1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package s2k implements the various OpenPGP string-to-key transforms as
// specified in RFC 4800 section 3.7.1, and Argon2 specified in
// draft-ietf-openpgp-crypto-refresh-08 section 3.7.1.4.
package s2k // import "github.com/ProtonMail/go-crypto/openpgp/s2k"
import (
"crypto"
"hash"
"io"
"strconv"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"golang.org/x/crypto/argon2"
)
type Mode uint8
// Defines the default S2KMode constants
//
// 0 (simple), 1(salted), 3(iterated), 4(argon2)
const (
SimpleS2K Mode = 0
SaltedS2K Mode = 1
IteratedSaltedS2K Mode = 3
Argon2S2K Mode = 4
GnuS2K Mode = 101
)
const Argon2SaltSize int = 16
// Params contains all the parameters of the s2k packet
type Params struct {
// mode is the mode of s2k function.
// It can be 0 (simple), 1(salted), 3(iterated)
// 2(reserved) 100-110(private/experimental).
mode Mode
// hashId is the ID of the hash function used in any of the modes
hashId byte
// salt is a byte array to use as a salt in hashing process or argon2
saltBytes [Argon2SaltSize]byte
// countByte is used to determine how many rounds of hashing are to
// be performed in s2k mode 3. See RFC 4880 Section 3.7.1.3.
countByte byte
// passes is a parameter in Argon2 to determine the number of iterations
// See RFC the crypto refresh Section 3.7.1.4.
passes byte
// parallelism is a parameter in Argon2 to determine the degree of paralellism
// See RFC the crypto refresh Section 3.7.1.4.
parallelism byte
// memoryExp is a parameter in Argon2 to determine the memory usage
// i.e., 2 ** memoryExp kibibytes
// See RFC the crypto refresh Section 3.7.1.4.
memoryExp byte
}
// encodeCount converts an iterative "count" in the range 1024 to
// 65011712, inclusive, to an encoded count. The return value is the
// octet that is actually stored in the GPG file. encodeCount panics
// if i is not in the above range (encodedCount above takes care to
// pass i in the correct range). See RFC 4880 Section 3.7.7.1.
func encodeCount(i int) uint8 {
if i < 65536 || i > 65011712 {
panic("count arg i outside the required range")
}
for encoded := 96; encoded < 256; encoded++ {
count := decodeCount(uint8(encoded))
if count >= i {
return uint8(encoded)
}
}
return 255
}
// decodeCount returns the s2k mode 3 iterative "count" corresponding to
// the encoded octet c.
func decodeCount(c uint8) int {
return (16 + int(c&15)) << (uint32(c>>4) + 6)
}
// encodeMemory converts the Argon2 "memory" in the range parallelism*8 to
// 2**31, inclusive, to an encoded memory. The return value is the
// octet that is actually stored in the GPG file. encodeMemory panics
// if is not in the above range
// See OpenPGP crypto refresh Section 3.7.1.4.
func encodeMemory(memory uint32, parallelism uint8) uint8 {
if memory < (8*uint32(parallelism)) || memory > uint32(2147483648) {
panic("Memory argument memory is outside the required range")
}
for exp := 3; exp < 31; exp++ {
compare := decodeMemory(uint8(exp))
if compare >= memory {
return uint8(exp)
}
}
return 31
}
// decodeMemory computes the decoded memory in kibibytes as 2**memoryExponent
func decodeMemory(memoryExponent uint8) uint32 {
return uint32(1) << memoryExponent
}
// Simple writes to out the result of computing the Simple S2K function (RFC
// 4880, section 3.7.1.1) using the given hash and input passphrase.
func Simple(out []byte, h hash.Hash, in []byte) {
Salted(out, h, in, nil)
}
var zero [1]byte
// Salted writes to out the result of computing the Salted S2K function (RFC
// 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
h.Write(salt)
h.Write(in)
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Iterated writes to out the result of computing the Iterated and Salted S2K
// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
// salt and iteration count.
func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
combined := make([]byte, len(in)+len(salt))
copy(combined, salt)
copy(combined[len(salt):], in)
if count < len(combined) {
count = len(combined)
}
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
written := 0
for written < count {
if written+len(combined) > count {
todo := count - written
h.Write(combined[:todo])
written = count
} else {
h.Write(combined)
written += len(combined)
}
}
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Argon2 writes to out the key derived from the password (in) with the Argon2
// function (the crypto refresh, section 3.7.1.4)
func Argon2(out []byte, in []byte, salt []byte, passes uint8, paralellism uint8, memoryExp uint8) {
key := argon2.IDKey(in, salt, uint32(passes), decodeMemory(memoryExp), paralellism, uint32(len(out)))
copy(out[:], key)
}
// Generate generates valid parameters from given configuration.
// It will enforce the Iterated and Salted or Argon2 S2K method.
func Generate(rand io.Reader, c *Config) (*Params, error) {
var params *Params
if c != nil && c.Mode() == Argon2S2K {
// handle Argon2 case
argonConfig := c.Argon2()
params = &Params{
mode: Argon2S2K,
passes: argonConfig.Passes(),
parallelism: argonConfig.Parallelism(),
memoryExp: argonConfig.EncodedMemory(),
}
} else if c != nil && c.PassphraseIsHighEntropy && c.Mode() == SaltedS2K { // Allow SaltedS2K if PassphraseIsHighEntropy
hashId, ok := algorithm.HashToHashId(c.hash())
if !ok {
return nil, errors.UnsupportedError("no such hash")
}
params = &Params{
mode: SaltedS2K,
hashId: hashId,
}
} else { // Enforce IteratedSaltedS2K method otherwise
hashId, ok := algorithm.HashToHashId(c.hash())
if !ok {
return nil, errors.UnsupportedError("no such hash")
}
if c != nil {
c.S2KMode = IteratedSaltedS2K
}
params = &Params{
mode: IteratedSaltedS2K,
hashId: hashId,
countByte: c.EncodedCount(),
}
}
if _, err := io.ReadFull(rand, params.salt()); err != nil {
return nil, err
}
return params, nil
}
// Parse reads a binary specification for a string-to-key transformation from r
// and returns a function which performs that transform. If the S2K is a special
// GNU extension that indicates that the private key is missing, then the error
// returned is errors.ErrDummyPrivateKey.
func Parse(r io.Reader) (f func(out, in []byte), err error) {
params, err := ParseIntoParams(r)
if err != nil {
return nil, err
}
return params.Function()
}
// ParseIntoParams reads a binary specification for a string-to-key
// transformation from r and returns a struct describing the s2k parameters.
func ParseIntoParams(r io.Reader) (params *Params, err error) {
var buf [Argon2SaltSize + 3]byte
_, err = io.ReadFull(r, buf[:1])
if err != nil {
return
}
params = &Params{
mode: Mode(buf[0]),
}
switch params.mode {
case SimpleS2K:
_, err = io.ReadFull(r, buf[:1])
if err != nil {
return nil, err
}
params.hashId = buf[0]
return params, nil
case SaltedS2K:
_, err = io.ReadFull(r, buf[:9])
if err != nil {
return nil, err
}
params.hashId = buf[0]
copy(params.salt(), buf[1:9])
return params, nil
case IteratedSaltedS2K:
_, err = io.ReadFull(r, buf[:10])
if err != nil {
return nil, err
}
params.hashId = buf[0]
copy(params.salt(), buf[1:9])
params.countByte = buf[9]
return params, nil
case Argon2S2K:
_, err = io.ReadFull(r, buf[:Argon2SaltSize+3])
if err != nil {
return nil, err
}
copy(params.salt(), buf[:Argon2SaltSize])
params.passes = buf[Argon2SaltSize]
params.parallelism = buf[Argon2SaltSize+1]
params.memoryExp = buf[Argon2SaltSize+2]
if err := validateArgon2Params(params); err != nil {
return nil, err
}
return params, nil
case GnuS2K:
// This is a GNU extension. See
// https://git.gnupg.org/cgi-bin/gitweb.cgi?p=gnupg.git;a=blob;f=doc/DETAILS;h=fe55ae16ab4e26d8356dc574c9e8bc935e71aef1;hb=23191d7851eae2217ecdac6484349849a24fd94a#l1109
if _, err = io.ReadFull(r, buf[:5]); err != nil {
return nil, err
}
params.hashId = buf[0]
if buf[1] == 'G' && buf[2] == 'N' && buf[3] == 'U' && buf[4] == 1 {
return params, nil
}
return nil, errors.UnsupportedError("GNU S2K extension")
}
return nil, errors.UnsupportedError("S2K function")
}
func (params *Params) Mode() Mode {
return params.mode
}
func (params *Params) Dummy() bool {
return params != nil && params.mode == GnuS2K
}
func (params *Params) salt() []byte {
switch params.mode {
case SaltedS2K, IteratedSaltedS2K:
return params.saltBytes[:8]
case Argon2S2K:
return params.saltBytes[:Argon2SaltSize]
default:
return nil
}
}
func (params *Params) Function() (f func(out, in []byte), err error) {
if params.Dummy() {
return nil, errors.ErrDummyPrivateKey("dummy key found")
}
var hashObj crypto.Hash
if params.mode != Argon2S2K {
var ok bool
hashObj, ok = algorithm.HashIdToHashWithSha1(params.hashId)
if !ok {
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(params.hashId)))
}
if !hashObj.Available() {
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashObj)))
}
}
switch params.mode {
case SimpleS2K:
f := func(out, in []byte) {
Simple(out, hashObj.New(), in)
}
return f, nil
case SaltedS2K:
f := func(out, in []byte) {
Salted(out, hashObj.New(), in, params.salt())
}
return f, nil
case IteratedSaltedS2K:
f := func(out, in []byte) {
Iterated(out, hashObj.New(), in, params.salt(), decodeCount(params.countByte))
}
return f, nil
case Argon2S2K:
f := func(out, in []byte) {
Argon2(out, in, params.salt(), params.passes, params.parallelism, params.memoryExp)
}
return f, nil
}
return nil, errors.UnsupportedError("S2K function")
}
func (params *Params) Serialize(w io.Writer) (err error) {
if _, err = w.Write([]byte{uint8(params.mode)}); err != nil {
return
}
if params.mode != Argon2S2K {
if _, err = w.Write([]byte{params.hashId}); err != nil {
return
}
}
if params.Dummy() {
_, err = w.Write(append([]byte("GNU"), 1))
return
}
if params.mode > 0 {
if _, err = w.Write(params.salt()); err != nil {
return
}
if params.mode == IteratedSaltedS2K {
_, err = w.Write([]byte{params.countByte})
}
if params.mode == Argon2S2K {
_, err = w.Write([]byte{params.passes, params.parallelism, params.memoryExp})
}
}
return
}
// Serialize salts and stretches the given passphrase and writes the
// resulting key into key. It also serializes an S2K descriptor to
// w. The key stretching can be configured with c, which may be
// nil. In that case, sensible defaults will be used.
func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
params, err := Generate(rand, c)
if err != nil {
return err
}
err = params.Serialize(w)
if err != nil {
return err
}
f, err := params.Function()
if err != nil {
return err
}
f(key, passphrase)
return nil
}
// validateArgon2Params checks that the argon2 parameters are valid according to RFC9580.
func validateArgon2Params(params *Params) error {
// The number of passes t and the degree of parallelism p MUST be non-zero.
if params.parallelism == 0 {
return errors.StructuralError("invalid argon2 params: parallelism is 0")
}
if params.passes == 0 {
return errors.StructuralError("invalid argon2 params: iterations is 0")
}
// The encoded memory size MUST be a value from 3+ceil(log2(p)) to 31,
// such that the decoded memory size m is a value from 8*p to 2^31.
if params.memoryExp > 31 || decodeMemory(params.memoryExp) < 8*uint32(params.parallelism) {
return errors.StructuralError("invalid argon2 params: memory is out of bounds")
}
return nil
}
|