1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/dsa"
"encoding/binary"
"hash"
"io"
"strconv"
"time"
"github.com/ProtonMail/go-crypto/openpgp/ecdsa"
"github.com/ProtonMail/go-crypto/openpgp/eddsa"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"github.com/ProtonMail/go-crypto/openpgp/internal/encoding"
)
const (
// See RFC 4880, section 5.2.3.21 for details.
KeyFlagCertify = 1 << iota
KeyFlagSign
KeyFlagEncryptCommunications
KeyFlagEncryptStorage
KeyFlagSplitKey
KeyFlagAuthenticate
_
KeyFlagGroupKey
)
// Signature represents a signature. See RFC 4880, section 5.2.
type Signature struct {
Version int
SigType SignatureType
PubKeyAlgo PublicKeyAlgorithm
Hash crypto.Hash
// HashSuffix is extra data that is hashed in after the signed data.
HashSuffix []byte
// HashTag contains the first two bytes of the hash for fast rejection
// of bad signed data.
HashTag [2]byte
// Metadata includes format, filename and time, and is protected by v5
// signatures of type 0x00 or 0x01. This metadata is included into the hash
// computation; if nil, six 0x00 bytes are used instead. See section 5.2.4.
Metadata *LiteralData
CreationTime time.Time
RSASignature encoding.Field
DSASigR, DSASigS encoding.Field
ECDSASigR, ECDSASigS encoding.Field
EdDSASigR, EdDSASigS encoding.Field
// rawSubpackets contains the unparsed subpackets, in order.
rawSubpackets []outputSubpacket
// The following are optional so are nil when not included in the
// signature.
SigLifetimeSecs, KeyLifetimeSecs *uint32
PreferredSymmetric, PreferredHash, PreferredCompression []uint8
PreferredCipherSuites [][2]uint8
IssuerKeyId *uint64
IssuerFingerprint []byte
SignerUserId *string
IsPrimaryId *bool
Notations []*Notation
// TrustLevel and TrustAmount can be set by the signer to assert that
// the key is not only valid but also trustworthy at the specified
// level.
// See RFC 4880, section 5.2.3.13 for details.
TrustLevel TrustLevel
TrustAmount TrustAmount
// TrustRegularExpression can be used in conjunction with trust Signature
// packets to limit the scope of the trust that is extended.
// See RFC 4880, section 5.2.3.14 for details.
TrustRegularExpression *string
// PolicyURI can be set to the URI of a document that describes the
// policy under which the signature was issued. See RFC 4880, section
// 5.2.3.20 for details.
PolicyURI string
// FlagsValid is set if any flags were given. See RFC 4880, section
// 5.2.3.21 for details.
FlagsValid bool
FlagCertify, FlagSign, FlagEncryptCommunications, FlagEncryptStorage, FlagSplitKey, FlagAuthenticate, FlagGroupKey bool
// RevocationReason is set if this signature has been revoked.
// See RFC 4880, section 5.2.3.23 for details.
RevocationReason *ReasonForRevocation
RevocationReasonText string
// In a self-signature, these flags are set there is a features subpacket
// indicating that the issuer implementation supports these features
// see https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh#features-subpacket
SEIPDv1, SEIPDv2 bool
// EmbeddedSignature, if non-nil, is a signature of the parent key, by
// this key. This prevents an attacker from claiming another's signing
// subkey as their own.
EmbeddedSignature *Signature
outSubpackets []outputSubpacket
}
func (sig *Signature) parse(r io.Reader) (err error) {
// RFC 4880, section 5.2.3
var buf [5]byte
_, err = readFull(r, buf[:1])
if err != nil {
return
}
if buf[0] != 4 && buf[0] != 5 {
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
return
}
sig.Version = int(buf[0])
_, err = readFull(r, buf[:5])
if err != nil {
return
}
sig.SigType = SignatureType(buf[0])
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[1])
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA, PubKeyAlgoEdDSA:
default:
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
return
}
var ok bool
if sig.Version < 5 {
sig.Hash, ok = algorithm.HashIdToHashWithSha1(buf[2])
} else {
sig.Hash, ok = algorithm.HashIdToHash(buf[2])
}
if !ok {
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
}
hashedSubpacketsLength := int(buf[3])<<8 | int(buf[4])
hashedSubpackets := make([]byte, hashedSubpacketsLength)
_, err = readFull(r, hashedSubpackets)
if err != nil {
return
}
err = sig.buildHashSuffix(hashedSubpackets)
if err != nil {
return
}
err = parseSignatureSubpackets(sig, hashedSubpackets, true)
if err != nil {
return
}
_, err = readFull(r, buf[:2])
if err != nil {
return
}
unhashedSubpacketsLength := int(buf[0])<<8 | int(buf[1])
unhashedSubpackets := make([]byte, unhashedSubpacketsLength)
_, err = readFull(r, unhashedSubpackets)
if err != nil {
return
}
err = parseSignatureSubpackets(sig, unhashedSubpackets, false)
if err != nil {
return
}
_, err = readFull(r, sig.HashTag[:2])
if err != nil {
return
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sig.RSASignature = new(encoding.MPI)
_, err = sig.RSASignature.ReadFrom(r)
case PubKeyAlgoDSA:
sig.DSASigR = new(encoding.MPI)
if _, err = sig.DSASigR.ReadFrom(r); err != nil {
return
}
sig.DSASigS = new(encoding.MPI)
_, err = sig.DSASigS.ReadFrom(r)
case PubKeyAlgoECDSA:
sig.ECDSASigR = new(encoding.MPI)
if _, err = sig.ECDSASigR.ReadFrom(r); err != nil {
return
}
sig.ECDSASigS = new(encoding.MPI)
_, err = sig.ECDSASigS.ReadFrom(r)
case PubKeyAlgoEdDSA:
sig.EdDSASigR = new(encoding.MPI)
if _, err = sig.EdDSASigR.ReadFrom(r); err != nil {
return
}
sig.EdDSASigS = new(encoding.MPI)
if _, err = sig.EdDSASigS.ReadFrom(r); err != nil {
return
}
default:
panic("unreachable")
}
return
}
// parseSignatureSubpackets parses subpackets of the main signature packet. See
// RFC 4880, section 5.2.3.1.
func parseSignatureSubpackets(sig *Signature, subpackets []byte, isHashed bool) (err error) {
for len(subpackets) > 0 {
subpackets, err = parseSignatureSubpacket(sig, subpackets, isHashed)
if err != nil {
return
}
}
if sig.CreationTime.IsZero() {
err = errors.StructuralError("no creation time in signature")
}
return
}
type signatureSubpacketType uint8
const (
creationTimeSubpacket signatureSubpacketType = 2
signatureExpirationSubpacket signatureSubpacketType = 3
trustSubpacket signatureSubpacketType = 5
regularExpressionSubpacket signatureSubpacketType = 6
keyExpirationSubpacket signatureSubpacketType = 9
prefSymmetricAlgosSubpacket signatureSubpacketType = 11
issuerSubpacket signatureSubpacketType = 16
notationDataSubpacket signatureSubpacketType = 20
prefHashAlgosSubpacket signatureSubpacketType = 21
prefCompressionSubpacket signatureSubpacketType = 22
primaryUserIdSubpacket signatureSubpacketType = 25
policyUriSubpacket signatureSubpacketType = 26
keyFlagsSubpacket signatureSubpacketType = 27
signerUserIdSubpacket signatureSubpacketType = 28
reasonForRevocationSubpacket signatureSubpacketType = 29
featuresSubpacket signatureSubpacketType = 30
embeddedSignatureSubpacket signatureSubpacketType = 32
issuerFingerprintSubpacket signatureSubpacketType = 33
prefCipherSuitesSubpacket signatureSubpacketType = 39
)
// parseSignatureSubpacket parses a single subpacket. len(subpacket) is >= 1.
func parseSignatureSubpacket(sig *Signature, subpacket []byte, isHashed bool) (rest []byte, err error) {
// RFC 4880, section 5.2.3.1
var (
length uint32
packetType signatureSubpacketType
isCritical bool
)
if len(subpacket) == 0 {
err = errors.StructuralError("zero length signature subpacket")
return
}
switch {
case subpacket[0] < 192:
length = uint32(subpacket[0])
subpacket = subpacket[1:]
case subpacket[0] < 255:
if len(subpacket) < 2 {
goto Truncated
}
length = uint32(subpacket[0]-192)<<8 + uint32(subpacket[1]) + 192
subpacket = subpacket[2:]
default:
if len(subpacket) < 5 {
goto Truncated
}
length = uint32(subpacket[1])<<24 |
uint32(subpacket[2])<<16 |
uint32(subpacket[3])<<8 |
uint32(subpacket[4])
subpacket = subpacket[5:]
}
if length > uint32(len(subpacket)) {
goto Truncated
}
rest = subpacket[length:]
subpacket = subpacket[:length]
if len(subpacket) == 0 {
err = errors.StructuralError("zero length signature subpacket")
return
}
packetType = signatureSubpacketType(subpacket[0] & 0x7f)
isCritical = subpacket[0]&0x80 == 0x80
subpacket = subpacket[1:]
sig.rawSubpackets = append(sig.rawSubpackets, outputSubpacket{isHashed, packetType, isCritical, subpacket})
if !isHashed &&
packetType != issuerSubpacket &&
packetType != issuerFingerprintSubpacket &&
packetType != embeddedSignatureSubpacket {
return
}
switch packetType {
case creationTimeSubpacket:
if len(subpacket) != 4 {
err = errors.StructuralError("signature creation time not four bytes")
return
}
t := binary.BigEndian.Uint32(subpacket)
sig.CreationTime = time.Unix(int64(t), 0)
case signatureExpirationSubpacket:
// Signature expiration time, section 5.2.3.10
if len(subpacket) != 4 {
err = errors.StructuralError("expiration subpacket with bad length")
return
}
sig.SigLifetimeSecs = new(uint32)
*sig.SigLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case trustSubpacket:
if len(subpacket) != 2 {
err = errors.StructuralError("trust subpacket with bad length")
return
}
// Trust level and amount, section 5.2.3.13
sig.TrustLevel = TrustLevel(subpacket[0])
sig.TrustAmount = TrustAmount(subpacket[1])
case regularExpressionSubpacket:
if len(subpacket) == 0 {
err = errors.StructuralError("regexp subpacket with bad length")
return
}
// Trust regular expression, section 5.2.3.14
// RFC specifies the string should be null-terminated; remove a null byte from the end
if subpacket[len(subpacket)-1] != 0x00 {
err = errors.StructuralError("expected regular expression to be null-terminated")
return
}
trustRegularExpression := string(subpacket[:len(subpacket)-1])
sig.TrustRegularExpression = &trustRegularExpression
case keyExpirationSubpacket:
// Key expiration time, section 5.2.3.6
if len(subpacket) != 4 {
err = errors.StructuralError("key expiration subpacket with bad length")
return
}
sig.KeyLifetimeSecs = new(uint32)
*sig.KeyLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case prefSymmetricAlgosSubpacket:
// Preferred symmetric algorithms, section 5.2.3.7
sig.PreferredSymmetric = make([]byte, len(subpacket))
copy(sig.PreferredSymmetric, subpacket)
case issuerSubpacket:
// Issuer, section 5.2.3.5
if sig.Version > 4 {
err = errors.StructuralError("issuer subpacket found in v5 key")
return
}
if len(subpacket) != 8 {
err = errors.StructuralError("issuer subpacket with bad length")
return
}
sig.IssuerKeyId = new(uint64)
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket)
case notationDataSubpacket:
// Notation data, section 5.2.3.16
if len(subpacket) < 8 {
err = errors.StructuralError("notation data subpacket with bad length")
return
}
nameLength := uint32(subpacket[4])<<8 | uint32(subpacket[5])
valueLength := uint32(subpacket[6])<<8 | uint32(subpacket[7])
if len(subpacket) != int(nameLength)+int(valueLength)+8 {
err = errors.StructuralError("notation data subpacket with bad length")
return
}
notation := Notation{
IsHumanReadable: (subpacket[0] & 0x80) == 0x80,
Name: string(subpacket[8:(nameLength + 8)]),
Value: subpacket[(nameLength + 8):(valueLength + nameLength + 8)],
IsCritical: isCritical,
}
sig.Notations = append(sig.Notations, ¬ation)
case prefHashAlgosSubpacket:
// Preferred hash algorithms, section 5.2.3.8
sig.PreferredHash = make([]byte, len(subpacket))
copy(sig.PreferredHash, subpacket)
case prefCompressionSubpacket:
// Preferred compression algorithms, section 5.2.3.9
sig.PreferredCompression = make([]byte, len(subpacket))
copy(sig.PreferredCompression, subpacket)
case primaryUserIdSubpacket:
// Primary User ID, section 5.2.3.19
if len(subpacket) != 1 {
err = errors.StructuralError("primary user id subpacket with bad length")
return
}
sig.IsPrimaryId = new(bool)
if subpacket[0] > 0 {
*sig.IsPrimaryId = true
}
case keyFlagsSubpacket:
// Key flags, section 5.2.3.21
if len(subpacket) == 0 {
err = errors.StructuralError("empty key flags subpacket")
return
}
sig.FlagsValid = true
if subpacket[0]&KeyFlagCertify != 0 {
sig.FlagCertify = true
}
if subpacket[0]&KeyFlagSign != 0 {
sig.FlagSign = true
}
if subpacket[0]&KeyFlagEncryptCommunications != 0 {
sig.FlagEncryptCommunications = true
}
if subpacket[0]&KeyFlagEncryptStorage != 0 {
sig.FlagEncryptStorage = true
}
if subpacket[0]&KeyFlagSplitKey != 0 {
sig.FlagSplitKey = true
}
if subpacket[0]&KeyFlagAuthenticate != 0 {
sig.FlagAuthenticate = true
}
if subpacket[0]&KeyFlagGroupKey != 0 {
sig.FlagGroupKey = true
}
case signerUserIdSubpacket:
userId := string(subpacket)
sig.SignerUserId = &userId
case reasonForRevocationSubpacket:
// Reason For Revocation, section 5.2.3.23
if len(subpacket) == 0 {
err = errors.StructuralError("empty revocation reason subpacket")
return
}
sig.RevocationReason = new(ReasonForRevocation)
*sig.RevocationReason = ReasonForRevocation(subpacket[0])
sig.RevocationReasonText = string(subpacket[1:])
case featuresSubpacket:
// Features subpacket, section 5.2.3.24 specifies a very general
// mechanism for OpenPGP implementations to signal support for new
// features.
if len(subpacket) > 0 {
if subpacket[0]&0x01 != 0 {
sig.SEIPDv1 = true
}
// 0x02 and 0x04 are reserved
if subpacket[0]&0x08 != 0 {
sig.SEIPDv2 = true
}
}
case embeddedSignatureSubpacket:
// Only usage is in signatures that cross-certify
// signing subkeys. section 5.2.3.26 describes the
// format, with its usage described in section 11.1
if sig.EmbeddedSignature != nil {
err = errors.StructuralError("Cannot have multiple embedded signatures")
return
}
sig.EmbeddedSignature = new(Signature)
// Embedded signatures are required to be v4 signatures see
// section 12.1. However, we only parse v4 signatures in this
// file anyway.
if err := sig.EmbeddedSignature.parse(bytes.NewBuffer(subpacket)); err != nil {
return nil, err
}
if sigType := sig.EmbeddedSignature.SigType; sigType != SigTypePrimaryKeyBinding {
return nil, errors.StructuralError("cross-signature has unexpected type " + strconv.Itoa(int(sigType)))
}
case policyUriSubpacket:
// Policy URI, section 5.2.3.20
sig.PolicyURI = string(subpacket)
case issuerFingerprintSubpacket:
if len(subpacket) == 0 {
err = errors.StructuralError("empty issuer fingerprint subpacket")
return
}
v, l := subpacket[0], len(subpacket[1:])
if v == 5 && l != 32 || v != 5 && l != 20 {
return nil, errors.StructuralError("bad fingerprint length")
}
sig.IssuerFingerprint = make([]byte, l)
copy(sig.IssuerFingerprint, subpacket[1:])
sig.IssuerKeyId = new(uint64)
if v == 5 {
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket[1:9])
} else {
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket[13:21])
}
case prefCipherSuitesSubpacket:
// Preferred AEAD cipher suites
// See https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#name-preferred-aead-ciphersuites
if len(subpacket)%2 != 0 {
err = errors.StructuralError("invalid aead cipher suite length")
return
}
sig.PreferredCipherSuites = make([][2]byte, len(subpacket)/2)
for i := 0; i < len(subpacket)/2; i++ {
sig.PreferredCipherSuites[i] = [2]uint8{subpacket[2*i], subpacket[2*i+1]}
}
default:
if isCritical {
err = errors.UnsupportedError("unknown critical signature subpacket type " + strconv.Itoa(int(packetType)))
return
}
}
return
Truncated:
err = errors.StructuralError("signature subpacket truncated")
return
}
// subpacketLengthLength returns the length, in bytes, of an encoded length value.
func subpacketLengthLength(length int) int {
if length < 192 {
return 1
}
if length < 16320 {
return 2
}
return 5
}
func (sig *Signature) CheckKeyIdOrFingerprint(pk *PublicKey) bool {
if sig.IssuerFingerprint != nil && len(sig.IssuerFingerprint) >= 20 {
return bytes.Equal(sig.IssuerFingerprint, pk.Fingerprint)
}
return sig.IssuerKeyId != nil && *sig.IssuerKeyId == pk.KeyId
}
// serializeSubpacketLength marshals the given length into to.
func serializeSubpacketLength(to []byte, length int) int {
// RFC 4880, Section 4.2.2.
if length < 192 {
to[0] = byte(length)
return 1
}
if length < 16320 {
length -= 192
to[0] = byte((length >> 8) + 192)
to[1] = byte(length)
return 2
}
to[0] = 255
to[1] = byte(length >> 24)
to[2] = byte(length >> 16)
to[3] = byte(length >> 8)
to[4] = byte(length)
return 5
}
// subpacketsLength returns the serialized length, in bytes, of the given
// subpackets.
func subpacketsLength(subpackets []outputSubpacket, hashed bool) (length int) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
length += subpacketLengthLength(len(subpacket.contents) + 1)
length += 1 // type byte
length += len(subpacket.contents)
}
}
return
}
// serializeSubpackets marshals the given subpackets into to.
func serializeSubpackets(to []byte, subpackets []outputSubpacket, hashed bool) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
n := serializeSubpacketLength(to, len(subpacket.contents)+1)
to[n] = byte(subpacket.subpacketType)
if subpacket.isCritical {
to[n] |= 0x80
}
to = to[1+n:]
n = copy(to, subpacket.contents)
to = to[n:]
}
}
return
}
// SigExpired returns whether sig is a signature that has expired or is created
// in the future.
func (sig *Signature) SigExpired(currentTime time.Time) bool {
if sig.CreationTime.After(currentTime) {
return true
}
if sig.SigLifetimeSecs == nil || *sig.SigLifetimeSecs == 0 {
return false
}
expiry := sig.CreationTime.Add(time.Duration(*sig.SigLifetimeSecs) * time.Second)
return currentTime.After(expiry)
}
// buildHashSuffix constructs the HashSuffix member of sig in preparation for signing.
func (sig *Signature) buildHashSuffix(hashedSubpackets []byte) (err error) {
var hashId byte
var ok bool
if sig.Version < 5 {
hashId, ok = algorithm.HashToHashIdWithSha1(sig.Hash)
} else {
hashId, ok = algorithm.HashToHashId(sig.Hash)
}
if !ok {
sig.HashSuffix = nil
return errors.InvalidArgumentError("hash cannot be represented in OpenPGP: " + strconv.Itoa(int(sig.Hash)))
}
hashedFields := bytes.NewBuffer([]byte{
uint8(sig.Version),
uint8(sig.SigType),
uint8(sig.PubKeyAlgo),
uint8(hashId),
uint8(len(hashedSubpackets) >> 8),
uint8(len(hashedSubpackets)),
})
hashedFields.Write(hashedSubpackets)
var l uint64 = uint64(6 + len(hashedSubpackets))
if sig.Version == 5 {
hashedFields.Write([]byte{0x05, 0xff})
hashedFields.Write([]byte{
uint8(l >> 56), uint8(l >> 48), uint8(l >> 40), uint8(l >> 32),
uint8(l >> 24), uint8(l >> 16), uint8(l >> 8), uint8(l),
})
} else {
hashedFields.Write([]byte{0x04, 0xff})
hashedFields.Write([]byte{
uint8(l >> 24), uint8(l >> 16), uint8(l >> 8), uint8(l),
})
}
sig.HashSuffix = make([]byte, hashedFields.Len())
copy(sig.HashSuffix, hashedFields.Bytes())
return
}
func (sig *Signature) signPrepareHash(h hash.Hash) (digest []byte, err error) {
hashedSubpacketsLen := subpacketsLength(sig.outSubpackets, true)
hashedSubpackets := make([]byte, hashedSubpacketsLen)
serializeSubpackets(hashedSubpackets, sig.outSubpackets, true)
err = sig.buildHashSuffix(hashedSubpackets)
if err != nil {
return
}
if sig.Version == 5 && (sig.SigType == 0x00 || sig.SigType == 0x01) {
sig.AddMetadataToHashSuffix()
}
h.Write(sig.HashSuffix)
digest = h.Sum(nil)
copy(sig.HashTag[:], digest)
return
}
// Sign signs a message with a private key. The hash, h, must contain
// the hash of the message to be signed and will be mutated by this function.
// On success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err error) {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
sig.Version = priv.PublicKey.Version
sig.IssuerFingerprint = priv.PublicKey.Fingerprint
sig.outSubpackets, err = sig.buildSubpackets(priv.PublicKey)
if err != nil {
return err
}
digest, err := sig.signPrepareHash(h)
if err != nil {
return
}
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
// supports both *rsa.PrivateKey and crypto.Signer
sigdata, err := priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
if err == nil {
sig.RSASignature = encoding.NewMPI(sigdata)
}
case PubKeyAlgoDSA:
dsaPriv := priv.PrivateKey.(*dsa.PrivateKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPriv.Q.BitLen() + 7) / 8
if len(digest) > subgroupSize {
digest = digest[:subgroupSize]
}
r, s, err := dsa.Sign(config.Random(), dsaPriv, digest)
if err == nil {
sig.DSASigR = new(encoding.MPI).SetBig(r)
sig.DSASigS = new(encoding.MPI).SetBig(s)
}
case PubKeyAlgoECDSA:
sk := priv.PrivateKey.(*ecdsa.PrivateKey)
r, s, err := ecdsa.Sign(config.Random(), sk, digest)
if err == nil {
sig.ECDSASigR = new(encoding.MPI).SetBig(r)
sig.ECDSASigS = new(encoding.MPI).SetBig(s)
}
case PubKeyAlgoEdDSA:
sk := priv.PrivateKey.(*eddsa.PrivateKey)
r, s, err := eddsa.Sign(sk, digest)
if err == nil {
sig.EdDSASigR = encoding.NewMPI(r)
sig.EdDSASigS = encoding.NewMPI(s)
}
default:
err = errors.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo)))
}
return
}
// SignUserId computes a signature from priv, asserting that pub is a valid
// key for the identity id. On success, the signature is stored in sig. Call
// Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignUserId(id string, pub *PublicKey, priv *PrivateKey, config *Config) error {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
h, err := userIdSignatureHash(id, pub, sig.Hash)
if err != nil {
return err
}
return sig.Sign(h, priv, config)
}
// CrossSignKey computes a signature from signingKey on pub hashed using hashKey. On success,
// the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) CrossSignKey(pub *PublicKey, hashKey *PublicKey, signingKey *PrivateKey,
config *Config) error {
h, err := keySignatureHash(hashKey, pub, sig.Hash)
if err != nil {
return err
}
return sig.Sign(h, signingKey, config)
}
// SignKey computes a signature from priv, asserting that pub is a subkey. On
// success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignKey(pub *PublicKey, priv *PrivateKey, config *Config) error {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
h, err := keySignatureHash(&priv.PublicKey, pub, sig.Hash)
if err != nil {
return err
}
return sig.Sign(h, priv, config)
}
// RevokeKey computes a revocation signature of pub using priv. On success, the signature is
// stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) RevokeKey(pub *PublicKey, priv *PrivateKey, config *Config) error {
h, err := keyRevocationHash(pub, sig.Hash)
if err != nil {
return err
}
return sig.Sign(h, priv, config)
}
// RevokeSubkey computes a subkey revocation signature of pub using priv.
// On success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) RevokeSubkey(pub *PublicKey, priv *PrivateKey, config *Config) error {
// Identical to a subkey binding signature
return sig.SignKey(pub, priv, config)
}
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been
// called first.
func (sig *Signature) Serialize(w io.Writer) (err error) {
if len(sig.outSubpackets) == 0 {
sig.outSubpackets = sig.rawSubpackets
}
if sig.RSASignature == nil && sig.DSASigR == nil && sig.ECDSASigR == nil && sig.EdDSASigR == nil {
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize")
}
sigLength := 0
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sigLength = int(sig.RSASignature.EncodedLength())
case PubKeyAlgoDSA:
sigLength = int(sig.DSASigR.EncodedLength())
sigLength += int(sig.DSASigS.EncodedLength())
case PubKeyAlgoECDSA:
sigLength = int(sig.ECDSASigR.EncodedLength())
sigLength += int(sig.ECDSASigS.EncodedLength())
case PubKeyAlgoEdDSA:
sigLength = int(sig.EdDSASigR.EncodedLength())
sigLength += int(sig.EdDSASigS.EncodedLength())
default:
panic("impossible")
}
unhashedSubpacketsLen := subpacketsLength(sig.outSubpackets, false)
length := len(sig.HashSuffix) - 6 /* trailer not included */ +
2 /* length of unhashed subpackets */ + unhashedSubpacketsLen +
2 /* hash tag */ + sigLength
if sig.Version == 5 {
length -= 4 // eight-octet instead of four-octet big endian
}
err = serializeHeader(w, packetTypeSignature, length)
if err != nil {
return
}
err = sig.serializeBody(w)
if err != nil {
return err
}
return
}
func (sig *Signature) serializeBody(w io.Writer) (err error) {
hashedSubpacketsLen := uint16(uint16(sig.HashSuffix[4])<<8) | uint16(sig.HashSuffix[5])
fields := sig.HashSuffix[:6+hashedSubpacketsLen]
_, err = w.Write(fields)
if err != nil {
return
}
unhashedSubpacketsLen := subpacketsLength(sig.outSubpackets, false)
unhashedSubpackets := make([]byte, 2+unhashedSubpacketsLen)
unhashedSubpackets[0] = byte(unhashedSubpacketsLen >> 8)
unhashedSubpackets[1] = byte(unhashedSubpacketsLen)
serializeSubpackets(unhashedSubpackets[2:], sig.outSubpackets, false)
_, err = w.Write(unhashedSubpackets)
if err != nil {
return
}
_, err = w.Write(sig.HashTag[:])
if err != nil {
return
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
_, err = w.Write(sig.RSASignature.EncodedBytes())
case PubKeyAlgoDSA:
if _, err = w.Write(sig.DSASigR.EncodedBytes()); err != nil {
return
}
_, err = w.Write(sig.DSASigS.EncodedBytes())
case PubKeyAlgoECDSA:
if _, err = w.Write(sig.ECDSASigR.EncodedBytes()); err != nil {
return
}
_, err = w.Write(sig.ECDSASigS.EncodedBytes())
case PubKeyAlgoEdDSA:
if _, err = w.Write(sig.EdDSASigR.EncodedBytes()); err != nil {
return
}
_, err = w.Write(sig.EdDSASigS.EncodedBytes())
default:
panic("impossible")
}
return
}
// outputSubpacket represents a subpacket to be marshaled.
type outputSubpacket struct {
hashed bool // true if this subpacket is in the hashed area.
subpacketType signatureSubpacketType
isCritical bool
contents []byte
}
func (sig *Signature) buildSubpackets(issuer PublicKey) (subpackets []outputSubpacket, err error) {
creationTime := make([]byte, 4)
binary.BigEndian.PutUint32(creationTime, uint32(sig.CreationTime.Unix()))
subpackets = append(subpackets, outputSubpacket{true, creationTimeSubpacket, false, creationTime})
if sig.IssuerKeyId != nil && sig.Version == 4 {
keyId := make([]byte, 8)
binary.BigEndian.PutUint64(keyId, *sig.IssuerKeyId)
subpackets = append(subpackets, outputSubpacket{true, issuerSubpacket, true, keyId})
}
if sig.IssuerFingerprint != nil {
contents := append([]uint8{uint8(issuer.Version)}, sig.IssuerFingerprint...)
subpackets = append(subpackets, outputSubpacket{true, issuerFingerprintSubpacket, sig.Version == 5, contents})
}
if sig.SignerUserId != nil {
subpackets = append(subpackets, outputSubpacket{true, signerUserIdSubpacket, false, []byte(*sig.SignerUserId)})
}
if sig.SigLifetimeSecs != nil && *sig.SigLifetimeSecs != 0 {
sigLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(sigLifetime, *sig.SigLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, signatureExpirationSubpacket, true, sigLifetime})
}
// Key flags may only appear in self-signatures or certification signatures.
if sig.FlagsValid {
var flags byte
if sig.FlagCertify {
flags |= KeyFlagCertify
}
if sig.FlagSign {
flags |= KeyFlagSign
}
if sig.FlagEncryptCommunications {
flags |= KeyFlagEncryptCommunications
}
if sig.FlagEncryptStorage {
flags |= KeyFlagEncryptStorage
}
if sig.FlagSplitKey {
flags |= KeyFlagSplitKey
}
if sig.FlagAuthenticate {
flags |= KeyFlagAuthenticate
}
if sig.FlagGroupKey {
flags |= KeyFlagGroupKey
}
subpackets = append(subpackets, outputSubpacket{true, keyFlagsSubpacket, false, []byte{flags}})
}
for _, notation := range sig.Notations {
subpackets = append(
subpackets,
outputSubpacket{
true,
notationDataSubpacket,
notation.IsCritical,
notation.getData(),
})
}
// The following subpackets may only appear in self-signatures.
var features = byte(0x00)
if sig.SEIPDv1 {
features |= 0x01
}
if sig.SEIPDv2 {
features |= 0x08
}
if features != 0x00 {
subpackets = append(subpackets, outputSubpacket{true, featuresSubpacket, false, []byte{features}})
}
if sig.TrustLevel != 0 {
subpackets = append(subpackets, outputSubpacket{true, trustSubpacket, true, []byte{byte(sig.TrustLevel), byte(sig.TrustAmount)}})
}
if sig.TrustRegularExpression != nil {
// RFC specifies the string should be null-terminated; add a null byte to the end
subpackets = append(subpackets, outputSubpacket{true, regularExpressionSubpacket, true, []byte(*sig.TrustRegularExpression + "\000")})
}
if sig.KeyLifetimeSecs != nil && *sig.KeyLifetimeSecs != 0 {
keyLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(keyLifetime, *sig.KeyLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, keyExpirationSubpacket, true, keyLifetime})
}
if sig.IsPrimaryId != nil && *sig.IsPrimaryId {
subpackets = append(subpackets, outputSubpacket{true, primaryUserIdSubpacket, false, []byte{1}})
}
if len(sig.PreferredSymmetric) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefSymmetricAlgosSubpacket, false, sig.PreferredSymmetric})
}
if len(sig.PreferredHash) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefHashAlgosSubpacket, false, sig.PreferredHash})
}
if len(sig.PreferredCompression) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefCompressionSubpacket, false, sig.PreferredCompression})
}
if len(sig.PolicyURI) > 0 {
subpackets = append(subpackets, outputSubpacket{true, policyUriSubpacket, false, []uint8(sig.PolicyURI)})
}
if len(sig.PreferredCipherSuites) > 0 {
serialized := make([]byte, len(sig.PreferredCipherSuites)*2)
for i, cipherSuite := range sig.PreferredCipherSuites {
serialized[2*i] = cipherSuite[0]
serialized[2*i+1] = cipherSuite[1]
}
subpackets = append(subpackets, outputSubpacket{true, prefCipherSuitesSubpacket, false, serialized})
}
// Revocation reason appears only in revocation signatures and is serialized as per section 5.2.3.23.
if sig.RevocationReason != nil {
subpackets = append(subpackets, outputSubpacket{true, reasonForRevocationSubpacket, true,
append([]uint8{uint8(*sig.RevocationReason)}, []uint8(sig.RevocationReasonText)...)})
}
// EmbeddedSignature appears only in subkeys capable of signing and is serialized as per section 5.2.3.26.
if sig.EmbeddedSignature != nil {
var buf bytes.Buffer
err = sig.EmbeddedSignature.serializeBody(&buf)
if err != nil {
return
}
subpackets = append(subpackets, outputSubpacket{true, embeddedSignatureSubpacket, true, buf.Bytes()})
}
return
}
// AddMetadataToHashSuffix modifies the current hash suffix to include metadata
// (format, filename, and time). Version 5 keys protect this data including it
// in the hash computation. See section 5.2.4.
func (sig *Signature) AddMetadataToHashSuffix() {
if sig == nil || sig.Version != 5 {
return
}
if sig.SigType != 0x00 && sig.SigType != 0x01 {
return
}
lit := sig.Metadata
if lit == nil {
// This will translate into six 0x00 bytes.
lit = &LiteralData{}
}
// Extract the current byte count
n := sig.HashSuffix[len(sig.HashSuffix)-8:]
l := uint64(
uint64(n[0])<<56 | uint64(n[1])<<48 | uint64(n[2])<<40 | uint64(n[3])<<32 |
uint64(n[4])<<24 | uint64(n[5])<<16 | uint64(n[6])<<8 | uint64(n[7]))
suffix := bytes.NewBuffer(nil)
suffix.Write(sig.HashSuffix[:l])
// Add the metadata
var buf [4]byte
buf[0] = lit.Format
fileName := lit.FileName
if len(lit.FileName) > 255 {
fileName = fileName[:255]
}
buf[1] = byte(len(fileName))
suffix.Write(buf[:2])
suffix.Write([]byte(lit.FileName))
binary.BigEndian.PutUint32(buf[:], lit.Time)
suffix.Write(buf[:])
// Update the counter and restore trailing bytes
l = uint64(suffix.Len())
suffix.Write([]byte{0x05, 0xff})
suffix.Write([]byte{
uint8(l >> 56), uint8(l >> 48), uint8(l >> 40), uint8(l >> 32),
uint8(l >> 24), uint8(l >> 16), uint8(l >> 8), uint8(l),
})
sig.HashSuffix = suffix.Bytes()
}
|