1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
// EME (ECB-Mix-ECB or, clearer, Encrypt-Mix-Encrypt) is a wide-block
// encryption mode developed by Halevi and Rogaway.
//
// It was presented in the 2003 paper "A Parallelizable Enciphering Mode" by
// Halevi and Rogaway.
//
// EME uses multiple invocations of a block cipher to construct a new cipher
// of bigger block size (in multiples of 16 bytes, up to 2048 bytes).
package eme
import (
"crypto/cipher"
"log"
)
type directionConst bool
const (
// Encrypt "inputData"
DirectionEncrypt = directionConst(true)
// Decrypt "inputData"
DirectionDecrypt = directionConst(false)
)
// multByTwo - GF multiplication as specified in the EME-32 draft
func multByTwo(out []byte, in []byte) {
if len(in) != 16 {
panic("len must be 16")
}
tmp := make([]byte, 16)
tmp[0] = 2 * in[0]
if in[15] >= 128 {
tmp[0] = tmp[0] ^ 135
}
for j := 1; j < 16; j++ {
tmp[j] = 2 * in[j]
if in[j-1] >= 128 {
tmp[j] += 1
}
}
copy(out, tmp)
}
func xorBlocks(out []byte, in1 []byte, in2 []byte) {
if len(in1) != len(in2) {
log.Panicf("len(in1)=%d is not equal to len(in2)=%d", len(in1), len(in2))
}
for i := range in1 {
out[i] = in1[i] ^ in2[i]
}
}
// aesTransform - encrypt or decrypt (according to "direction") using block
// cipher "bc" (typically AES)
func aesTransform(dst []byte, src []byte, direction directionConst, bc cipher.Block) {
if direction == DirectionEncrypt {
bc.Encrypt(dst, src)
return
} else if direction == DirectionDecrypt {
bc.Decrypt(dst, src)
return
}
}
// tabulateL - calculate L_i for messages up to a length of m cipher blocks
func tabulateL(bc cipher.Block, m int) [][]byte {
/* set L0 = 2*AESenc(K; 0) */
eZero := make([]byte, 16)
Li := make([]byte, 16)
bc.Encrypt(Li, eZero)
LTable := make([][]byte, m)
// Allocate pool once and slice into m pieces in the loop
pool := make([]byte, m*16)
for i := 0; i < m; i++ {
multByTwo(Li, Li)
LTable[i] = pool[i*16 : (i+1)*16]
copy(LTable[i], Li)
}
return LTable
}
// Transform - EME-encrypt or EME-decrypt, according to "direction"
// (defined in the constants DirectionEncrypt and DirectionDecrypt).
// The data in "inputData" is en- or decrypted with the block ciper "bc" under
// "tweak" (also known as IV).
//
// The tweak is used to randomize the encryption in the same way as an
// IV. A use of this encryption mode envisioned by the authors of the
// algorithm was to encrypt each sector of a disk, with the tweak
// being the sector number. If you encipher the same data with the
// same tweak you will get the same ciphertext.
//
// The result is returned in a freshly allocated slice of the same
// size as inputData.
//
// Limitations:
// * The block cipher must have block size 16 (usually AES).
// * The size of "tweak" must be 16
// * "inputData" must be a multiple of 16 bytes long
// If any of these pre-conditions are not met, the function will panic.
//
// Note that you probably don't want to call this function directly and instead
// use eme.New(), which provides conventient wrappers.
func Transform(bc cipher.Block, tweak []byte, inputData []byte, direction directionConst) []byte {
// In the paper, the tweak is just called "T". Call it the same here to
// make following the paper easy.
T := tweak
// In the paper, the plaintext data is called "P" and the ciphertext is
// called "C". Because encryption and decryption are virtually identical,
// we share the code and always call the input data "P" and the output data
// "C", regardless of the direction.
P := inputData
if bc.BlockSize() != 16 {
log.Panicf("Using a block size other than 16 is not implemented")
}
if len(T) != 16 {
log.Panicf("Tweak must be 16 bytes long, is %d", len(T))
}
if len(P)%16 != 0 {
log.Panicf("Data P must be a multiple of 16 long, is %d", len(P))
}
m := len(P) / 16
if m == 0 || m > 16*8 {
log.Panicf("EME operates on 1 to %d block-cipher blocks, you passed %d", 16*8, m)
}
C := make([]byte, len(P))
LTable := tabulateL(bc, m)
PPj := make([]byte, 16)
for j := 0; j < m; j++ {
Pj := P[j*16 : (j+1)*16]
/* PPj = 2**(j-1)*L xor Pj */
xorBlocks(PPj, Pj, LTable[j])
/* PPPj = AESenc(K; PPj) */
aesTransform(C[j*16:(j+1)*16], PPj, direction, bc)
}
/* MP =(xorSum PPPj) xor T */
MP := make([]byte, 16)
xorBlocks(MP, C[0:16], T)
for j := 1; j < m; j++ {
xorBlocks(MP, MP, C[j*16:(j+1)*16])
}
/* MC = AESenc(K; MP) */
MC := make([]byte, 16)
aesTransform(MC, MP, direction, bc)
/* M = MP xor MC */
M := make([]byte, 16)
xorBlocks(M, MP, MC)
CCCj := make([]byte, 16)
for j := 1; j < m; j++ {
multByTwo(M, M)
/* CCCj = 2**(j-1)*M xor PPPj */
xorBlocks(CCCj, C[j*16:(j+1)*16], M)
copy(C[j*16:(j+1)*16], CCCj)
}
/* CCC1 = (xorSum CCCj) xor T xor MC */
CCC1 := make([]byte, 16)
xorBlocks(CCC1, MC, T)
for j := 1; j < m; j++ {
xorBlocks(CCC1, CCC1, C[j*16:(j+1)*16])
}
copy(C[0:16], CCC1)
for j := 0; j < m; j++ {
/* CCj = AES-enc(K; CCCj) */
aesTransform(C[j*16:(j+1)*16], C[j*16:(j+1)*16], direction, bc)
/* Cj = 2**(j-1)*L xor CCj */
xorBlocks(C[j*16:(j+1)*16], C[j*16:(j+1)*16], LTable[j])
}
return C
}
// EMECipher provides EME-Encryption and -Decryption functions that are more
// convenient than calling Transform directly.
type EMECipher struct {
bc cipher.Block
}
// New returns a new EMECipher object. "bc" must have a block size of 16,
// or subsequent calls to Encrypt and Decrypt will panic.
func New(bc cipher.Block) *EMECipher {
return &EMECipher{
bc: bc,
}
}
// Encrypt is equivalent to calling Transform with direction=DirectionEncrypt.
func (e *EMECipher) Encrypt(tweak []byte, inputData []byte) []byte {
return Transform(e.bc, tweak, inputData, DirectionEncrypt)
}
// Decrypt is equivalent to calling Transform with direction=DirectionDecrypt.
func (e *EMECipher) Decrypt(tweak []byte, inputData []byte) []byte {
return Transform(e.bc, tweak, inputData, DirectionDecrypt)
}
|