk.PublicKey = *NewRSAPublicKey(creationTime, &priv.PublicKey)
	case *elgamal.PrivateKey:
		pk.PublicKey = *NewElGamalPublicKey(creationTime, &priv.PublicKey)
	case *ecdh.PrivateKey:
		pk.PublicKey = *NewECDHPublicKey(creationTime, &priv.PublicKey)
	default:
		panic("openpgp: unknown decrypter type in NewDecrypterPrivateKey")
	}
	pk.PrivateKey = decrypter
	return pk
}

func (pk *PrivateKey) parse(r io.Reader) (err error) {
	err = (&pk.PublicKey).parse(r)
	if err != nil {
		return
	}
	v5 := pk.PublicKey.Version == 5

	var buf [1]byte
	_, err = readFull(r, buf[:])
	if err != nil {
		return
	}
	pk.s2kType = S2KType(buf[0])
	var optCount [1]byte
	if v5 {
		if _, err = readFull(r, optCount[:]); err != nil {
			return
		}
	}

	switch pk.s2kType {
	case S2KNON:
		pk.s2k = nil
		pk.Encrypted = false
	case S2KSHA1, S2KCHECKSUM:
		if v5 && pk.s2kType == S2KCHECKSUM {
			return errors.StructuralError("wrong s2k identifier for version 5")
		}
		_, err = readFull(r, buf[:])
		if err != nil {
			return
		}
		pk.cipher = CipherFunction(buf[0])
		pk.s2kParams, err = s2k.ParseIntoParams(r)
		if err != nil {
			return
		}
		if pk.s2kParams.Dummy() {
			return
		}
		pk.s2k, err = pk.s2kParams.Function()
		if err != nil {
			return
		}
		pk.Encrypted = true
		if pk.s2kType == S2KSHA1 {
			pk.sha1Checksum = true
		}
	default:
		return errors.UnsupportedError("deprecated s2k function in private key")
	}

	if pk.Encrypted {
		blockSize := pk.cipher.blockSize()
		if blockSize == 0 {
			return errors.UnsupportedError("unsupported cipher in private key: " + strconv.Itoa(int(pk.cipher)))
		}
		pk.iv = make([]byte, blockSize)
		_, err = readFull(r, pk.iv)
		if err != nil {
			return
		}
	}

	var privateKeyData []byte
	if v5 {
		var n [4]byte /* secret material four octet count */
		_, err = readFull(r, n[:])
		if err != nil {
			return
		}
		count := uint32(uint32(n[0])<<24 | uint32(n[1])<<16 | uint32(n[2])<<8 | uint32(n[3]))
		if !pk.Encrypted {
			count = count + 2 /* two octet checksum */
		}
		privateKeyData = make([]byte, count)
		_, err = readFull(r, privateKeyData)
		if err != nil {
			return
		}
	} else {
		privateKeyData, err = ioutil.ReadAll(r)
		if err != nil {
			return
		}
	}
	if !pk.Encrypted {
		if len(privateKeyData) < 2 {
			return errors.StructuralError("truncated private key data")
		}
		var sum uint16
		for i := 0; i < len(privateKeyData)-2; i++ {
			sum += uint16(privateKeyData[i])
		}
		if privateKeyData[len(privateKeyData)-2] != uint8(sum>>8) ||
			privateKeyData[len(privateKeyData)-1] != uint8(sum) {
			return errors.StructuralError("private key checksum failure")
		}
		privateKeyData = privateKeyData[:len(privateKeyData)-2]
		return pk.parsePrivateKey(privateKeyData)
	}

	pk.encryptedData = privateKeyData
	return
}

// Dummy returns true if the private key is a dummy key. This is a GNU extension.
func (pk *PrivateKey) Dummy() bool {
	return pk.s2kParams.Dummy()
}

func mod64kHash(d []byte) uint16 {
	var h uint16
	for _, b := range d {
		h += uint16(b)
	}
	return h
}

func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
	contents := bytes.NewBuffer(nil)
	err = pk.PublicKey.serializeWithoutHeaders(contents)
	if err != nil {
		return
	}
	if _, err = contents.Write([]byte{uint8(pk.s2kType)}); err != nil {
		return
	}

	optional := bytes.NewBuffer(nil)
	if pk.Encrypted || pk.Dummy() {
		optional.Write([]byte{uint8(pk.cipher)})
		if err := pk.s2kParams.Serialize(optional); err != nil {
			return err
		}
		if pk.Encrypted {
			optional.Write(pk.iv)
		}
	}
	if pk.Version == 5 {
		contents.Write([]byte{uint8(optional.Len())})
	}
	io.Copy(contents, optional)

	if !pk.Dummy() {
		l := 0
		var priv []byte
		if !pk.Encrypted {
			buf := bytes.NewBuffer(nil)
			err = pk.serializePrivateKey(buf)
			if err != nil {
				return err
			}
			l = buf.Len()
			checksum := mod64kHash(buf.Bytes())
			buf.Write([]byte{byte(checksum >> 8), byte(checksum)})
			priv = buf.Bytes()
		} else {
			priv, l = pk.encryptedData, len(pk.encryptedData)
		}

		if pk.Version == 5 {
			contents.Write([]byte{byte(l >> 24), byte(l >> 16), byte(l >> 8), byte(l)})
		}
		contents.Write(priv)
	}

	ptype := packetTypePrivateKey
	if pk.IsSubkey {
		ptype = packetTypePrivateSubkey
	}
	err = serializeHeader(w, ptype, contents.Len())
	if err != nil {
		return
	}
	_, err = io.Copy(w, contents)
	if err != nil {
		return
	}
	return
}

func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) error {
	if _, err := w.Write(new(encoding.MPI).SetBig(priv.D).EncodedBytes()); err != nil {
		return err
	}
	if _, err := w.Write(new(encoding.MPI).SetBig(priv.Primes[1]).EncodedBytes()); err != nil {
		return err
	}
	if _, err := w.Write(new(encoding.MPI).SetBig(priv.Primes[0]).EncodedBytes()); err != nil {
		return err
	}
	_, err := w.Write(new(encoding.MPI).SetBig(priv.Precomputed.Qinv).EncodedBytes())
	return err
}

func serializeDSAPrivateKey(w io.Writer, priv *dsa.PrivateKey) error {
	_, err := w.Write(new(encoding.MPI).SetBig(priv.X).EncodedBytes())
	return err
}

func serializeElGamalPrivateKey(w io.Writer, priv *elgamal.PrivateKey) error {
	_, err := w.Write(new(encoding.MPI).SetBig(priv.X).EncodedBytes())
	return err
}

func serializeECDSAPrivateKey(w io.Writer, priv *ecdsa.PrivateKey) error {
	_, err := w.Write(encoding.NewMPI(priv.MarshalIntegerSecret()).EncodedBytes())
	return err
}

func serializeEdDSAPrivateKey(w io.Writer, priv *eddsa.PrivateKey) error {
	_, err := w.Write(encoding.NewMPI(priv.MarshalByteSecret()).EncodedBytes())
	return err
}

func serializeECDHPrivateKey(w io.Writer, priv *ecdh.PrivateKey) error {
	_, err := w.Write(encoding.NewMPI(priv.MarshalByteSecret()).EncodedBytes())
	return err
}

// Decrypt decrypts an encrypted private key using a passphrase.
func (pk *PrivateKey) Decrypt(passphrase []byte) error {
	if pk.Dummy() {
		return errors.ErrDummyPrivateKey("dummy key found")
	}
	if !pk.Encrypted {
		return nil
	}

	key := make([]byte, pk.cipher.KeySize())
	pk.s2k(key, passphrase)
	block := pk.cipher.new(key)
	cfb := cipher.NewCFBDecrypter(block, pk.iv)

	data := make([]byte, len(pk.encryptedData))
	cfb.XORKeyStream(data, pk.encryptedData)

	if pk.sha1Checksum {
		if len(data) < sha1.Size {
			return errors.StructuralError("truncated private key data")
		}
		h := sha1.New()
		h.Write(data[:len(data)-sha1.Size])
		sum := h.Sum(nil)
		if !bytes.Equal(sum, data[len(data)-sha1.Size:]) {
			return errors.StructuralError("private key checksum failure")
		}
		data = data[:len(data)-sha1.Size]
	} else {
		if len(data) < 2 {
			return errors.StructuralError("truncated private key data")
		}
		var sum uint16
		for i := 0; i < len(data)-2; i++ {
			sum += uint16(data[i])
		}
		if data[len(data)-2] != uint8(sum>>8) ||
			data[len(data)-1] != uint8(sum) {
			return errors.StructuralError("private key checksum failure")
		}
		data = data[:len(data)-2]
	}

	err := pk.parsePrivateKey(data)
	if _, ok := err.(errors.KeyInvalidError); ok {
		return errors.KeyInvalidError("invalid key parameters")
	}
	if err != nil {
		return err
	}

	// Mark key as unencrypted
	pk.s2kType = S2KNON
	pk.s2k = nil
	pk.Encrypted = false
	pk.encryptedData = nil

	return nil
}

// Encrypt encrypts an unencrypted private key using a passphrase.
func (pk *PrivateKey) Encrypt(passphrase []byte) error {
	priv := bytes.NewBuffer(nil)
	err := pk.serializePrivateKey(priv)
	if err != nil {
		return err
	}

	//Default config of private key encryption
	pk.cipher = CipherAES256
	s2kConfig := &s2k.Config{
		S2KMode:  3, //Iterated
		S2KCount: 65536,
		Hash:     crypto.SHA256,
	}

	pk.s2kParams, err = s2k.Generate(rand.Reader, s2kConfig)
	if err != nil {
		return err
	}
	privateKeyBytes := priv.Bytes()
	key := make([]byte, pk.cipher.KeySize())

	pk.sha1Checksum = true
	pk.s2k, err = pk.s2kParams.Function()
	if err != nil {
		return err
	}
	pk.s2k(key, passphrase)
	block := pk.cipher.new(key)
	pk.iv = make([]byte, pk.cipher.blockSize())
	_, err = rand.Read(pk.iv)
	if err != nil {
		return err
	}
	cfb := cipher.NewCFBEncrypter(block, pk.iv)

	if pk.sha1Checksum {
		pk.s2kType = S2KSHA1
		h := sha1.New()
		h.Write(privateKeyBytes)
		sum := h.Sum(nil)
		privateKeyBytes = append(privateKeyBytes, sum...)
	} else {
		pk.s2kType = S2KCHECKSUM
		var sum uint16
		for _, b := range privateKeyBytes {
			sum += uint16(b)
		}
		priv.Write([]byte{uint8(sum >> 8), uint8(sum)})
	}

	pk.encryptedData = make([]byte, len(privateKeyBytes))
	cfb.XORKeyStream(pk.encryptedData, privateKeyBytes)
	pk.Encrypted = true
	pk.PrivateKey = nil
	return err
}

func (pk *PrivateKey) serializePrivateKey(w io.Writer) (err error) {
	switch priv := pk.PrivateKey.(type) {
	case *rsa.PrivateKey:
		err = serializeRSAPrivateKey(w, priv)
	case *dsa.PrivateKey:
		err = serializeDSAPrivateKey(w, priv)
	case *elgamal.PrivateKey:
		err = serializeElGamalPrivateKey(w, priv)
	case *ecdsa.PrivateKey:
		err = serializeECDSAPrivateKey(w, priv)
	case *eddsa.PrivateKey:
		err = serializeEdDSAPrivateKey(w, priv)
	case *ecdh.PrivateKey:
		err = serializeECDHPrivateKey(w, priv)
	default:
		err = errors.InvalidArgumentError("unknown private key type")
	}
	return
}

func (pk *PrivateKey) parsePrivateKey(data []byte) (err error) {
	switch pk.PublicKey.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoRSAEncryptOnly:
		return pk.parseRSAPrivateKey(data)
	case PubKeyAlgoDSA:
		return pk.parseDSAPrivateKey(data)
	case PubKeyAlgoElGamal:
		return pk.parseElGamalPrivateKey(data)
	case PubKeyAlgoECDSA:
		return pk.parseECDSAPrivateKey(data)
	case PubKeyAlgoECDH:
		return pk.parseECDHPrivateKey(data)
	case PubKeyAlgoEdDSA:
		return pk.parseEdDSAPrivateKey(data)
	}
	panic("impossible")
}

func (pk *PrivateKey) parseRSAPrivateKey(data []byte) (err error) {
	rsaPub := pk.PublicKey.PublicKey.(*rsa.PublicKey)
	rsaPriv := new(rsa.PrivateKey)
	rsaPriv.PublicKey = *rsaPub

	buf := bytes.NewBuffer(data)
	d := new(encoding.MPI)
	if _, err := d.ReadFrom(buf); err != nil {
		return err
	}

	p := new(encoding.MPI)
	if _, err := p.ReadFrom(buf); err != nil {
		return err
	}

	q := new(encoding.MPI)
	if _, err := q.ReadFrom(buf); err != nil {
		return err
	}

	rsaPriv.D = new(big.Int).SetBytes(d.Bytes())
	rsaPriv.Primes = make([]*big.Int, 2)
	rsaPriv.Primes[0] = new(big.Int).SetBytes(p.Bytes())
	rsaPriv.Primes[1] = new(big.Int).SetBytes(q.Bytes())
	if err := rsaPriv.Validate(); err != nil {
		return errors.KeyInvalidError(err.Error())
	}
	rsaPriv.Precompute()
	pk.PrivateKey = rsaPriv

	return nil
}

func (pk *PrivateKey) parseDSAPrivateKey(data []byte) (err error) {
	dsaPub := pk.PublicKey.PublicKey.(*dsa.PublicKey)
	dsaPriv := new(dsa.PrivateKey)
	dsaPriv.PublicKey = *dsaPub

	buf := bytes.NewBuffer(data)
	x := new(encoding.MPI)
	if _, err := x.ReadFrom(buf); err != nil {
		return err
	}

	dsaPriv.X = new(big.Int).SetBytes(x.Bytes())
	if err := validateDSAParameters(dsaPriv); err != nil {
		return err
	}
	pk.PrivateKey = dsaPriv

	return nil
}

func (pk *PrivateKey) parseElGamalPrivateKey(data []byte) (err error) {
	pub := pk.PublicKey.PublicKey.(*elgamal.PublicKey)
	priv := new(elgamal.PrivateKey)
	priv.PublicKey = *pub

	buf := bytes.NewBuffer(data)
	x := new(encoding.MPI)
	if _, err := x.ReadFrom(buf); err != nil {
		return err
	}

	priv.X = new(big.Int).SetBytes(x.Bytes())
	if err := validateElGamalParameters(priv); err != nil {
		return err
	}
	pk.PrivateKey = priv

	return nil
}

func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
	ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey)
	ecdsaPriv := ecdsa.NewPrivateKey(*ecdsaPub)

	buf := bytes.NewBuffer(data)
	d := new(encoding.MPI)
	if _, err := d.ReadFrom(buf); err != nil {
		return err
	}

	if err := ecdsaPriv.UnmarshalIntegerSecret(d.Bytes()); err != nil {
		return err
	}
	if err := ecdsa.Validate(ecdsaPriv); err != nil {
		return err
	}
	pk.PrivateKey = ecdsaPriv

	return nil
}

func (pk *PrivateKey) parseECDHPrivateKey(data []byte) (err error) {
	ecdhPub := pk.PublicKey.PublicKey.(*ecdh.PublicKey)
	ecdhPriv := ecdh.NewPrivateKey(*ecdhPub)

	buf := bytes.NewBuffer(data)
	d := new(encoding.MPI)
	if _, err := d.ReadFrom(buf); err != nil {
		return err
	}

	if err := ecdhPriv.UnmarshalByteSecret(d.Bytes()); err != nil {
		return err
	}

	if err := ecdh.Validate(ecdhPriv); err != nil {
		return err
	}

	pk.PrivateKey = ecdhPriv

	return nil
}

func (pk *PrivateKey) parseEdDSAPrivateKey(data []byte) (err error) {
	eddsaPub := pk.PublicKey.PublicKey.(*eddsa.PublicKey)
	eddsaPriv := eddsa.NewPrivateKey(*eddsaPub)
	eddsaPriv.PublicKey = *eddsaPub

	buf := bytes.NewBuffer(data)
	d := new(encoding.MPI)
	if _, err := d.ReadFrom(buf); err != nil {
		return err
	}

	if err = eddsaPriv.UnmarshalByteSecret(d.Bytes()); err != nil {
		return err
	}

	if err := eddsa.Validate(eddsaPriv); err != nil {
		return err
	}

	pk.PrivateKey = eddsaPriv

	return nil
}

func validateDSAParameters(priv *dsa.PrivateKey) error {
	p := priv.P // group prime
	q := priv.Q // subgroup order
	g := priv.G // g has order q mod p
	x := priv.X // secret
	y := priv.Y // y == g**x mod p
	one := big.NewInt(1)
	// expect g, y >= 2 and g < p
	if g.Cmp(one) <= 0 || y.Cmp(one) <= 0 || g.Cmp(p) > 0 {
		return errors.KeyInvalidError("dsa: invalid group")
	}
	// expect p > q
	if p.Cmp(q) <= 0 {
		return errors.KeyInvalidError("dsa: invalid group prime")
	}
	// q should be large enough and divide p-1
	pSub1 := new(big.Int).Sub(p, one)
	if q.BitLen() < 150 || new(big.Int).Mod(pSub1, q).Cmp(big.NewInt(0)) != 0 {
		return errors.KeyInvalidError("dsa: invalid order")
	}
	// confirm that g has order q mod p
	if !q.ProbablyPrime(32) || new(big.Int).Exp(g, q, p).Cmp(one) != 0 {
		return errors.KeyInvalidError("dsa: invalid order")
	}
	// check y
	if new(big.Int).Exp(g, x, p).Cmp(y) != 0 {
		return errors.KeyInvalidError("dsa: mismatching values")
	}

	return nil
}

func validateElGamalParameters(priv *elgamal.PrivateKey) error {
	p := priv.P // group prime
	g := priv.G // g has order p-1 mod p
	x := priv.X // secret
	y := priv.Y // y == g**x mod p
	one := big.NewInt(1)
	// Expect g, y >= 2 and g < p
	if g.Cmp(one) <= 0 || y.Cmp(one) <= 0 || g.Cmp(p) > 0 {
		return errors.KeyInvalidError("elgamal: invalid group")
	}
	if p.BitLen() < 1024 {
		return errors.KeyInvalidError("elgamal: group order too small")
	}
	pSub1 := new(big.Int).Sub(p, one)
	if new(big.Int).Exp(g, pSub1, p).Cmp(one) != 0 {
		return errors.KeyInvalidError("elgamal: invalid group")
	}
	// Since p-1 is not prime, g might have a smaller order that divides p-1.
	// We cannot confirm the exact order of g, but we make sure it is not too small.
	gExpI := new(big.Int).Set(g)
	i := 1
	threshold := 2 << 17 // we want order > threshold
	for i < threshold {
		i++ // we check every order to make sure key validation is not easily bypassed by guessing y'
		gExpI.Mod(new(big.Int).Mul(gExpI, g), p)
		if gExpI.Cmp(one) == 0 {
			return errors.KeyInvalidError("elgamal: order too small")
		}
	}
	// Check y
	if new(big.Int).Exp(g, x, p).Cmp(y) != 0 {
		return errors.KeyInvalidError("elgamal: mismatching values")
	}

	return nil
}