File: read.go

package info (click to toggle)
golang-github-protonmail-go-crypto 1.1.6-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,932 kB
  • sloc: makefile: 10
file content (619 lines) | stat: -rw-r--r-- 20,957 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package openpgp implements high level operations on OpenPGP messages.
package openpgp // import "github.com/ProtonMail/go-crypto/openpgp"

import (
	"crypto"
	_ "crypto/sha256"
	_ "crypto/sha512"
	"hash"
	"io"
	"strconv"

	"github.com/ProtonMail/go-crypto/openpgp/armor"
	"github.com/ProtonMail/go-crypto/openpgp/errors"
	"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
	"github.com/ProtonMail/go-crypto/openpgp/packet"
	_ "golang.org/x/crypto/sha3"
)

// SignatureType is the armor type for a PGP signature.
var SignatureType = "PGP SIGNATURE"

// readArmored reads an armored block with the given type.
func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) {
	block, err := armor.Decode(r)
	if err != nil {
		return
	}

	if block.Type != expectedType {
		return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type)
	}

	return block.Body, nil
}

// MessageDetails contains the result of parsing an OpenPGP encrypted and/or
// signed message.
type MessageDetails struct {
	IsEncrypted              bool                // true if the message was encrypted.
	EncryptedToKeyIds        []uint64            // the list of recipient key ids.
	IsSymmetricallyEncrypted bool                // true if a passphrase could have decrypted the message.
	DecryptedWith            Key                 // the private key used to decrypt the message, if any.
	IsSigned                 bool                // true if the message is signed.
	SignedByKeyId            uint64              // the key id of the signer, if any.
	SignedByFingerprint      []byte              // the key fingerprint of the signer, if any.
	SignedBy                 *Key                // the key of the signer, if available.
	LiteralData              *packet.LiteralData // the metadata of the contents
	UnverifiedBody           io.Reader           // the contents of the message.

	// If IsSigned is true and SignedBy is non-zero then the signature will
	// be verified as UnverifiedBody is read. The signature cannot be
	// checked until the whole of UnverifiedBody is read so UnverifiedBody
	// must be consumed until EOF before the data can be trusted. Even if a
	// message isn't signed (or the signer is unknown) the data may contain
	// an authentication code that is only checked once UnverifiedBody has
	// been consumed. Once EOF has been seen, the following fields are
	// valid. (An authentication code failure is reported as a
	// SignatureError error when reading from UnverifiedBody.)
	Signature            *packet.Signature   // the signature packet itself.
	SignatureError       error               // nil if the signature is good.
	UnverifiedSignatures []*packet.Signature // all other unverified signature packets.

	decrypted io.ReadCloser
}

// A PromptFunction is used as a callback by functions that may need to decrypt
// a private key, or prompt for a passphrase. It is called with a list of
// acceptable, encrypted private keys and a boolean that indicates whether a
// passphrase is usable. It should either decrypt a private key or return a
// passphrase to try. If the decrypted private key or given passphrase isn't
// correct, the function will be called again, forever. Any error returned will
// be passed up.
type PromptFunction func(keys []Key, symmetric bool) ([]byte, error)

// A keyEnvelopePair is used to store a private key with the envelope that
// contains a symmetric key, encrypted with that key.
type keyEnvelopePair struct {
	key          Key
	encryptedKey *packet.EncryptedKey
}

// ReadMessage parses an OpenPGP message that may be signed and/or encrypted.
// The given KeyRing should contain both public keys (for signature
// verification) and, possibly encrypted, private keys for decrypting.
// If config is nil, sensible defaults will be used.
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) {
	var p packet.Packet

	var symKeys []*packet.SymmetricKeyEncrypted
	var pubKeys []keyEnvelopePair
	// Integrity protected encrypted packet: SymmetricallyEncrypted or AEADEncrypted
	var edp packet.EncryptedDataPacket

	packets := packet.NewReader(r)
	md = new(MessageDetails)
	md.IsEncrypted = true

	// The message, if encrypted, starts with a number of packets
	// containing an encrypted decryption key. The decryption key is either
	// encrypted to a public key, or with a passphrase. This loop
	// collects these packets.
ParsePackets:
	for {
		p, err = packets.Next()
		if err != nil {
			return nil, err
		}
		switch p := p.(type) {
		case *packet.SymmetricKeyEncrypted:
			// This packet contains the decryption key encrypted with a passphrase.
			md.IsSymmetricallyEncrypted = true
			symKeys = append(symKeys, p)
		case *packet.EncryptedKey:
			// This packet contains the decryption key encrypted to a public key.
			md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
			switch p.Algo {
			case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal, packet.PubKeyAlgoECDH, packet.PubKeyAlgoX25519, packet.PubKeyAlgoX448:
				break
			default:
				continue
			}
			if keyring != nil {
				var keys []Key
				if p.KeyId == 0 {
					keys = keyring.DecryptionKeys()
				} else {
					keys = keyring.KeysById(p.KeyId)
				}
				for _, k := range keys {
					pubKeys = append(pubKeys, keyEnvelopePair{k, p})
				}
			}
		case *packet.SymmetricallyEncrypted:
			if !p.IntegrityProtected && !config.AllowUnauthenticatedMessages() {
				return nil, errors.UnsupportedError("message is not integrity protected")
			}
			edp = p
			break ParsePackets
		case *packet.AEADEncrypted:
			edp = p
			break ParsePackets
		case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature:
			// This message isn't encrypted.
			if len(symKeys) != 0 || len(pubKeys) != 0 {
				return nil, errors.StructuralError("key material not followed by encrypted message")
			}
			packets.Unread(p)
			return readSignedMessage(packets, nil, keyring, config)
		}
	}

	var candidates []Key
	var decrypted io.ReadCloser

	// Now that we have the list of encrypted keys we need to decrypt at
	// least one of them or, if we cannot, we need to call the prompt
	// function so that it can decrypt a key or give us a passphrase.
FindKey:
	for {
		// See if any of the keys already have a private key available
		candidates = candidates[:0]
		candidateFingerprints := make(map[string]bool)

		for _, pk := range pubKeys {
			if pk.key.PrivateKey == nil {
				continue
			}
			if !pk.key.PrivateKey.Encrypted {
				if len(pk.encryptedKey.Key) == 0 {
					errDec := pk.encryptedKey.Decrypt(pk.key.PrivateKey, config)
					if errDec != nil {
						continue
					}
				}
				// Try to decrypt symmetrically encrypted
				decrypted, err = edp.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key)
				if err != nil && err != errors.ErrKeyIncorrect {
					return nil, err
				}
				if decrypted != nil {
					md.DecryptedWith = pk.key
					break FindKey
				}
			} else {
				fpr := string(pk.key.PublicKey.Fingerprint[:])
				if v := candidateFingerprints[fpr]; v {
					continue
				}
				candidates = append(candidates, pk.key)
				candidateFingerprints[fpr] = true
			}
		}

		if len(candidates) == 0 && len(symKeys) == 0 {
			return nil, errors.ErrKeyIncorrect
		}

		if prompt == nil {
			return nil, errors.ErrKeyIncorrect
		}

		passphrase, err := prompt(candidates, len(symKeys) != 0)
		if err != nil {
			return nil, err
		}

		// Try the symmetric passphrase first
		if len(symKeys) != 0 && passphrase != nil {
			for _, s := range symKeys {
				key, cipherFunc, err := s.Decrypt(passphrase)
				// In v4, on wrong passphrase, session key decryption is very likely to result in an invalid cipherFunc:
				// only for < 5% of cases we will proceed to decrypt the data
				if err == nil {
					decrypted, err = edp.Decrypt(cipherFunc, key)
					if err != nil {
						return nil, err
					}
					if decrypted != nil {
						break FindKey
					}
				}
			}
		}
	}

	md.decrypted = decrypted
	if err := packets.Push(decrypted); err != nil {
		return nil, err
	}
	mdFinal, sensitiveParsingErr := readSignedMessage(packets, md, keyring, config)
	if sensitiveParsingErr != nil {
		return nil, errors.HandleSensitiveParsingError(sensitiveParsingErr, md.decrypted != nil)
	}
	return mdFinal, nil
}

// readSignedMessage reads a possibly signed message if mdin is non-zero then
// that structure is updated and returned. Otherwise a fresh MessageDetails is
// used.
func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing, config *packet.Config) (md *MessageDetails, err error) {
	if mdin == nil {
		mdin = new(MessageDetails)
	}
	md = mdin

	var p packet.Packet
	var h hash.Hash
	var wrappedHash hash.Hash
	var prevLast bool
FindLiteralData:
	for {
		p, err = packets.Next()
		if err != nil {
			return nil, err
		}
		switch p := p.(type) {
		case *packet.Compressed:
			if err := packets.Push(p.Body); err != nil {
				return nil, err
			}
		case *packet.OnePassSignature:
			if prevLast {
				return nil, errors.UnsupportedError("nested signature packets")
			}

			if p.IsLast {
				prevLast = true
			}

			h, wrappedHash, err = hashForSignature(p.Hash, p.SigType, p.Salt)
			if err != nil {
				md.SignatureError = err
			}

			md.IsSigned = true
			if p.Version == 6 {
				md.SignedByFingerprint = p.KeyFingerprint
			}
			md.SignedByKeyId = p.KeyId

			if keyring != nil {
				keys := keyring.KeysByIdUsage(p.KeyId, packet.KeyFlagSign)
				if len(keys) > 0 {
					md.SignedBy = &keys[0]
				}
			}
		case *packet.LiteralData:
			md.LiteralData = p
			break FindLiteralData
		}
	}

	if md.IsSigned && md.SignatureError == nil {
		md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md, config}
	} else if md.decrypted != nil {
		md.UnverifiedBody = &checkReader{md, false}
	} else {
		md.UnverifiedBody = md.LiteralData.Body
	}

	return md, nil
}

func wrapHashForSignature(hashFunc hash.Hash, sigType packet.SignatureType) (hash.Hash, error) {
	switch sigType {
	case packet.SigTypeBinary:
		return hashFunc, nil
	case packet.SigTypeText:
		return NewCanonicalTextHash(hashFunc), nil
	}
	return nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}

// hashForSignature returns a pair of hashes that can be used to verify a
// signature. The signature may specify that the contents of the signed message
// should be preprocessed (i.e. to normalize line endings). Thus this function
// returns two hashes. The second should be used to hash the message itself and
// performs any needed preprocessing.
func hashForSignature(hashFunc crypto.Hash, sigType packet.SignatureType, sigSalt []byte) (hash.Hash, hash.Hash, error) {
	if _, ok := algorithm.HashToHashIdWithSha1(hashFunc); !ok {
		return nil, nil, errors.UnsupportedError("unsupported hash function")
	}
	if !hashFunc.Available() {
		return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashFunc)))
	}
	h := hashFunc.New()
	if sigSalt != nil {
		h.Write(sigSalt)
	}
	wrappedHash, err := wrapHashForSignature(h, sigType)
	if err != nil {
		return nil, nil, err
	}
	switch sigType {
	case packet.SigTypeBinary:
		return h, wrappedHash, nil
	case packet.SigTypeText:
		return h, wrappedHash, nil
	}
	return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}

// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger
// MDC checks.
type checkReader struct {
	md      *MessageDetails
	checked bool
}

func (cr *checkReader) Read(buf []byte) (int, error) {
	n, sensitiveParsingError := cr.md.LiteralData.Body.Read(buf)
	if sensitiveParsingError == io.EOF {
		if cr.checked {
			// Only check once
			return n, io.EOF
		}
		mdcErr := cr.md.decrypted.Close()
		if mdcErr != nil {
			return n, mdcErr
		}
		cr.checked = true
		return n, io.EOF
	}

	if sensitiveParsingError != nil {
		return n, errors.HandleSensitiveParsingError(sensitiveParsingError, true)
	}

	return n, nil
}

// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes
// the data as it is read. When it sees an EOF from the underlying io.Reader
// it parses and checks a trailing Signature packet and triggers any MDC checks.
type signatureCheckReader struct {
	packets        *packet.Reader
	h, wrappedHash hash.Hash
	md             *MessageDetails
	config         *packet.Config
}

func (scr *signatureCheckReader) Read(buf []byte) (int, error) {
	n, sensitiveParsingError := scr.md.LiteralData.Body.Read(buf)

	// Hash only if required
	if scr.md.SignedBy != nil {
		scr.wrappedHash.Write(buf[:n])
	}

	readsDecryptedData := scr.md.decrypted != nil
	if sensitiveParsingError == io.EOF {
		var p packet.Packet
		var readError error
		var sig *packet.Signature

		p, readError = scr.packets.Next()
		for readError == nil {
			var ok bool
			if sig, ok = p.(*packet.Signature); ok {
				if sig.Version == 5 && (sig.SigType == 0x00 || sig.SigType == 0x01) {
					sig.Metadata = scr.md.LiteralData
				}

				// If signature KeyID matches
				if scr.md.SignedBy != nil && *sig.IssuerKeyId == scr.md.SignedByKeyId {
					key := scr.md.SignedBy
					signatureError := key.PublicKey.VerifySignature(scr.h, sig)
					if signatureError == nil {
						signatureError = checkMessageSignatureDetails(key, sig, scr.config)
					}
					scr.md.Signature = sig
					scr.md.SignatureError = signatureError
				} else {
					scr.md.UnverifiedSignatures = append(scr.md.UnverifiedSignatures, sig)
				}
			}

			p, readError = scr.packets.Next()
		}

		if scr.md.SignedBy != nil && scr.md.Signature == nil {
			if scr.md.UnverifiedSignatures == nil {
				scr.md.SignatureError = errors.StructuralError("LiteralData not followed by signature")
			} else {
				scr.md.SignatureError = errors.StructuralError("No matching signature found")
			}
		}

		// The SymmetricallyEncrypted packet, if any, might have an
		// unsigned hash of its own. In order to check this we need to
		// close that Reader.
		if scr.md.decrypted != nil {
			if sensitiveParsingError := scr.md.decrypted.Close(); sensitiveParsingError != nil {
				return n, errors.HandleSensitiveParsingError(sensitiveParsingError, true)
			}
		}
		return n, io.EOF
	}

	if sensitiveParsingError != nil {
		return n, errors.HandleSensitiveParsingError(sensitiveParsingError, readsDecryptedData)
	}

	return n, nil
}

// VerifyDetachedSignature takes a signed file and a detached signature and
// returns the signature packet and the entity the signature was signed by,
// if any, and a possible signature verification error.
// If the signer isn't known, ErrUnknownIssuer is returned.
func VerifyDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
	return verifyDetachedSignature(keyring, signed, signature, nil, false, config)
}

// VerifyDetachedSignatureAndHash performs the same actions as
// VerifyDetachedSignature and checks that the expected hash functions were used.
func VerifyDetachedSignatureAndHash(keyring KeyRing, signed, signature io.Reader, expectedHashes []crypto.Hash, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
	return verifyDetachedSignature(keyring, signed, signature, expectedHashes, true, config)
}

// CheckDetachedSignature takes a signed file and a detached signature and
// returns the entity the signature was signed by, if any, and a possible
// signature verification error. If the signer isn't known,
// ErrUnknownIssuer is returned.
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (signer *Entity, err error) {
	_, signer, err = verifyDetachedSignature(keyring, signed, signature, nil, false, config)
	return
}

// CheckDetachedSignatureAndHash performs the same actions as
// CheckDetachedSignature and checks that the expected hash functions were used.
func CheckDetachedSignatureAndHash(keyring KeyRing, signed, signature io.Reader, expectedHashes []crypto.Hash, config *packet.Config) (signer *Entity, err error) {
	_, signer, err = verifyDetachedSignature(keyring, signed, signature, expectedHashes, true, config)
	return
}

func verifyDetachedSignature(keyring KeyRing, signed, signature io.Reader, expectedHashes []crypto.Hash, checkHashes bool, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
	var issuerKeyId uint64
	var hashFunc crypto.Hash
	var sigType packet.SignatureType
	var keys []Key
	var p packet.Packet

	packets := packet.NewReader(signature)
	for {
		p, err = packets.Next()
		if err == io.EOF {
			return nil, nil, errors.ErrUnknownIssuer
		}
		if err != nil {
			return nil, nil, err
		}

		var ok bool
		sig, ok = p.(*packet.Signature)
		if !ok {
			return nil, nil, errors.StructuralError("non signature packet found")
		}
		if sig.IssuerKeyId == nil {
			return nil, nil, errors.StructuralError("signature doesn't have an issuer")
		}
		issuerKeyId = *sig.IssuerKeyId
		hashFunc = sig.Hash
		sigType = sig.SigType
		if checkHashes {
			matchFound := false
			// check for hashes
			for _, expectedHash := range expectedHashes {
				if hashFunc == expectedHash {
					matchFound = true
					break
				}
			}
			if !matchFound {
				return nil, nil, errors.StructuralError("hash algorithm or salt mismatch with cleartext message headers")
			}
		}
		keys = keyring.KeysByIdUsage(issuerKeyId, packet.KeyFlagSign)
		if len(keys) > 0 {
			break
		}
	}

	if len(keys) == 0 {
		panic("unreachable")
	}

	h, err := sig.PrepareVerify()
	if err != nil {
		return nil, nil, err
	}
	wrappedHash, err := wrapHashForSignature(h, sigType)
	if err != nil {
		return nil, nil, err
	}

	if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF {
		return nil, nil, err
	}

	for _, key := range keys {
		err = key.PublicKey.VerifySignature(h, sig)
		if err == nil {
			return sig, key.Entity, checkMessageSignatureDetails(&key, sig, config)
		}
	}

	return nil, nil, err
}

// CheckArmoredDetachedSignature performs the same actions as
// CheckDetachedSignature but expects the signature to be armored.
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (signer *Entity, err error) {
	body, err := readArmored(signature, SignatureType)
	if err != nil {
		return
	}

	return CheckDetachedSignature(keyring, signed, body, config)
}

// checkMessageSignatureDetails returns an error if:
//   - The signature (or one of the binding signatures mentioned below)
//     has a unknown critical notation data subpacket
//   - The primary key of the signing entity is revoked
//   - The primary identity is revoked
//   - The signature is expired
//   - The primary key of the signing entity is expired according to the
//     primary identity binding signature
//
// ... or, if the signature was signed by a subkey and:
//   - The signing subkey is revoked
//   - The signing subkey is expired according to the subkey binding signature
//   - The signing subkey binding signature is expired
//   - The signing subkey cross-signature is expired
//
// NOTE: The order of these checks is important, as the caller may choose to
// ignore ErrSignatureExpired or ErrKeyExpired errors, but should never
// ignore any other errors.
func checkMessageSignatureDetails(key *Key, signature *packet.Signature, config *packet.Config) error {
	now := config.Now()
	primarySelfSignature, primaryIdentity := key.Entity.PrimarySelfSignature()
	signedBySubKey := key.PublicKey != key.Entity.PrimaryKey
	sigsToCheck := []*packet.Signature{signature, primarySelfSignature}
	if signedBySubKey {
		sigsToCheck = append(sigsToCheck, key.SelfSignature, key.SelfSignature.EmbeddedSignature)
	}
	for _, sig := range sigsToCheck {
		for _, notation := range sig.Notations {
			if notation.IsCritical && !config.KnownNotation(notation.Name) {
				return errors.SignatureError("unknown critical notation: " + notation.Name)
			}
		}
	}
	if key.Entity.Revoked(now) || // primary key is revoked
		(signedBySubKey && key.Revoked(now)) || // subkey is revoked
		(primaryIdentity != nil && primaryIdentity.Revoked(now)) { // primary identity is revoked for v4
		return errors.ErrKeyRevoked
	}
	if key.Entity.PrimaryKey.KeyExpired(primarySelfSignature, now) { // primary key is expired
		return errors.ErrKeyExpired
	}
	if signedBySubKey {
		if key.PublicKey.KeyExpired(key.SelfSignature, now) { // subkey is expired
			return errors.ErrKeyExpired
		}
	}
	for _, sig := range sigsToCheck {
		if sig.SigExpired(now) { // any of the relevant signatures are expired
			return errors.ErrSignatureExpired
		}
	}
	return nil
}