File: write.go

package info (click to toggle)
golang-github-protonmail-go-crypto 1.1.6-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,932 kB
  • sloc: makefile: 10
file content (620 lines) | stat: -rw-r--r-- 21,271 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package openpgp

import (
	"crypto"
	"hash"
	"io"
	"strconv"
	"time"

	"github.com/ProtonMail/go-crypto/openpgp/armor"
	"github.com/ProtonMail/go-crypto/openpgp/errors"
	"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
	"github.com/ProtonMail/go-crypto/openpgp/packet"
)

// DetachSign signs message with the private key from signer (which must
// already have been decrypted) and writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
	return detachSign(w, signer, message, packet.SigTypeBinary, config)
}

// ArmoredDetachSign signs message with the private key from signer (which
// must already have been decrypted) and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) (err error) {
	return armoredDetachSign(w, signer, message, packet.SigTypeBinary, config)
}

// DetachSignText signs message (after canonicalising the line endings) with
// the private key from signer (which must already have been decrypted) and
// writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
	return detachSign(w, signer, message, packet.SigTypeText, config)
}

// ArmoredDetachSignText signs message (after canonicalising the line endings)
// with the private key from signer (which must already have been decrypted)
// and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
	return armoredDetachSign(w, signer, message, packet.SigTypeText, config)
}

func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
	out, err := armor.Encode(w, SignatureType, nil)
	if err != nil {
		return
	}
	err = detachSign(out, signer, message, sigType, config)
	if err != nil {
		return
	}
	return out.Close()
}

func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
	signingKey, ok := signer.SigningKeyById(config.Now(), config.SigningKey())
	if !ok {
		return errors.InvalidArgumentError("no valid signing keys")
	}
	if signingKey.PrivateKey == nil {
		return errors.InvalidArgumentError("signing key doesn't have a private key")
	}
	if signingKey.PrivateKey.Encrypted {
		return errors.InvalidArgumentError("signing key is encrypted")
	}
	if _, ok := algorithm.HashToHashId(config.Hash()); !ok {
		return errors.InvalidArgumentError("invalid hash function")
	}

	sig := createSignaturePacket(signingKey.PublicKey, sigType, config)

	h, err := sig.PrepareSign(config)
	if err != nil {
		return
	}
	wrappedHash, err := wrapHashForSignature(h, sig.SigType)
	if err != nil {
		return
	}
	if _, err = io.Copy(wrappedHash, message); err != nil {
		return err
	}

	err = sig.Sign(h, signingKey.PrivateKey, config)
	if err != nil {
		return
	}

	return sig.Serialize(w)
}

// FileHints contains metadata about encrypted files. This metadata is, itself,
// encrypted.
type FileHints struct {
	// IsBinary can be set to hint that the contents are binary data.
	IsBinary bool
	// FileName hints at the name of the file that should be written. It's
	// truncated to 255 bytes if longer. It may be empty to suggest that the
	// file should not be written to disk. It may be equal to "_CONSOLE" to
	// suggest the data should not be written to disk.
	FileName string
	// ModTime contains the modification time of the file, or the zero time if not applicable.
	ModTime time.Time
}

// SymmetricallyEncrypt acts like gpg -c: it encrypts a file with a passphrase.
// The resulting WriteCloser must be closed after the contents of the file have
// been written.
// If config is nil, sensible defaults will be used.
func SymmetricallyEncrypt(ciphertext io.Writer, passphrase []byte, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
	if hints == nil {
		hints = &FileHints{}
	}

	key, err := packet.SerializeSymmetricKeyEncrypted(ciphertext, passphrase, config)
	if err != nil {
		return
	}

	var w io.WriteCloser
	cipherSuite := packet.CipherSuite{
		Cipher: config.Cipher(),
		Mode:   config.AEAD().Mode(),
	}
	w, err = packet.SerializeSymmetricallyEncrypted(ciphertext, config.Cipher(), config.AEAD() != nil, cipherSuite, key, config)
	if err != nil {
		return
	}

	literalData := w
	if algo := config.Compression(); algo != packet.CompressionNone {
		var compConfig *packet.CompressionConfig
		if config != nil {
			compConfig = config.CompressionConfig
		}
		literalData, err = packet.SerializeCompressed(w, algo, compConfig)
		if err != nil {
			return
		}
	}

	var epochSeconds uint32
	if !hints.ModTime.IsZero() {
		epochSeconds = uint32(hints.ModTime.Unix())
	}
	return packet.SerializeLiteral(literalData, hints.IsBinary, hints.FileName, epochSeconds)
}

// intersectPreferences mutates and returns a prefix of a that contains only
// the values in the intersection of a and b. The order of a is preserved.
func intersectPreferences(a []uint8, b []uint8) (intersection []uint8) {
	var j int
	for _, v := range a {
		for _, v2 := range b {
			if v == v2 {
				a[j] = v
				j++
				break
			}
		}
	}

	return a[:j]
}

// intersectPreferences mutates and returns a prefix of a that contains only
// the values in the intersection of a and b. The order of a is preserved.
func intersectCipherSuites(a [][2]uint8, b [][2]uint8) (intersection [][2]uint8) {
	var j int
	for _, v := range a {
		for _, v2 := range b {
			if v[0] == v2[0] && v[1] == v2[1] {
				a[j] = v
				j++
				break
			}
		}
	}

	return a[:j]
}

func hashToHashId(h crypto.Hash) uint8 {
	v, ok := algorithm.HashToHashId(h)
	if !ok {
		panic("tried to convert unknown hash")
	}
	return v
}

// EncryptText encrypts a message to a number of recipients and, optionally,
// signs it. Optional information is contained in 'hints', also encrypted, that
// aids the recipients in processing the message. The resulting WriteCloser
// must be closed after the contents of the file have been written. If config
// is nil, sensible defaults will be used. The signing is done in text mode.
func EncryptText(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
	return encrypt(ciphertext, ciphertext, to, signed, hints, packet.SigTypeText, config)
}

// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
	return encrypt(ciphertext, ciphertext, to, signed, hints, packet.SigTypeBinary, config)
}

// EncryptSplit encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func EncryptSplit(keyWriter io.Writer, dataWriter io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
	return encrypt(keyWriter, dataWriter, to, signed, hints, packet.SigTypeBinary, config)
}

// EncryptTextSplit encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func EncryptTextSplit(keyWriter io.Writer, dataWriter io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
	return encrypt(keyWriter, dataWriter, to, signed, hints, packet.SigTypeText, config)
}

// writeAndSign writes the data as a payload package and, optionally, signs
// it. hints contains optional information, that is also encrypted,
// that aids the recipients in processing the message. The resulting
// WriteCloser must be closed after the contents of the file have been
// written. If config is nil, sensible defaults will be used.
func writeAndSign(payload io.WriteCloser, candidateHashes []uint8, signed *Entity, hints *FileHints, sigType packet.SignatureType, config *packet.Config) (plaintext io.WriteCloser, err error) {
	var signer *packet.PrivateKey
	if signed != nil {
		signKey, ok := signed.SigningKeyById(config.Now(), config.SigningKey())
		if !ok {
			return nil, errors.InvalidArgumentError("no valid signing keys")
		}
		signer = signKey.PrivateKey
		if signer == nil {
			return nil, errors.InvalidArgumentError("no private key in signing key")
		}
		if signer.Encrypted {
			return nil, errors.InvalidArgumentError("signing key must be decrypted")
		}
	}

	var hash crypto.Hash
	for _, hashId := range candidateHashes {
		if h, ok := algorithm.HashIdToHash(hashId); ok && h.Available() {
			hash = h
			break
		}
	}

	// If the hash specified by config is a candidate, we'll use that.
	if configuredHash := config.Hash(); configuredHash.Available() {
		for _, hashId := range candidateHashes {
			if h, ok := algorithm.HashIdToHash(hashId); ok && h == configuredHash {
				hash = h
				break
			}
		}
	}

	if hash == 0 {
		hashId := candidateHashes[0]
		name, ok := algorithm.HashIdToString(hashId)
		if !ok {
			name = "#" + strconv.Itoa(int(hashId))
		}
		return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)")
	}

	var salt []byte
	if signer != nil {
		var opsVersion = 3
		if signer.Version == 6 {
			opsVersion = signer.Version
		}
		ops := &packet.OnePassSignature{
			Version:    opsVersion,
			SigType:    sigType,
			Hash:       hash,
			PubKeyAlgo: signer.PubKeyAlgo,
			KeyId:      signer.KeyId,
			IsLast:     true,
		}
		if opsVersion == 6 {
			ops.KeyFingerprint = signer.Fingerprint
			salt, err = packet.SignatureSaltForHash(hash, config.Random())
			if err != nil {
				return nil, err
			}
			ops.Salt = salt
		}
		if err := ops.Serialize(payload); err != nil {
			return nil, err
		}
	}

	if hints == nil {
		hints = &FileHints{}
	}

	w := payload
	if signer != nil {
		// If we need to write a signature packet after the literal
		// data then we need to stop literalData from closing
		// encryptedData.
		w = noOpCloser{w}

	}
	var epochSeconds uint32
	if !hints.ModTime.IsZero() {
		epochSeconds = uint32(hints.ModTime.Unix())
	}
	literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds)
	if err != nil {
		return nil, err
	}

	if signer != nil {
		h, wrappedHash, err := hashForSignature(hash, sigType, salt)
		if err != nil {
			return nil, err
		}
		metadata := &packet.LiteralData{
			Format:   'u',
			FileName: hints.FileName,
			Time:     epochSeconds,
		}
		if hints.IsBinary {
			metadata.Format = 'b'
		}
		return signatureWriter{payload, literalData, hash, wrappedHash, h, salt, signer, sigType, config, metadata}, nil
	}
	return literalData, nil
}

// encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func encrypt(keyWriter io.Writer, dataWriter io.Writer, to []*Entity, signed *Entity, hints *FileHints, sigType packet.SignatureType, config *packet.Config) (plaintext io.WriteCloser, err error) {
	if len(to) == 0 {
		return nil, errors.InvalidArgumentError("no encryption recipient provided")
	}

	// These are the possible ciphers that we'll use for the message.
	candidateCiphers := []uint8{
		uint8(packet.CipherAES256),
		uint8(packet.CipherAES128),
	}

	// These are the possible hash functions that we'll use for the signature.
	candidateHashes := []uint8{
		hashToHashId(crypto.SHA256),
		hashToHashId(crypto.SHA384),
		hashToHashId(crypto.SHA512),
		hashToHashId(crypto.SHA3_256),
		hashToHashId(crypto.SHA3_512),
	}

	// Prefer GCM if everyone supports it
	candidateCipherSuites := [][2]uint8{
		{uint8(packet.CipherAES256), uint8(packet.AEADModeGCM)},
		{uint8(packet.CipherAES256), uint8(packet.AEADModeEAX)},
		{uint8(packet.CipherAES256), uint8(packet.AEADModeOCB)},
		{uint8(packet.CipherAES128), uint8(packet.AEADModeGCM)},
		{uint8(packet.CipherAES128), uint8(packet.AEADModeEAX)},
		{uint8(packet.CipherAES128), uint8(packet.AEADModeOCB)},
	}

	candidateCompression := []uint8{
		uint8(packet.CompressionNone),
		uint8(packet.CompressionZIP),
		uint8(packet.CompressionZLIB),
	}

	encryptKeys := make([]Key, len(to))

	// AEAD is used only if config enables it and every key supports it
	aeadSupported := config.AEAD() != nil

	for i := range to {
		var ok bool
		encryptKeys[i], ok = to[i].EncryptionKey(config.Now())
		if !ok {
			return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no valid encryption keys")
		}

		primarySelfSignature, _ := to[i].PrimarySelfSignature()
		if primarySelfSignature == nil {
			return nil, errors.InvalidArgumentError("entity without a self-signature")
		}

		if !primarySelfSignature.SEIPDv2 {
			aeadSupported = false
		}

		candidateCiphers = intersectPreferences(candidateCiphers, primarySelfSignature.PreferredSymmetric)
		candidateHashes = intersectPreferences(candidateHashes, primarySelfSignature.PreferredHash)
		candidateCipherSuites = intersectCipherSuites(candidateCipherSuites, primarySelfSignature.PreferredCipherSuites)
		candidateCompression = intersectPreferences(candidateCompression, primarySelfSignature.PreferredCompression)
	}

	// In the event that the intersection of supported algorithms is empty we use the ones
	// labelled as MUST that every implementation supports.
	if len(candidateCiphers) == 0 {
		// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-9.3
		candidateCiphers = []uint8{uint8(packet.CipherAES128)}
	}
	if len(candidateHashes) == 0 {
		// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#hash-algos
		candidateHashes = []uint8{hashToHashId(crypto.SHA256)}
	}
	if len(candidateCipherSuites) == 0 {
		// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-9.6
		candidateCipherSuites = [][2]uint8{{uint8(packet.CipherAES128), uint8(packet.AEADModeOCB)}}
	}

	cipher := packet.CipherFunction(candidateCiphers[0])
	aeadCipherSuite := packet.CipherSuite{
		Cipher: packet.CipherFunction(candidateCipherSuites[0][0]),
		Mode:   packet.AEADMode(candidateCipherSuites[0][1]),
	}

	// If the cipher specified by config is a candidate, we'll use that.
	configuredCipher := config.Cipher()
	for _, c := range candidateCiphers {
		cipherFunc := packet.CipherFunction(c)
		if cipherFunc == configuredCipher {
			cipher = cipherFunc
			break
		}
	}

	var symKey []byte
	if aeadSupported {
		symKey = make([]byte, aeadCipherSuite.Cipher.KeySize())
	} else {
		symKey = make([]byte, cipher.KeySize())
	}

	if _, err := io.ReadFull(config.Random(), symKey); err != nil {
		return nil, err
	}

	for _, key := range encryptKeys {
		if err := packet.SerializeEncryptedKeyAEAD(keyWriter, key.PublicKey, cipher, aeadSupported, symKey, config); err != nil {
			return nil, err
		}
	}

	var payload io.WriteCloser
	payload, err = packet.SerializeSymmetricallyEncrypted(dataWriter, cipher, aeadSupported, aeadCipherSuite, symKey, config)
	if err != nil {
		return
	}

	payload, err = handleCompression(payload, candidateCompression, config)
	if err != nil {
		return nil, err
	}

	return writeAndSign(payload, candidateHashes, signed, hints, sigType, config)
}

// Sign signs a message. The resulting WriteCloser must be closed after the
// contents of the file have been written.  hints contains optional information
// that aids the recipients in processing the message.
// If config is nil, sensible defaults will be used.
func Sign(output io.Writer, signed *Entity, hints *FileHints, config *packet.Config) (input io.WriteCloser, err error) {
	if signed == nil {
		return nil, errors.InvalidArgumentError("no signer provided")
	}

	// These are the possible hash functions that we'll use for the signature.
	candidateHashes := []uint8{
		hashToHashId(crypto.SHA256),
		hashToHashId(crypto.SHA384),
		hashToHashId(crypto.SHA512),
		hashToHashId(crypto.SHA3_256),
		hashToHashId(crypto.SHA3_512),
	}
	defaultHashes := candidateHashes[0:1]
	primarySelfSignature, _ := signed.PrimarySelfSignature()
	if primarySelfSignature == nil {
		return nil, errors.StructuralError("signed entity has no self-signature")
	}
	preferredHashes := primarySelfSignature.PreferredHash
	if len(preferredHashes) == 0 {
		preferredHashes = defaultHashes
	}
	candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
	if len(candidateHashes) == 0 {
		return nil, errors.StructuralError("cannot sign because signing key shares no common algorithms with candidate hashes")
	}

	return writeAndSign(noOpCloser{output}, candidateHashes, signed, hints, packet.SigTypeBinary, config)
}

// signatureWriter hashes the contents of a message while passing it along to
// literalData. When closed, it closes literalData, writes a signature packet
// to encryptedData and then also closes encryptedData.
type signatureWriter struct {
	encryptedData io.WriteCloser
	literalData   io.WriteCloser
	hashType      crypto.Hash
	wrappedHash   hash.Hash
	h             hash.Hash
	salt          []byte // v6 only
	signer        *packet.PrivateKey
	sigType       packet.SignatureType
	config        *packet.Config
	metadata      *packet.LiteralData // V5 signatures protect document metadata
}

func (s signatureWriter) Write(data []byte) (int, error) {
	s.wrappedHash.Write(data)
	switch s.sigType {
	case packet.SigTypeBinary:
		return s.literalData.Write(data)
	case packet.SigTypeText:
		flag := 0
		return writeCanonical(s.literalData, data, &flag)
	}
	return 0, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(s.sigType)))
}

func (s signatureWriter) Close() error {
	sig := createSignaturePacket(&s.signer.PublicKey, s.sigType, s.config)
	sig.Hash = s.hashType
	sig.Metadata = s.metadata

	if err := sig.SetSalt(s.salt); err != nil {
		return err
	}

	if err := sig.Sign(s.h, s.signer, s.config); err != nil {
		return err
	}
	if err := s.literalData.Close(); err != nil {
		return err
	}
	if err := sig.Serialize(s.encryptedData); err != nil {
		return err
	}
	return s.encryptedData.Close()
}

func createSignaturePacket(signer *packet.PublicKey, sigType packet.SignatureType, config *packet.Config) *packet.Signature {
	sigLifetimeSecs := config.SigLifetime()
	return &packet.Signature{
		Version:           signer.Version,
		SigType:           sigType,
		PubKeyAlgo:        signer.PubKeyAlgo,
		Hash:              config.Hash(),
		CreationTime:      config.Now(),
		IssuerKeyId:       &signer.KeyId,
		IssuerFingerprint: signer.Fingerprint,
		Notations:         config.Notations(),
		SigLifetimeSecs:   &sigLifetimeSecs,
	}
}

// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
// TODO: we have two of these in OpenPGP packages alone. This probably needs
// to be promoted somewhere more common.
type noOpCloser struct {
	w io.Writer
}

func (c noOpCloser) Write(data []byte) (n int, err error) {
	return c.w.Write(data)
}

func (c noOpCloser) Close() error {
	return nil
}

func handleCompression(compressed io.WriteCloser, candidateCompression []uint8, config *packet.Config) (data io.WriteCloser, err error) {
	data = compressed
	confAlgo := config.Compression()
	if confAlgo == packet.CompressionNone {
		return
	}

	// Set algorithm labelled as MUST as fallback
	// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-9.4
	finalAlgo := packet.CompressionNone
	// if compression specified by config available we will use it
	for _, c := range candidateCompression {
		if uint8(confAlgo) == c {
			finalAlgo = confAlgo
			break
		}
	}

	if finalAlgo != packet.CompressionNone {
		var compConfig *packet.CompressionConfig
		if config != nil {
			compConfig = config.CompressionConfig
		}
		data, err = packet.SerializeCompressed(compressed, finalAlgo, compConfig)
		if err != nil {
			return
		}
	}
	return data, nil
}