1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package openpgp implements high level operations on OpenPGP messages.
package v2
import (
"bytes"
"crypto"
_ "crypto/sha256"
_ "crypto/sha512"
"hash"
"io"
"io/ioutil"
"strconv"
"time"
"github.com/ProtonMail/go-crypto/openpgp/armor"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"github.com/ProtonMail/go-crypto/openpgp/packet"
_ "golang.org/x/crypto/sha3"
)
// SignatureType is the armor type for a PGP signature.
var SignatureType = "PGP SIGNATURE"
// readArmored reads an armored block with the given type.
func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) {
block, err := armor.Decode(r)
if err != nil {
return
}
if block.Type != expectedType {
return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type)
}
return block.Body, nil
}
// MessageDetails contains the result of parsing an OpenPGP encrypted and/or
// signed message.
type MessageDetails struct {
IsEncrypted bool // true if the message was encrypted.
EncryptedToKeyIds []uint64 // the list of recipient key ids.
IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message.
DecryptedWith Key // the private key used to decrypt the message, if any.
DecryptedWithAlgorithm packet.CipherFunction // Stores the algorithm used to decrypt the message, if any.
IsSigned bool // true if the message is signed.
LiteralData *packet.LiteralData // the metadata of the contents
UnverifiedBody io.Reader // the contents of the message.
CheckRecipients bool // Indicates if the intended recipients should be checked
SessionKey []byte // Caches the session key if the flag in packet.Config is set to true and a session key was present.
// If IsSigned is true then the signature candidates will
// be verified as UnverifiedBody is read. The signature cannot be
// checked until the whole of UnverifiedBody is read so UnverifiedBody
// must be consumed until EOF before the data can be trusted. Even if a
// message isn't signed (or the signer is unknown) the data may contain
// an authentication code that is only checked once UnverifiedBody has
// been consumed. Once EOF has been seen, the following fields are
// valid. (An authentication code failure is reported as a
// SignatureError error when reading from UnverifiedBody.)
IsVerified bool // true if the signatures have been verified else false
SignatureCandidates []*SignatureCandidate // stores state for all signatures of this message
SignedBy *Key // the issuer key of the fist successfully verified signature, if any found.
Signature *packet.Signature // the first successfully verified signature, if any found.
// SignatureError is nil if one of the signatures in the message verifies successfully
// else it points to the last observed signature error.
// The error of each signature verification can be inspected by iterating trough
// SignatureCandidates.
SignatureError error
// SelectedCandidate points to the signature candidate the SignatureError error stems from or
// the selected successfully verified signature candidate.
SelectedCandidate *SignatureCandidate
decrypted io.ReadCloser
}
// A PromptFunction is used as a callback by functions that may need to decrypt
// a private key, or prompt for a passphrase. It is called with a list of
// acceptable, encrypted private keys and a boolean that indicates whether a
// passphrase is usable. It should either decrypt a private key or return a
// passphrase to try. If the decrypted private key or given passphrase isn't
// correct, the function will be called again, forever. Any error returned will
// be passed up.
type PromptFunction func(keys []Key, symmetric bool) ([]byte, error)
// A keyEnvelopePair is used to store a private key with the envelope that
// contains a symmetric key, encrypted with that key.
type keyEnvelopePair struct {
key Key
encryptedKey *packet.EncryptedKey
}
// ReadMessage parses an OpenPGP message that may be signed and/or encrypted.
// The given KeyRing should contain both public keys (for signature
// verification) and, possibly encrypted, private keys for decrypting.
// If config is nil, sensible defaults will be used.
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) {
var p packet.Packet
var symKeys []*packet.SymmetricKeyEncrypted
var pubKeys []keyEnvelopePair
// Integrity protected encrypted packet: SymmetricallyEncrypted or AEADEncrypted
var edp packet.EncryptedDataPacket
var packets packet.PacketReader
if config.StrictPacketSequence() {
packets = packet.NewCheckReader(r)
} else {
packets = packet.NewReader(r)
}
md = new(MessageDetails)
md.IsEncrypted = true
md.CheckRecipients = config.IntendedRecipients()
// The message, if encrypted, starts with a number of packets
// containing an encrypted decryption key. The decryption key is either
// encrypted to a public key, or with a passphrase. This loop
// collects these packets.
ParsePackets:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.SymmetricKeyEncrypted:
// This packet contains the decryption key encrypted with a passphrase.
md.IsSymmetricallyEncrypted = true
symKeys = append(symKeys, p)
case *packet.EncryptedKey:
// This packet contains the decryption key encrypted to a public key.
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
switch p.Algo {
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly,
packet.PubKeyAlgoElGamal, packet.PubKeyAlgoECDH,
packet.PubKeyAlgoX25519, packet.PubKeyAlgoX448:
break
default:
continue
}
if keyring != nil {
unverifiedEntities := keyring.EntitiesById(p.KeyId)
for _, unverifiedEntity := range unverifiedEntities {
// Do not check key expiration to allow decryption of old messages
keys := unverifiedEntity.DecryptionKeys(p.KeyId, time.Time{}, config)
for _, key := range keys {
pubKeys = append(pubKeys, keyEnvelopePair{key, p})
}
}
}
case *packet.SymmetricallyEncrypted:
if !p.IntegrityProtected && !config.AllowUnauthenticatedMessages() {
return nil, errors.UnsupportedError("message is not integrity protected")
}
edp = p
if p.Version == 2 { // SEIPD v2 packet stores the decryption algorithm
md.DecryptedWithAlgorithm = p.Cipher
}
break ParsePackets
case *packet.AEADEncrypted:
edp = p
break ParsePackets
case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature, *packet.Signature:
// This message isn't encrypted.
if len(symKeys) != 0 || len(pubKeys) != 0 {
return nil, errors.StructuralError("key material not followed by encrypted message")
}
packets.Unread(p)
md.IsEncrypted = false
return readSignedMessage(packets, md, keyring, config)
}
}
var candidates []Key
var decrypted io.ReadCloser
// Now that we have the list of encrypted keys we need to decrypt at
// least one of them or, if we cannot, we need to call the prompt
// function so that it can decrypt a key or give us a passphrase.
FindKey:
for {
// See if any of the keys already have a private key available
candidates = candidates[:0]
candidateFingerprints := make(map[string]bool)
for _, pk := range pubKeys {
if pk.key.PrivateKey == nil {
continue
}
if !pk.key.PrivateKey.Encrypted {
if len(pk.encryptedKey.Key) == 0 {
errDec := pk.encryptedKey.Decrypt(pk.key.PrivateKey, config)
if errDec != nil {
continue
}
}
// Try to decrypt symmetrically encrypted
decrypted, err = edp.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key)
if err != nil && err != errors.ErrKeyIncorrect {
return nil, err
}
if decrypted != nil {
md.DecryptedWith = pk.key
if md.DecryptedWithAlgorithm == 0 { // if no SEIPD v2 packet, key packet stores the decryption algorithm
md.DecryptedWithAlgorithm = pk.encryptedKey.CipherFunc
}
if config.RetrieveSessionKey() {
md.SessionKey = pk.encryptedKey.Key
}
break FindKey
}
} else {
fpr := string(pk.key.PublicKey.Fingerprint[:])
if v := candidateFingerprints[fpr]; v {
continue
}
candidates = append(candidates, pk.key)
candidateFingerprints[fpr] = true
}
}
if len(candidates) == 0 && len(symKeys) == 0 {
return nil, errors.ErrKeyIncorrect
}
if prompt == nil {
return nil, errors.ErrKeyIncorrect
}
passphrase, err := prompt(candidates, len(symKeys) != 0)
if err != nil {
return nil, err
}
// Try the symmetric passphrase first
if len(symKeys) != 0 && passphrase != nil {
for _, s := range symKeys {
key, cipherFunc, err := s.Decrypt(passphrase)
// In v4, on wrong passphrase, session key decryption is very likely to result in an invalid cipherFunc:
// only for < 5% of cases we will proceed to decrypt the data
if err == nil {
decrypted, err = edp.Decrypt(cipherFunc, key)
if err != nil {
return nil, err
}
if decrypted != nil {
if md.DecryptedWithAlgorithm == 0 { // if no SEIPD v2 packet, key packet stores the decryption algorithm
md.DecryptedWithAlgorithm = cipherFunc
}
if config.RetrieveSessionKey() {
md.SessionKey = key
}
break FindKey
}
}
}
}
}
md.decrypted = decrypted
if err := packets.Push(decrypted); err != nil {
return nil, err
}
mdFinal, sensitiveParsingErr := readSignedMessage(packets, md, keyring, config)
if sensitiveParsingErr != nil {
return nil, errors.HandleSensitiveParsingError(sensitiveParsingErr, md.decrypted != nil)
}
return mdFinal, nil
}
// SignatureCandidate keeps state about a signature that can be potentially verified.
type SignatureCandidate struct {
OPSVersion int
SigType packet.SignatureType
HashAlgorithm crypto.Hash
PubKeyAlgo packet.PublicKeyAlgorithm
IssuerKeyId uint64
IssuerFingerprint []byte
Salt []byte // v6 only
SignedByEntity *Entity
SignedBy *Key // the key of the signer, if available. (OPS)
SignatureError error // nil if the signature is valid or not checked.
CorrespondingSig *packet.Signature // the candidate's signature packet
Hash, WrappedHash hash.Hash // hashes for this signature candidate (OPS)
}
func newSignatureCandidate(ops *packet.OnePassSignature) (sigCandidate *SignatureCandidate) {
sigCandidate = &SignatureCandidate{
OPSVersion: ops.Version,
SigType: ops.SigType,
HashAlgorithm: ops.Hash,
PubKeyAlgo: ops.PubKeyAlgo,
IssuerKeyId: ops.KeyId,
Salt: ops.Salt,
IssuerFingerprint: ops.KeyFingerprint,
}
sigCandidate.Hash, sigCandidate.WrappedHash, sigCandidate.SignatureError = hashForSignature(
sigCandidate.HashAlgorithm,
sigCandidate.SigType,
sigCandidate.Salt,
)
return
}
func newSignatureCandidateFromSignature(sig *packet.Signature) (sigCandidate *SignatureCandidate) {
sigCandidate = &SignatureCandidate{
SigType: sig.SigType,
HashAlgorithm: sig.Hash,
PubKeyAlgo: sig.PubKeyAlgo,
IssuerKeyId: *sig.IssuerKeyId,
IssuerFingerprint: sig.IssuerFingerprint,
Salt: sig.Salt(),
}
sigCandidate.OPSVersion = 3
if sig.Version == 6 {
sigCandidate.OPSVersion = sig.Version
}
sigCandidate.Hash, sigCandidate.WrappedHash, sigCandidate.SignatureError = hashForSignature(
sigCandidate.HashAlgorithm,
sigCandidate.SigType,
sigCandidate.Salt,
)
sigCandidate.CorrespondingSig = sig
return
}
func (sc *SignatureCandidate) validate() bool {
correspondingSig := sc.CorrespondingSig
invalidV3 := sc.OPSVersion == 3 && correspondingSig.Version == 6
invalidV6 := (sc.OPSVersion == 6 && correspondingSig.Version != 6) ||
(sc.OPSVersion == 6 && !bytes.Equal(sc.IssuerFingerprint, correspondingSig.IssuerFingerprint)) ||
(sc.OPSVersion == 6 && !bytes.Equal(sc.Salt, correspondingSig.Salt()))
return correspondingSig != nil &&
sc.SigType == correspondingSig.SigType &&
sc.HashAlgorithm == correspondingSig.Hash &&
sc.PubKeyAlgo == correspondingSig.PubKeyAlgo &&
sc.IssuerKeyId == *correspondingSig.IssuerKeyId &&
!invalidV3 &&
!invalidV6
}
// readSignedMessage reads a possibly signed message if mdin is non-zero then
// that structure is updated and returned. Otherwise a fresh MessageDetails is
// used.
func readSignedMessage(packets packet.PacketReader, mdin *MessageDetails, keyring KeyRing, config *packet.Config) (md *MessageDetails, err error) {
if mdin == nil {
mdin = new(MessageDetails)
}
md = mdin
var p packet.Packet
var prevLast bool
FindLiteralData:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.Compressed:
if err := packets.Push(p.LimitedBodyReader(config.DecompressedMessageSizeLimit())); err != nil {
return nil, err
}
case *packet.OnePassSignature:
if prevLast {
return nil, errors.UnsupportedError("nested signature packets")
}
if p.IsLast {
prevLast = true
}
sigCandidate := newSignatureCandidate(p)
md.IsSigned = true
if keyring != nil {
keys := keyring.EntitiesById(p.KeyId)
if len(keys) > 0 {
sigCandidate.SignedByEntity = keys[0]
}
}
// If a message contains more than one one-pass signature, then the Signature packets bracket the message
md.SignatureCandidates = append([]*SignatureCandidate{sigCandidate}, md.SignatureCandidates...)
case *packet.Signature:
// Old style signature i.e., sig | literal
sigCandidate := newSignatureCandidateFromSignature(p)
md.IsSigned = true
if keyring != nil {
keys := keyring.EntitiesById(sigCandidate.IssuerKeyId)
if len(keys) > 0 {
sigCandidate.SignedByEntity = keys[0]
}
}
md.SignatureCandidates = append([]*SignatureCandidate{sigCandidate}, md.SignatureCandidates...)
case *packet.LiteralData:
md.LiteralData = p
break FindLiteralData
case *packet.EncryptedKey,
*packet.SymmetricKeyEncrypted,
*packet.AEADEncrypted,
*packet.SymmetricallyEncrypted:
return nil, errors.UnsupportedError("cannot read signed message with encrypted data")
}
}
if md.IsSigned {
md.UnverifiedBody = &signatureCheckReader{packets, md, config, md.LiteralData.Body}
} else {
md.UnverifiedBody = &checkReader{md, packets, false}
}
return md, nil
}
func wrapHashForSignature(hashFunc hash.Hash, sigType packet.SignatureType) (hash.Hash, error) {
switch sigType {
case packet.SigTypeBinary:
return hashFunc, nil
case packet.SigTypeText:
return NewCanonicalTextHash(hashFunc), nil
}
return nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}
// hashForSignature returns a pair of hashes that can be used to verify a
// signature. The signature may specify that the contents of the signed message
// should be preprocessed (i.e. to normalize line endings). Thus this function
// returns two hashes. The first, directHash, will feed directly into the signature algorithm.
// The second, wrappedHash, should be used to hash the message itself and performs any needed preprocessing.
func hashForSignature(hashFunc crypto.Hash, sigType packet.SignatureType, sigSalt []byte) (directHash hash.Hash, wrappedHash hash.Hash, err error) {
if _, ok := algorithm.HashToHashIdWithSha1(hashFunc); !ok {
return nil, nil, errors.UnsupportedError("unsupported hash function")
}
if !hashFunc.Available() {
return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashFunc)))
}
h := hashFunc.New()
if sigSalt != nil {
h.Write(sigSalt)
}
wrappedHash, err = wrapHashForSignature(h, sigType)
if err != nil {
return nil, nil, err
}
switch sigType {
case packet.SigTypeBinary:
return h, wrappedHash, nil
case packet.SigTypeText:
return h, wrappedHash, nil
}
return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}
// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger
// MDC checks.
type checkReader struct {
md *MessageDetails
packets packet.PacketReader
checked bool
}
func (cr *checkReader) Read(buf []byte) (int, error) {
n, sensitiveParsingError := cr.md.LiteralData.Body.Read(buf)
if sensitiveParsingError == io.EOF {
if cr.checked {
return n, io.EOF
}
for {
_, err := cr.packets.Next()
if err == io.EOF {
break
}
if err != nil {
return n, err
}
}
if cr.md.decrypted != nil {
if sensitiveParsingError := cr.md.decrypted.Close(); sensitiveParsingError != nil {
return n, errors.HandleSensitiveParsingError(sensitiveParsingError, true)
}
}
cr.checked = true
return n, io.EOF
}
if sensitiveParsingError != nil {
return n, errors.HandleSensitiveParsingError(sensitiveParsingError, true)
}
return n, nil
}
// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes
// the data as it is read. When it sees an EOF from the underlying io.Reader
// it parses and checks a trailing Signature packet and triggers any MDC checks.
type signatureCheckReader struct {
packets packet.PacketReader
md *MessageDetails
config *packet.Config
data io.Reader
}
func (scr *signatureCheckReader) Read(buf []byte) (int, error) {
n, sensitiveParsingError := scr.data.Read(buf)
for _, candidate := range scr.md.SignatureCandidates {
if candidate.SignatureError == nil && candidate.SignedByEntity != nil {
candidate.WrappedHash.Write(buf[:n])
}
}
readsDecryptedData := scr.md.decrypted != nil
if sensitiveParsingError == io.EOF {
var signatures []*packet.Signature
// Read all signature packets and discard others.
for {
p, sensitiveParsingErrorPacket := scr.packets.Next()
if sensitiveParsingErrorPacket == io.EOF {
break
}
if sensitiveParsingErrorPacket != nil {
return n, errors.HandleSensitiveParsingError(sensitiveParsingErrorPacket, readsDecryptedData)
}
if sig, ok := p.(*packet.Signature); ok {
if sig.Version == 5 && scr.md.LiteralData != nil && (sig.SigType == 0x00 || sig.SigType == 0x01) {
sig.Metadata = scr.md.LiteralData
}
signatures = append(signatures, sig)
}
}
// Verify the integrity of the decrypted data before verifying the signatures.
if scr.md.decrypted != nil {
sensitiveParsingErrorPacket := scr.md.decrypted.Close()
if sensitiveParsingErrorPacket != nil {
return n, errors.HandleSensitiveParsingError(sensitiveParsingErrorPacket, true)
}
}
numberOfOpsSignatures := 0
for _, candidate := range scr.md.SignatureCandidates {
if candidate.CorrespondingSig == nil {
numberOfOpsSignatures++
}
}
if len(signatures) != numberOfOpsSignatures {
// Cannot handle this case yet with no information about invalid packets, should fail.
// This case can happen if a known OPS version is used but an unknown signature version.
noMatchError := errors.StructuralError("number of ops signature candidates does not match the number of signature packets")
for _, candidate := range scr.md.SignatureCandidates {
candidate.SignatureError = noMatchError
}
} else {
var sigIndex int
// Verify all signature candidates.
for _, candidate := range scr.md.SignatureCandidates {
if candidate.CorrespondingSig == nil {
candidate.CorrespondingSig = signatures[sigIndex]
sigIndex++
}
if !candidate.validate() {
candidate.SignatureError = errors.StructuralError("signature does not match the expected ops data")
}
if candidate.SignatureError == nil {
sig := candidate.CorrespondingSig
if candidate.SignedByEntity == nil {
candidate.SignatureError = errors.ErrUnknownIssuer
scr.md.SignatureError = candidate.SignatureError
} else {
// Verify and retrieve signing key at signature creation time
key, err := candidate.SignedByEntity.signingKeyByIdUsage(sig.CreationTime, candidate.IssuerKeyId, packet.KeyFlagSign, scr.config)
if err != nil {
candidate.SignatureError = err
continue
} else {
candidate.SignedBy = &key
}
signatureError := key.PublicKey.VerifySignature(candidate.Hash, sig)
if signatureError == nil {
signatureError = checkMessageSignatureDetails(&key, sig, scr.config)
}
if !scr.md.IsSymmetricallyEncrypted && len(sig.IntendedRecipients) > 0 && scr.md.CheckRecipients && signatureError == nil {
if !scr.md.IsEncrypted {
signatureError = errors.SignatureError("intended recipients in non-encrypted message")
} else {
// Check signature matches one of the recipients
signatureError = checkIntendedRecipientsMatch(&scr.md.DecryptedWith, sig)
}
}
candidate.SignatureError = signatureError
}
}
}
}
// Check if there is a valid candidate.
for _, candidate := range scr.md.SignatureCandidates {
if candidate.SignedBy == nil {
// Ignore candidates that have no matching key
continue
}
// md.SignatureError points to the last candidate with a key match, if
// all signature verifications have failed.
scr.md.SignatureError = candidate.SignatureError
scr.md.SelectedCandidate = candidate
if candidate.SignatureError == nil {
// There is a valid signature.
scr.md.Signature = candidate.CorrespondingSig
scr.md.SignedBy = candidate.SignedBy
break
}
}
if len(scr.md.SignatureCandidates) == 0 {
scr.md.SignatureError = errors.StructuralError("no signature found")
}
if len(scr.md.SignatureCandidates) > 0 && scr.md.SelectedCandidate == nil {
// No candidate with a matching key present.
// Just point to the last candidate in this case.
candidate := scr.md.SignatureCandidates[len(scr.md.SignatureCandidates)-1]
scr.md.SignatureError = candidate.SignatureError
scr.md.SelectedCandidate = candidate
}
if scr.md.SignatureError == nil && scr.md.Signature == nil {
scr.md.SignatureError = errors.StructuralError("no matching signature found")
}
scr.md.IsVerified = true
return n, io.EOF
}
if sensitiveParsingError != nil {
return n, errors.HandleSensitiveParsingError(sensitiveParsingError, readsDecryptedData)
}
return n, nil
}
// VerifyDetachedSignature takes a signed file and a detached signature and
// returns the signature packet and the entity the signature was signed by,
// if any, and a possible signature verification error.
// If the signer isn't known, ErrUnknownIssuer is returned.
func VerifyDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
return verifyDetachedSignature(keyring, signed, signature, config)
}
// VerifyDetachedSignatureReader takes a signed file and a detached signature and
// returns message details struct similar to the ReadMessage function.
// Once all data is read from md.UnverifiedBody the detached signature is verified.
// If a verification error occurs it is stored in md.SignatureError
// If the signer isn't known, ErrUnknownIssuer is returned.
func VerifyDetachedSignatureReader(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (md *MessageDetails, err error) {
return verifyDetachedSignatureReader(keyring, signed, signature, config)
}
// VerifyArmoredDetachedSignature performs the same actions as
// VerifyDetachedSignature but expects the signature to be armored.
func VerifyArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
body, err := readArmored(signature, SignatureType)
if err != nil {
return
}
return VerifyDetachedSignature(keyring, signed, body, config)
}
func verifyDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
md, err := verifyDetachedSignatureReader(keyring, signed, signature, config)
if err != nil {
return nil, nil, err
}
_, err = io.Copy(ioutil.Discard, md.UnverifiedBody)
if err != nil {
return nil, nil, err
}
if md.SignatureError != nil {
return nil, nil, md.SignatureError
}
return md.Signature, md.SignedBy.Entity, nil
}
func verifyDetachedSignatureReader(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (md *MessageDetails, err error) {
var p packet.Packet
md = &MessageDetails{
IsEncrypted: false,
CheckRecipients: false,
IsSigned: true,
}
packets := packet.NewReader(signature)
for {
p, err = packets.Next()
if err == io.EOF {
break
}
if err != nil {
return nil, err
}
sig, ok := p.(*packet.Signature)
if !ok {
continue
}
if sig.IssuerKeyId == nil {
return nil, errors.StructuralError("signature doesn't have an issuer")
}
candidate := newSignatureCandidateFromSignature(sig)
md.SignatureCandidates = append(md.SignatureCandidates, candidate)
keys := keyring.EntitiesById(candidate.IssuerKeyId)
if len(keys) > 0 {
candidate.SignedByEntity = keys[0]
}
}
if len(md.SignatureCandidates) == 0 {
return nil, errors.ErrUnknownIssuer
}
md.UnverifiedBody = &signatureCheckReader{packets, md, config, signed}
return md, nil
}
// checkSignatureDetails verifies the metadata of the signature.
// It checks the following:
// - Hash function should not be invalid according to
// config.RejectHashAlgorithms.
// - Check signature notations.
// - Signature is not expired (unless a zero time is passed to
// explicitly ignore expiration).
func checkSignatureDetails(signature *packet.Signature, now time.Time, config *packet.Config) error {
if config.RejectHashAlgorithm(signature.Hash) {
return errors.SignatureError("insecure hash algorithm: " + signature.Hash.String())
}
for _, notation := range signature.Notations {
if notation.IsCritical && !config.KnownNotation(notation.Name) {
return errors.SignatureError("unknown critical notation: " + notation.Name)
}
}
if !now.IsZero() && signature.SigExpired(now) {
return errors.ErrSignatureExpired
}
return nil
}
// checkMessageSignatureDetails verifies the metadata of the signature.
// It checks the criteria of checkSignatureDetails for the message
// signature and all relevant binding signatures.
// In addition, the message signature hash algorithm is checked against
// config.RejectMessageHashAlgorithms.
// Finally, the signature must be newer than the verification key.
func checkMessageSignatureDetails(verifiedKey *Key, signature *packet.Signature, config *packet.Config) error {
if config.RejectMessageHashAlgorithm(signature.Hash) {
return errors.SignatureError("insecure message hash algorithm: " + signature.Hash.String())
}
if signature.CreationTime.Unix() < verifiedKey.PublicKey.CreationTime.Unix() {
return errors.ErrSignatureOlderThanKey
}
sigsToCheck := []*packet.Signature{signature, verifiedKey.PrimarySelfSignature}
if !verifiedKey.IsPrimary() {
sigsToCheck = append(sigsToCheck, verifiedKey.SelfSignature, verifiedKey.SelfSignature.EmbeddedSignature)
}
var errs []error
for _, sig := range sigsToCheck {
var time time.Time
if sig == signature {
time = config.Now()
} else {
time = signature.CreationTime
}
if err := checkSignatureDetails(sig, time, config); err != nil {
errs = append(errs, err)
}
}
// Return errors.ErrSignatureExpired last as gopenpgp might ignore it.
for _, err := range errs {
if err != errors.ErrSignatureExpired {
return err
}
}
if len(errs) != 0 {
return errs[0]
}
return nil
}
// checkIntendedRecipientsMatch checks if the fingerprint of the primary key matching the decryption key
// is found in the signature's intended recipients list.
func checkIntendedRecipientsMatch(decryptionKey *Key, sig *packet.Signature) error {
match := false
for _, recipient := range sig.IntendedRecipients {
if bytes.Equal(recipient.Fingerprint, decryptionKey.Entity.PrimaryKey.Fingerprint) {
match = true
break
}
}
if !match {
return errors.SignatureError("intended recipients in the signature does not match the decryption key")
}
return nil
}
|