1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/cipher"
"crypto/dsa"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
"crypto/subtle"
"fmt"
"io"
"math/big"
"strconv"
"time"
"github.com/ProtonMail/go-crypto/openpgp/ecdh"
"github.com/ProtonMail/go-crypto/openpgp/ecdsa"
"github.com/ProtonMail/go-crypto/openpgp/ed25519"
"github.com/ProtonMail/go-crypto/openpgp/ed448"
"github.com/ProtonMail/go-crypto/openpgp/eddsa"
"github.com/ProtonMail/go-crypto/openpgp/elgamal"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/encoding"
"github.com/ProtonMail/go-crypto/openpgp/s2k"
"github.com/ProtonMail/go-crypto/openpgp/x25519"
"github.com/ProtonMail/go-crypto/openpgp/x448"
"golang.org/x/crypto/hkdf"
)
// PrivateKey represents a possibly encrypted private key. See RFC 4880,
// section 5.5.3.
type PrivateKey struct {
PublicKey
Encrypted bool // if true then the private key is unavailable until Decrypt has been called.
encryptedData []byte
cipher CipherFunction
s2k func(out, in []byte)
aead AEADMode // only relevant if S2KAEAD is enabled
// An *{rsa|dsa|elgamal|ecdh|ecdsa|ed25519|ed448}.PrivateKey or
// crypto.Signer/crypto.Decrypter (Decryptor RSA only).
PrivateKey interface{}
iv []byte
// Type of encryption of the S2K packet
// Allowed values are 0 (Not encrypted), 253 (AEAD), 254 (SHA1), or
// 255 (2-byte checksum)
s2kType S2KType
// Full parameters of the S2K packet
s2kParams *s2k.Params
}
// S2KType s2k packet type
type S2KType uint8
const (
// S2KNON unencrypt
S2KNON S2KType = 0
// S2KAEAD use authenticated encryption
S2KAEAD S2KType = 253
// S2KSHA1 sha1 sum check
S2KSHA1 S2KType = 254
// S2KCHECKSUM sum check
S2KCHECKSUM S2KType = 255
)
func NewRSAPrivateKey(creationTime time.Time, priv *rsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewRSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewDSAPrivateKey(creationTime time.Time, priv *dsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewElGamalPrivateKey(creationTime time.Time, priv *elgamal.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewElGamalPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewECDSAPrivateKey(creationTime time.Time, priv *ecdsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewECDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewEdDSAPrivateKey(creationTime time.Time, priv *eddsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewEdDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewECDHPrivateKey(creationTime time.Time, priv *ecdh.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewECDHPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewX25519PrivateKey(creationTime time.Time, priv *x25519.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewX25519PublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewX448PrivateKey(creationTime time.Time, priv *x448.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewX448PublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewEd25519PrivateKey(creationTime time.Time, priv *ed25519.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewEd25519PublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewEd448PrivateKey(creationTime time.Time, priv *ed448.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewEd448PublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
// NewSignerPrivateKey creates a PrivateKey from a crypto.Signer that
// implements RSA, ECDSA or EdDSA.
func NewSignerPrivateKey(creationTime time.Time, signer interface{}) *PrivateKey {
pk := new(PrivateKey)
// In general, the public Keys should be used as pointers. We still
// type-switch on the values, for backwards-compatibility.
switch pubkey := signer.(type) {
case *rsa.PrivateKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, &pubkey.PublicKey)
case rsa.PrivateKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, &pubkey.PublicKey)
case *ecdsa.PrivateKey:
pk.PublicKey = *NewECDSAPublicKey(creationTime, &pubkey.PublicKey)
case ecdsa.PrivateKey:
pk.PublicKey = *NewECDSAPublicKey(creationTime, &pubkey.PublicKey)
case *eddsa.PrivateKey:
pk.PublicKey = *NewEdDSAPublicKey(creationTime, &pubkey.PublicKey)
case eddsa.PrivateKey:
pk.PublicKey = *NewEdDSAPublicKey(creationTime, &pubkey.PublicKey)
case *ed25519.PrivateKey:
pk.PublicKey = *NewEd25519PublicKey(creationTime, &pubkey.PublicKey)
case ed25519.PrivateKey:
pk.PublicKey = *NewEd25519PublicKey(creationTime, &pubkey.PublicKey)
case *ed448.PrivateKey:
pk.PublicKey = *NewEd448PublicKey(creationTime, &pubkey.PublicKey)
case ed448.PrivateKey:
pk.PublicKey = *NewEd448PublicKey(creationTime, &pubkey.PublicKey)
default:
panic("openpgp: unknown signer type in NewSignerPrivateKey")
}
pk.PrivateKey = signer
return pk
}
// NewDecrypterPrivateKey creates a PrivateKey from a *{rsa|elgamal|ecdh|x25519|x448}.PrivateKey.
func NewDecrypterPrivateKey(creationTime time.Time, decrypter interface{}) *PrivateKey {
pk := new(PrivateKey)
switch priv := decrypter.(type) {
case *rsa.PrivateKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, &priv.PublicKey)
case *elgamal.PrivateKey:
pk.PublicKey = *NewElGamalPublicKey(creationTime, &priv.PublicKey)
case *ecdh.PrivateKey:
pk.PublicKey = *NewECDHPublicKey(creationTime, &priv.PublicKey)
case *x25519.PrivateKey:
pk.PublicKey = *NewX25519PublicKey(creationTime, &priv.PublicKey)
case *x448.PrivateKey:
pk.PublicKey = *NewX448PublicKey(creationTime, &priv.PublicKey)
default:
panic("openpgp: unknown decrypter type in NewDecrypterPrivateKey")
}
pk.PrivateKey = decrypter
return pk
}
func (pk *PrivateKey) parse(r io.Reader) (err error) {
err = (&pk.PublicKey).parse(r)
if err != nil {
return
}
v5 := pk.PublicKey.Version == 5
v6 := pk.PublicKey.Version == 6
if V5Disabled && v5 {
return errors.UnsupportedError("support for parsing v5 entities is disabled; build with `-tags v5` if needed")
}
var buf [1]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.s2kType = S2KType(buf[0])
var optCount [1]byte
if v5 || (v6 && pk.s2kType != S2KNON) {
if _, err = readFull(r, optCount[:]); err != nil {
return
}
}
switch pk.s2kType {
case S2KNON:
pk.s2k = nil
pk.Encrypted = false
case S2KSHA1, S2KCHECKSUM, S2KAEAD:
if (v5 || v6) && pk.s2kType == S2KCHECKSUM {
return errors.StructuralError(fmt.Sprintf("wrong s2k identifier for version %d", pk.Version))
}
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.cipher = CipherFunction(buf[0])
if pk.cipher != 0 && !pk.cipher.IsSupported() {
return errors.UnsupportedError("unsupported cipher function in private key")
}
// [Optional] If string-to-key usage octet was 253,
// a one-octet AEAD algorithm.
if pk.s2kType == S2KAEAD {
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.aead = AEADMode(buf[0])
if !pk.aead.IsSupported() {
return errors.UnsupportedError("unsupported aead mode in private key")
}
}
// [Optional] Only for a version 6 packet,
// and if string-to-key usage octet was 255, 254, or 253,
// an one-octet count of the following field.
if v6 {
_, err = readFull(r, buf[:])
if err != nil {
return
}
}
pk.s2kParams, err = s2k.ParseIntoParams(r)
if err != nil {
return
}
if pk.s2kParams.Dummy() {
return
}
if pk.s2kParams.Mode() == s2k.Argon2S2K && pk.s2kType != S2KAEAD {
return errors.StructuralError("using Argon2 S2K without AEAD is not allowed")
}
if pk.s2kParams.Mode() == s2k.SimpleS2K && pk.Version == 6 {
return errors.StructuralError("using Simple S2K with version 6 keys is not allowed")
}
pk.s2k, err = pk.s2kParams.Function()
if err != nil {
return
}
pk.Encrypted = true
default:
return errors.UnsupportedError("deprecated s2k function in private key")
}
if pk.Encrypted {
var ivSize int
// If the S2K usage octet was 253, the IV is of the size expected by the AEAD mode,
// unless it's a version 5 key, in which case it's the size of the symmetric cipher's block size.
// For all other S2K modes, it's always the block size.
if !v5 && pk.s2kType == S2KAEAD {
ivSize = pk.aead.IvLength()
} else {
ivSize = pk.cipher.blockSize()
}
if ivSize == 0 {
return errors.UnsupportedError("unsupported cipher in private key: " + strconv.Itoa(int(pk.cipher)))
}
pk.iv = make([]byte, ivSize)
_, err = readFull(r, pk.iv)
if err != nil {
return
}
if v5 && pk.s2kType == S2KAEAD {
pk.iv = pk.iv[:pk.aead.IvLength()]
}
}
var privateKeyData []byte
if v5 {
var n [4]byte /* secret material four octet count */
_, err = readFull(r, n[:])
if err != nil {
return
}
count := uint32(uint32(n[0])<<24 | uint32(n[1])<<16 | uint32(n[2])<<8 | uint32(n[3]))
if !pk.Encrypted {
count = count + 2 /* two octet checksum */
}
privateKeyData = make([]byte, count)
_, err = readFull(r, privateKeyData)
if err != nil {
return
}
} else {
privateKeyData, err = io.ReadAll(r)
if err != nil {
return
}
}
if !pk.Encrypted {
if len(privateKeyData) < 2 {
return errors.StructuralError("truncated private key data")
}
if pk.Version != 6 {
// checksum
var sum uint16
for i := 0; i < len(privateKeyData)-2; i++ {
sum += uint16(privateKeyData[i])
}
if privateKeyData[len(privateKeyData)-2] != uint8(sum>>8) ||
privateKeyData[len(privateKeyData)-1] != uint8(sum) {
return errors.StructuralError("private key checksum failure")
}
privateKeyData = privateKeyData[:len(privateKeyData)-2]
return pk.parsePrivateKey(privateKeyData)
} else {
// No checksum
return pk.parsePrivateKey(privateKeyData)
}
}
pk.encryptedData = privateKeyData
return
}
// Dummy returns true if the private key is a dummy key. This is a GNU extension.
func (pk *PrivateKey) Dummy() bool {
return pk.s2kParams.Dummy()
}
func mod64kHash(d []byte) uint16 {
var h uint16
for _, b := range d {
h += uint16(b)
}
return h
}
func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
contents := bytes.NewBuffer(nil)
err = pk.PublicKey.serializeWithoutHeaders(contents)
if err != nil {
return
}
if _, err = contents.Write([]byte{uint8(pk.s2kType)}); err != nil {
return
}
optional := bytes.NewBuffer(nil)
if pk.Encrypted || pk.Dummy() {
// [Optional] If string-to-key usage octet was 255, 254, or 253,
// a one-octet symmetric encryption algorithm.
if _, err = optional.Write([]byte{uint8(pk.cipher)}); err != nil {
return
}
// [Optional] If string-to-key usage octet was 253,
// a one-octet AEAD algorithm.
if pk.s2kType == S2KAEAD {
if _, err = optional.Write([]byte{uint8(pk.aead)}); err != nil {
return
}
}
s2kBuffer := bytes.NewBuffer(nil)
if err := pk.s2kParams.Serialize(s2kBuffer); err != nil {
return err
}
// [Optional] Only for a version 6 packet, and if string-to-key
// usage octet was 255, 254, or 253, an one-octet
// count of the following field.
if pk.Version == 6 {
if _, err = optional.Write([]byte{uint8(s2kBuffer.Len())}); err != nil {
return
}
}
// [Optional] If string-to-key usage octet was 255, 254, or 253,
// a string-to-key (S2K) specifier. The length of the string-to-key specifier
// depends on its type
if _, err = io.Copy(optional, s2kBuffer); err != nil {
return
}
// IV
if pk.Encrypted {
if _, err = optional.Write(pk.iv); err != nil {
return
}
if pk.Version == 5 && pk.s2kType == S2KAEAD {
// Add padding for version 5
padding := make([]byte, pk.cipher.blockSize()-len(pk.iv))
if _, err = optional.Write(padding); err != nil {
return
}
}
}
}
if pk.Version == 5 || (pk.Version == 6 && pk.s2kType != S2KNON) {
contents.Write([]byte{uint8(optional.Len())})
}
if _, err := io.Copy(contents, optional); err != nil {
return err
}
if !pk.Dummy() {
l := 0
var priv []byte
if !pk.Encrypted {
buf := bytes.NewBuffer(nil)
err = pk.serializePrivateKey(buf)
if err != nil {
return err
}
l = buf.Len()
if pk.Version != 6 {
checksum := mod64kHash(buf.Bytes())
buf.Write([]byte{byte(checksum >> 8), byte(checksum)})
}
priv = buf.Bytes()
} else {
priv, l = pk.encryptedData, len(pk.encryptedData)
}
if pk.Version == 5 {
contents.Write([]byte{byte(l >> 24), byte(l >> 16), byte(l >> 8), byte(l)})
}
contents.Write(priv)
}
ptype := packetTypePrivateKey
if pk.IsSubkey {
ptype = packetTypePrivateSubkey
}
err = serializeHeader(w, ptype, contents.Len())
if err != nil {
return
}
_, err = io.Copy(w, contents)
if err != nil {
return
}
return
}
func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) error {
if _, err := w.Write(new(encoding.MPI).SetBig(priv.D).EncodedBytes()); err != nil {
return err
}
if _, err := w.Write(new(encoding.MPI).SetBig(priv.Primes[1]).EncodedBytes()); err != nil {
return err
}
if _, err := w.Write(new(encoding.MPI).SetBig(priv.Primes[0]).EncodedBytes()); err != nil {
return err
}
_, err := w.Write(new(encoding.MPI).SetBig(priv.Precomputed.Qinv).EncodedBytes())
return err
}
func serializeDSAPrivateKey(w io.Writer, priv *dsa.PrivateKey) error {
_, err := w.Write(new(encoding.MPI).SetBig(priv.X).EncodedBytes())
return err
}
func serializeElGamalPrivateKey(w io.Writer, priv *elgamal.PrivateKey) error {
_, err := w.Write(new(encoding.MPI).SetBig(priv.X).EncodedBytes())
return err
}
func serializeECDSAPrivateKey(w io.Writer, priv *ecdsa.PrivateKey) error {
_, err := w.Write(encoding.NewMPI(priv.MarshalIntegerSecret()).EncodedBytes())
return err
}
func serializeEdDSAPrivateKey(w io.Writer, priv *eddsa.PrivateKey) error {
_, err := w.Write(encoding.NewMPI(priv.MarshalByteSecret()).EncodedBytes())
return err
}
func serializeECDHPrivateKey(w io.Writer, priv *ecdh.PrivateKey) error {
_, err := w.Write(encoding.NewMPI(priv.MarshalByteSecret()).EncodedBytes())
return err
}
func serializeX25519PrivateKey(w io.Writer, priv *x25519.PrivateKey) error {
_, err := w.Write(priv.Secret)
return err
}
func serializeX448PrivateKey(w io.Writer, priv *x448.PrivateKey) error {
_, err := w.Write(priv.Secret)
return err
}
func serializeEd25519PrivateKey(w io.Writer, priv *ed25519.PrivateKey) error {
_, err := w.Write(priv.MarshalByteSecret())
return err
}
func serializeEd448PrivateKey(w io.Writer, priv *ed448.PrivateKey) error {
_, err := w.Write(priv.MarshalByteSecret())
return err
}
// decrypt decrypts an encrypted private key using a decryption key.
func (pk *PrivateKey) decrypt(decryptionKey []byte) error {
if pk.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
if !pk.Encrypted {
return nil
}
block := pk.cipher.new(decryptionKey)
var data []byte
switch pk.s2kType {
case S2KAEAD:
aead := pk.aead.new(block)
additionalData, err := pk.additionalData()
if err != nil {
return err
}
// Decrypt the encrypted key material with aead
data, err = aead.Open(nil, pk.iv, pk.encryptedData, additionalData)
if err != nil {
return err
}
case S2KSHA1, S2KCHECKSUM:
cfb := cipher.NewCFBDecrypter(block, pk.iv)
data = make([]byte, len(pk.encryptedData))
cfb.XORKeyStream(data, pk.encryptedData)
if pk.s2kType == S2KSHA1 {
if len(data) < sha1.Size {
return errors.StructuralError("truncated private key data")
}
h := sha1.New()
h.Write(data[:len(data)-sha1.Size])
sum := h.Sum(nil)
if !bytes.Equal(sum, data[len(data)-sha1.Size:]) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-sha1.Size]
} else {
if len(data) < 2 {
return errors.StructuralError("truncated private key data")
}
var sum uint16
for i := 0; i < len(data)-2; i++ {
sum += uint16(data[i])
}
if data[len(data)-2] != uint8(sum>>8) ||
data[len(data)-1] != uint8(sum) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-2]
}
default:
return errors.InvalidArgumentError("invalid s2k type")
}
err := pk.parsePrivateKey(data)
if _, ok := err.(errors.KeyInvalidError); ok {
return errors.KeyInvalidError("invalid key parameters")
}
if err != nil {
return err
}
// Mark key as unencrypted
pk.s2kType = S2KNON
pk.s2k = nil
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) decryptWithCache(passphrase []byte, keyCache *s2k.Cache) error {
if pk.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
if !pk.Encrypted {
return nil
}
key, err := keyCache.GetOrComputeDerivedKey(passphrase, pk.s2kParams, pk.cipher.KeySize())
if err != nil {
return err
}
if pk.s2kType == S2KAEAD {
key = pk.applyHKDF(key)
}
return pk.decrypt(key)
}
// Decrypt decrypts an encrypted private key using a passphrase.
func (pk *PrivateKey) Decrypt(passphrase []byte) error {
if pk.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
if !pk.Encrypted {
return nil
}
key := make([]byte, pk.cipher.KeySize())
pk.s2k(key, passphrase)
if pk.s2kType == S2KAEAD {
key = pk.applyHKDF(key)
}
return pk.decrypt(key)
}
// DecryptPrivateKeys decrypts all encrypted keys with the given config and passphrase.
// Avoids recomputation of similar s2k key derivations.
func DecryptPrivateKeys(keys []*PrivateKey, passphrase []byte) error {
// Create a cache to avoid recomputation of key derviations for the same passphrase.
s2kCache := &s2k.Cache{}
for _, key := range keys {
if key != nil && !key.Dummy() && key.Encrypted {
err := key.decryptWithCache(passphrase, s2kCache)
if err != nil {
return err
}
}
}
return nil
}
// encrypt encrypts an unencrypted private key.
func (pk *PrivateKey) encrypt(key []byte, params *s2k.Params, s2kType S2KType, cipherFunction CipherFunction, rand io.Reader) error {
if pk.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
if pk.Encrypted {
return nil
}
// check if encryptionKey has the correct size
if len(key) != cipherFunction.KeySize() {
return errors.InvalidArgumentError("supplied encryption key has the wrong size")
}
if params.Mode() == s2k.Argon2S2K && s2kType != S2KAEAD {
return errors.InvalidArgumentError("using Argon2 S2K without AEAD is not allowed")
}
if params.Mode() != s2k.Argon2S2K && params.Mode() != s2k.IteratedSaltedS2K &&
params.Mode() != s2k.SaltedS2K { // only allowed for high-entropy passphrases
return errors.InvalidArgumentError("insecure S2K mode")
}
priv := bytes.NewBuffer(nil)
err := pk.serializePrivateKey(priv)
if err != nil {
return err
}
pk.cipher = cipherFunction
pk.s2kParams = params
pk.s2k, err = pk.s2kParams.Function()
if err != nil {
return err
}
privateKeyBytes := priv.Bytes()
pk.s2kType = s2kType
block := pk.cipher.new(key)
switch s2kType {
case S2KAEAD:
if pk.aead == 0 {
return errors.StructuralError("aead mode is not set on key")
}
aead := pk.aead.new(block)
additionalData, err := pk.additionalData()
if err != nil {
return err
}
pk.iv = make([]byte, aead.NonceSize())
_, err = io.ReadFull(rand, pk.iv)
if err != nil {
return err
}
// Decrypt the encrypted key material with aead
pk.encryptedData = aead.Seal(nil, pk.iv, privateKeyBytes, additionalData)
case S2KSHA1, S2KCHECKSUM:
pk.iv = make([]byte, pk.cipher.blockSize())
_, err = io.ReadFull(rand, pk.iv)
if err != nil {
return err
}
cfb := cipher.NewCFBEncrypter(block, pk.iv)
if s2kType == S2KSHA1 {
h := sha1.New()
h.Write(privateKeyBytes)
sum := h.Sum(nil)
privateKeyBytes = append(privateKeyBytes, sum...)
} else {
var sum uint16
for _, b := range privateKeyBytes {
sum += uint16(b)
}
privateKeyBytes = append(privateKeyBytes, []byte{uint8(sum >> 8), uint8(sum)}...)
}
pk.encryptedData = make([]byte, len(privateKeyBytes))
cfb.XORKeyStream(pk.encryptedData, privateKeyBytes)
default:
return errors.InvalidArgumentError("invalid s2k type for encryption")
}
pk.Encrypted = true
pk.PrivateKey = nil
return err
}
// EncryptWithConfig encrypts an unencrypted private key using the passphrase and the config.
func (pk *PrivateKey) EncryptWithConfig(passphrase []byte, config *Config) error {
params, err := s2k.Generate(config.Random(), config.S2K())
if err != nil {
return err
}
// Derive an encryption key with the configured s2k function.
key := make([]byte, config.Cipher().KeySize())
s2k, err := params.Function()
if err != nil {
return err
}
s2k(key, passphrase)
s2kType := S2KSHA1
if config.AEAD() != nil {
s2kType = S2KAEAD
pk.aead = config.AEAD().Mode()
pk.cipher = config.Cipher()
key = pk.applyHKDF(key)
}
// Encrypt the private key with the derived encryption key.
return pk.encrypt(key, params, s2kType, config.Cipher(), config.Random())
}
// EncryptPrivateKeys encrypts all unencrypted keys with the given config and passphrase.
// Only derives one key from the passphrase, which is then used to encrypt each key.
func EncryptPrivateKeys(keys []*PrivateKey, passphrase []byte, config *Config) error {
params, err := s2k.Generate(config.Random(), config.S2K())
if err != nil {
return err
}
// Derive an encryption key with the configured s2k function.
encryptionKey := make([]byte, config.Cipher().KeySize())
s2k, err := params.Function()
if err != nil {
return err
}
s2k(encryptionKey, passphrase)
for _, key := range keys {
if key != nil && !key.Dummy() && !key.Encrypted {
s2kType := S2KSHA1
if config.AEAD() != nil {
s2kType = S2KAEAD
key.aead = config.AEAD().Mode()
key.cipher = config.Cipher()
derivedKey := key.applyHKDF(encryptionKey)
err = key.encrypt(derivedKey, params, s2kType, config.Cipher(), config.Random())
} else {
err = key.encrypt(encryptionKey, params, s2kType, config.Cipher(), config.Random())
}
if err != nil {
return err
}
}
}
return nil
}
// Encrypt encrypts an unencrypted private key using a passphrase.
func (pk *PrivateKey) Encrypt(passphrase []byte) error {
// Default config of private key encryption
config := &Config{
S2KConfig: &s2k.Config{
S2KMode: s2k.IteratedSaltedS2K,
S2KCount: 65536,
Hash: crypto.SHA256,
},
DefaultCipher: CipherAES256,
}
return pk.EncryptWithConfig(passphrase, config)
}
func (pk *PrivateKey) serializePrivateKey(w io.Writer) (err error) {
switch priv := pk.PrivateKey.(type) {
case *rsa.PrivateKey:
err = serializeRSAPrivateKey(w, priv)
case *dsa.PrivateKey:
err = serializeDSAPrivateKey(w, priv)
case *elgamal.PrivateKey:
err = serializeElGamalPrivateKey(w, priv)
case *ecdsa.PrivateKey:
err = serializeECDSAPrivateKey(w, priv)
case *eddsa.PrivateKey:
err = serializeEdDSAPrivateKey(w, priv)
case *ecdh.PrivateKey:
err = serializeECDHPrivateKey(w, priv)
case *x25519.PrivateKey:
err = serializeX25519PrivateKey(w, priv)
case *x448.PrivateKey:
err = serializeX448PrivateKey(w, priv)
case *ed25519.PrivateKey:
err = serializeEd25519PrivateKey(w, priv)
case *ed448.PrivateKey:
err = serializeEd448PrivateKey(w, priv)
default:
err = errors.InvalidArgumentError("unknown private key type")
}
return
}
func (pk *PrivateKey) parsePrivateKey(data []byte) (err error) {
switch pk.PublicKey.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoRSAEncryptOnly:
return pk.parseRSAPrivateKey(data)
case PubKeyAlgoDSA:
return pk.parseDSAPrivateKey(data)
case PubKeyAlgoElGamal:
return pk.parseElGamalPrivateKey(data)
case PubKeyAlgoECDSA:
return pk.parseECDSAPrivateKey(data)
case PubKeyAlgoECDH:
return pk.parseECDHPrivateKey(data)
case PubKeyAlgoEdDSA:
return pk.parseEdDSAPrivateKey(data)
case PubKeyAlgoX25519:
return pk.parseX25519PrivateKey(data)
case PubKeyAlgoX448:
return pk.parseX448PrivateKey(data)
case PubKeyAlgoEd25519:
return pk.parseEd25519PrivateKey(data)
case PubKeyAlgoEd448:
return pk.parseEd448PrivateKey(data)
default:
err = errors.StructuralError("unknown private key type")
return
}
}
func (pk *PrivateKey) parseRSAPrivateKey(data []byte) (err error) {
rsaPub := pk.PublicKey.PublicKey.(*rsa.PublicKey)
rsaPriv := new(rsa.PrivateKey)
rsaPriv.PublicKey = *rsaPub
buf := bytes.NewBuffer(data)
d := new(encoding.MPI)
if _, err := d.ReadFrom(buf); err != nil {
return err
}
p := new(encoding.MPI)
if _, err := p.ReadFrom(buf); err != nil {
return err
}
q := new(encoding.MPI)
if _, err := q.ReadFrom(buf); err != nil {
return err
}
rsaPriv.D = new(big.Int).SetBytes(d.Bytes())
rsaPriv.Primes = make([]*big.Int, 2)
rsaPriv.Primes[0] = new(big.Int).SetBytes(p.Bytes())
rsaPriv.Primes[1] = new(big.Int).SetBytes(q.Bytes())
if err := rsaPriv.Validate(); err != nil {
return errors.KeyInvalidError(err.Error())
}
rsaPriv.Precompute()
pk.PrivateKey = rsaPriv
return nil
}
func (pk *PrivateKey) parseDSAPrivateKey(data []byte) (err error) {
dsaPub := pk.PublicKey.PublicKey.(*dsa.PublicKey)
dsaPriv := new(dsa.PrivateKey)
dsaPriv.PublicKey = *dsaPub
buf := bytes.NewBuffer(data)
x := new(encoding.MPI)
if _, err := x.ReadFrom(buf); err != nil {
return err
}
dsaPriv.X = new(big.Int).SetBytes(x.Bytes())
if err := validateDSAParameters(dsaPriv); err != nil {
return err
}
pk.PrivateKey = dsaPriv
return nil
}
func (pk *PrivateKey) parseElGamalPrivateKey(data []byte) (err error) {
pub := pk.PublicKey.PublicKey.(*elgamal.PublicKey)
priv := new(elgamal.PrivateKey)
priv.PublicKey = *pub
buf := bytes.NewBuffer(data)
x := new(encoding.MPI)
if _, err := x.ReadFrom(buf); err != nil {
return err
}
priv.X = new(big.Int).SetBytes(x.Bytes())
if err := validateElGamalParameters(priv); err != nil {
return err
}
pk.PrivateKey = priv
return nil
}
func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey)
ecdsaPriv := ecdsa.NewPrivateKey(*ecdsaPub)
buf := bytes.NewBuffer(data)
d := new(encoding.MPI)
if _, err := d.ReadFrom(buf); err != nil {
return err
}
if err := ecdsaPriv.UnmarshalIntegerSecret(d.Bytes()); err != nil {
return err
}
if err := ecdsa.Validate(ecdsaPriv); err != nil {
return err
}
pk.PrivateKey = ecdsaPriv
return nil
}
func (pk *PrivateKey) parseECDHPrivateKey(data []byte) (err error) {
ecdhPub := pk.PublicKey.PublicKey.(*ecdh.PublicKey)
ecdhPriv := ecdh.NewPrivateKey(*ecdhPub)
buf := bytes.NewBuffer(data)
d := new(encoding.MPI)
if _, err := d.ReadFrom(buf); err != nil {
return err
}
if err := ecdhPriv.UnmarshalByteSecret(d.Bytes()); err != nil {
return err
}
if err := ecdh.Validate(ecdhPriv); err != nil {
return err
}
pk.PrivateKey = ecdhPriv
return nil
}
func (pk *PrivateKey) parseX25519PrivateKey(data []byte) (err error) {
publicKey := pk.PublicKey.PublicKey.(*x25519.PublicKey)
privateKey := x25519.NewPrivateKey(*publicKey)
privateKey.PublicKey = *publicKey
privateKey.Secret = make([]byte, x25519.KeySize)
if len(data) != x25519.KeySize {
err = errors.StructuralError("wrong x25519 key size")
return err
}
subtle.ConstantTimeCopy(1, privateKey.Secret, data)
if err = x25519.Validate(privateKey); err != nil {
return err
}
pk.PrivateKey = privateKey
return nil
}
func (pk *PrivateKey) parseX448PrivateKey(data []byte) (err error) {
publicKey := pk.PublicKey.PublicKey.(*x448.PublicKey)
privateKey := x448.NewPrivateKey(*publicKey)
privateKey.PublicKey = *publicKey
privateKey.Secret = make([]byte, x448.KeySize)
if len(data) != x448.KeySize {
err = errors.StructuralError("wrong x448 key size")
return err
}
subtle.ConstantTimeCopy(1, privateKey.Secret, data)
if err = x448.Validate(privateKey); err != nil {
return err
}
pk.PrivateKey = privateKey
return nil
}
func (pk *PrivateKey) parseEd25519PrivateKey(data []byte) (err error) {
publicKey := pk.PublicKey.PublicKey.(*ed25519.PublicKey)
privateKey := ed25519.NewPrivateKey(*publicKey)
privateKey.PublicKey = *publicKey
if len(data) != ed25519.SeedSize {
err = errors.StructuralError("wrong ed25519 key size")
return err
}
err = privateKey.UnmarshalByteSecret(data)
if err != nil {
return err
}
err = ed25519.Validate(privateKey)
if err != nil {
return err
}
pk.PrivateKey = privateKey
return nil
}
func (pk *PrivateKey) parseEd448PrivateKey(data []byte) (err error) {
publicKey := pk.PublicKey.PublicKey.(*ed448.PublicKey)
privateKey := ed448.NewPrivateKey(*publicKey)
privateKey.PublicKey = *publicKey
if len(data) != ed448.SeedSize {
err = errors.StructuralError("wrong ed448 key size")
return err
}
err = privateKey.UnmarshalByteSecret(data)
if err != nil {
return err
}
err = ed448.Validate(privateKey)
if err != nil {
return err
}
pk.PrivateKey = privateKey
return nil
}
func (pk *PrivateKey) parseEdDSAPrivateKey(data []byte) (err error) {
eddsaPub := pk.PublicKey.PublicKey.(*eddsa.PublicKey)
eddsaPriv := eddsa.NewPrivateKey(*eddsaPub)
eddsaPriv.PublicKey = *eddsaPub
buf := bytes.NewBuffer(data)
d := new(encoding.MPI)
if _, err := d.ReadFrom(buf); err != nil {
return err
}
if err = eddsaPriv.UnmarshalByteSecret(d.Bytes()); err != nil {
return err
}
if err := eddsa.Validate(eddsaPriv); err != nil {
return err
}
pk.PrivateKey = eddsaPriv
return nil
}
func (pk *PrivateKey) additionalData() ([]byte, error) {
additionalData := bytes.NewBuffer(nil)
// Write additional data prefix based on packet type
var packetByte byte
if pk.PublicKey.IsSubkey {
packetByte = 0xc7
} else {
packetByte = 0xc5
}
// Write public key to additional data
_, err := additionalData.Write([]byte{packetByte})
if err != nil {
return nil, err
}
err = pk.PublicKey.serializeWithoutHeaders(additionalData)
if err != nil {
return nil, err
}
return additionalData.Bytes(), nil
}
func (pk *PrivateKey) applyHKDF(inputKey []byte) []byte {
var packetByte byte
if pk.PublicKey.IsSubkey {
packetByte = 0xc7
} else {
packetByte = 0xc5
}
associatedData := []byte{packetByte, byte(pk.Version), byte(pk.cipher), byte(pk.aead)}
hkdfReader := hkdf.New(sha256.New, inputKey, []byte{}, associatedData)
encryptionKey := make([]byte, pk.cipher.KeySize())
_, _ = readFull(hkdfReader, encryptionKey)
return encryptionKey
}
func validateDSAParameters(priv *dsa.PrivateKey) error {
p := priv.P // group prime
q := priv.Q // subgroup order
g := priv.G // g has order q mod p
x := priv.X // secret
y := priv.Y // y == g**x mod p
one := big.NewInt(1)
// expect g, y >= 2 and g < p
if g.Cmp(one) <= 0 || y.Cmp(one) <= 0 || g.Cmp(p) > 0 {
return errors.KeyInvalidError("dsa: invalid group")
}
// expect p > q
if p.Cmp(q) <= 0 {
return errors.KeyInvalidError("dsa: invalid group prime")
}
// q should be large enough and divide p-1
pSub1 := new(big.Int).Sub(p, one)
if q.BitLen() < 150 || new(big.Int).Mod(pSub1, q).Cmp(big.NewInt(0)) != 0 {
return errors.KeyInvalidError("dsa: invalid order")
}
// confirm that g has order q mod p
if !q.ProbablyPrime(32) || new(big.Int).Exp(g, q, p).Cmp(one) != 0 {
return errors.KeyInvalidError("dsa: invalid order")
}
// check y
if new(big.Int).Exp(g, x, p).Cmp(y) != 0 {
return errors.KeyInvalidError("dsa: mismatching values")
}
return nil
}
func validateElGamalParameters(priv *elgamal.PrivateKey) error {
p := priv.P // group prime
g := priv.G // g has order p-1 mod p
x := priv.X // secret
y := priv.Y // y == g**x mod p
one := big.NewInt(1)
// Expect g, y >= 2 and g < p
if g.Cmp(one) <= 0 || y.Cmp(one) <= 0 || g.Cmp(p) > 0 {
return errors.KeyInvalidError("elgamal: invalid group")
}
if p.BitLen() < 1024 {
return errors.KeyInvalidError("elgamal: group order too small")
}
pSub1 := new(big.Int).Sub(p, one)
if new(big.Int).Exp(g, pSub1, p).Cmp(one) != 0 {
return errors.KeyInvalidError("elgamal: invalid group")
}
// Since p-1 is not prime, g might have a smaller order that divides p-1.
// We cannot confirm the exact order of g, but we make sure it is not too small.
gExpI := new(big.Int).Set(g)
i := 1
threshold := 2 << 17 // we want order > threshold
for i < threshold {
i++ // we check every order to make sure key validation is not easily bypassed by guessing y'
gExpI.Mod(new(big.Int).Mul(gExpI, g), p)
if gExpI.Cmp(one) == 0 {
return errors.KeyInvalidError("elgamal: order too small")
}
}
// Check y
if new(big.Int).Exp(g, x, p).Cmp(y) != 0 {
return errors.KeyInvalidError("elgamal: mismatching values")
}
return nil
}
|