File: sparse.go

package info (click to toggle)
golang-github-retailnext-hllpp 1.0.0+git20170901.6e8b6d3-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 196 kB
  • sloc: makefile: 2
file content (224 lines) | stat: -rw-r--r-- 4,434 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright (c) 2015, RetailNext, Inc.
// All rights reserved.

package hllpp

import (
	"encoding/binary"
	"sort"
)

type uint32Slice []uint32

func (s uint32Slice) Len() int {
	return len(s)
}

func (s uint32Slice) Less(i, j int) bool {
	return s[i] < s[j]
}

func (s uint32Slice) Swap(i, j int) {
	s[i], s[j] = s[j], s[i]
}

type sparseReader struct {
	data    []byte
	idx     int
	lastVal uint32
	lastN   int
}

func newSparseReader(data []byte) *sparseReader {
	return &sparseReader{data: data}
}

func (iter *sparseReader) Advance() {
	iter.idx += iter.lastN
	iter.lastN = 0
}

func (iter *sparseReader) Peek() uint32 {
	if iter.lastN > 0 {
		return iter.lastVal
	}

	v, n := binary.Uvarint(iter.data[iter.idx:])

	v32 := uint32(v)
	v32 += iter.lastVal

	iter.lastN = n
	iter.lastVal = v32

	return v32
}

func (iter *sparseReader) Next() uint32 {
	v := iter.Peek()
	iter.Advance()
	return v
}

func (iter *sparseReader) Done() bool {
	return iter.idx >= len(iter.data)
}

type sparseWriter struct {
	data []byte

	lastVal uint32

	hasCurrVal bool
	currVal    uint32
	currIdx    uint32
	currRho    uint8

	varIntBuf []byte
	length    uint32
}

// This takes the index and rho well so it can easily discard duplicate indexes
// and pick the biggest rho among the duplicates since tmpSet is sorted by index
// but not by rho.
func (writer *sparseWriter) Append(k, idx uint32, rho uint8) {
	if writer.hasCurrVal {
		if idx == writer.currIdx {
			if rho > writer.currRho {
				writer.currRho = rho
				writer.currVal = k
			}
			return
		} else {
			writer.commit()
		}
	}

	writer.hasCurrVal = true
	writer.currVal = k
	writer.currIdx = idx
	writer.currRho = rho
}

func (writer *sparseWriter) commit() {
	n := binary.PutUvarint(writer.varIntBuf, uint64(writer.currVal-writer.lastVal))
	writer.data = append(writer.data, writer.varIntBuf[:n]...)
	writer.lastVal = writer.currVal
	writer.length++
	writer.hasCurrVal = false
}

func (writer *sparseWriter) Bytes() []byte {
	if writer.hasCurrVal {
		writer.commit()
	}
	return writer.data
}

func (writer *sparseWriter) Len() uint32 {
	if writer.hasCurrVal {
		writer.commit()
	}
	return writer.length
}

func newSparseWriter() *sparseWriter {
	return &sparseWriter{
		varIntBuf: make([]byte, binary.MaxVarintLen32),
	}
}

func (h *HLLPP) flushTmpSet() {
	if len(h.tmpSet) == 0 {
		return
	}

	sort.Sort(h.tmpSet)
	h.mergeSparse(h.tmpSet)
	h.tmpSet = nil
}

func (h *HLLPP) mergeSparse(tmpSet []uint32) {

	iter := newSparseReader(h.data)
	writer := newSparseWriter()

	var tmpI int

	// deduping by index and choosing biggest rho is handled in the writer

	for !iter.Done() || tmpI < len(tmpSet) {
		if iter.Done() {
			idx, rho := h.decodeHash(tmpSet[tmpI], h.pp)
			writer.Append(tmpSet[tmpI], idx, rho)
			tmpI++
			continue
		}

		sparseVal := iter.Peek()
		sparseIdx, sparseR := h.decodeHash(sparseVal, h.pp)

		if tmpI == len(tmpSet) {
			writer.Append(sparseVal, sparseIdx, sparseR)
			iter.Advance()
			continue
		}

		tmpVal := tmpSet[tmpI]
		tmpIdx, tmpR := h.decodeHash(tmpVal, h.pp)

		if sparseIdx < tmpIdx {
			writer.Append(sparseVal, sparseIdx, sparseR)
			iter.Advance()
		} else if sparseIdx > tmpIdx {
			writer.Append(tmpVal, tmpIdx, tmpR)
			tmpI++
		} else {
			if sparseR > tmpR {
				writer.Append(sparseVal, sparseIdx, sparseR)
			} else {
				writer.Append(tmpVal, tmpIdx, tmpR)
			}
			iter.Advance()
			tmpI++
		}
	}

	h.data = writer.Bytes()
	h.sparseLength = writer.Len()

	// is sparse data bigger than dense data would be?
	if uint32(len(h.data))*8 >= 6*h.m {
		h.toNormal()
	}
}

func (h *HLLPP) encodeHash(x uint64) uint32 {
	if sliceBits64(x, 63-h.p, 64-h.pp) == 0 {
		r := rho((sliceBits64(x, 63-h.pp, 0) << h.pp) | (1<<h.pp - 1))
		return uint32(sliceBits64(x, 63, 64-h.pp)<<7 | uint64(r<<1) | 1)
	}

	return uint32(sliceBits64(x, 63, 64-h.pp) << 1)
}

// Return index with respect to "p" arg, and rho with respect to h.p. This is so
// the h.pp index can be recovered easily when flushing the tmpSet.
func (h *HLLPP) decodeHash(k uint32, p uint8) (_ uint32, r uint8) {
	if k&1 > 0 {
		r = uint8(sliceBits32(k, 6, 1)) + (h.pp - h.p)
	} else {
		r = rho((uint64(k) | 1) << (64 - (h.pp + 1) + h.p))
	}

	return h.getIndex(k, p), r
}

// Return index with respect to precision "p".
func (h *HLLPP) getIndex(k uint32, p uint8) uint32 {
	if k&1 > 0 {
		return sliceBits32(k, 6+h.pp, 1+6+h.pp-p)
	} else {
		return sliceBits32(k, h.pp, 1+h.pp-p)
	}
}