1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
|
// Package roaring is an implementation of Roaring Bitmaps in Go.
// They provide fast compressed bitmap data structures (also called bitset).
// They are ideally suited to represent sets of integers over
// relatively small ranges.
// See http://roaringbitmap.org for details.
package roaring
import (
"bytes"
"encoding/base64"
"fmt"
"io"
"strconv"
"sync"
)
// Bitmap represents a compressed bitmap where you can add integers.
type Bitmap struct {
highlowcontainer roaringArray
}
// ToBase64 serializes a bitmap as Base64
func (rb *Bitmap) ToBase64() (string, error) {
buf := new(bytes.Buffer)
_, err := rb.WriteTo(buf)
return base64.StdEncoding.EncodeToString(buf.Bytes()), err
}
// FromBase64 deserializes a bitmap from Base64
func (rb *Bitmap) FromBase64(str string) (int64, error) {
data, err := base64.StdEncoding.DecodeString(str)
if err != nil {
return 0, err
}
buf := bytes.NewBuffer(data)
return rb.ReadFrom(buf)
}
// WriteTo writes a serialized version of this bitmap to stream.
// The format is compatible with other RoaringBitmap
// implementations (Java, C) and is documented here:
// https://github.com/RoaringBitmap/RoaringFormatSpec
func (rb *Bitmap) WriteTo(stream io.Writer) (int64, error) {
return rb.highlowcontainer.writeTo(stream)
}
// ToBytes returns an array of bytes corresponding to what is written
// when calling WriteTo
func (rb *Bitmap) ToBytes() ([]byte, error) {
return rb.highlowcontainer.toBytes()
}
// Deprecated: WriteToMsgpack writes a msgpack2/snappy-streaming compressed serialized
// version of this bitmap to stream. The format is not
// compatible with the WriteTo() format, and is
// experimental: it may produce smaller on disk
// footprint and/or be faster to read, depending
// on your content. Currently only the Go roaring
// implementation supports this format.
func (rb *Bitmap) WriteToMsgpack(stream io.Writer) (int64, error) {
return 0, rb.highlowcontainer.writeToMsgpack(stream)
}
// ReadFrom reads a serialized version of this bitmap from stream.
// The format is compatible with other RoaringBitmap
// implementations (Java, C) and is documented here:
// https://github.com/RoaringBitmap/RoaringFormatSpec
func (rb *Bitmap) ReadFrom(reader io.Reader) (p int64, err error) {
stream := byteInputAdapterPool.Get().(*byteInputAdapter)
stream.reset(reader)
p, err = rb.highlowcontainer.readFrom(stream)
byteInputAdapterPool.Put(stream)
return
}
// FromBuffer creates a bitmap from its serialized version stored in buffer
//
// The format specification is available here:
// https://github.com/RoaringBitmap/RoaringFormatSpec
//
// The provided byte array (buf) is expected to be a constant.
// The function makes the best effort attempt not to copy data.
// You should take care not to modify buff as it will
// likely result in unexpected program behavior.
//
// Resulting bitmaps are effectively immutable in the following sense:
// a copy-on-write marker is used so that when you modify the resulting
// bitmap, copies of selected data (containers) are made.
// You should *not* change the copy-on-write status of the resulting
// bitmaps (SetCopyOnWrite).
//
// If buf becomes unavailable, then a bitmap created with
// FromBuffer would be effectively broken. Furthermore, any
// bitmap derived from this bitmap (e.g., via Or, And) might
// also be broken. Thus, before making buf unavailable, you should
// call CloneCopyOnWriteContainers on all such bitmaps.
//
func (rb *Bitmap) FromBuffer(buf []byte) (p int64, err error) {
stream := byteBufferPool.Get().(*byteBuffer)
stream.reset(buf)
p, err = rb.highlowcontainer.readFrom(stream)
byteBufferPool.Put(stream)
return
}
var (
byteBufferPool = sync.Pool{
New: func() interface{} {
return &byteBuffer{}
},
}
byteInputAdapterPool = sync.Pool{
New: func() interface{} {
return &byteInputAdapter{}
},
}
)
// RunOptimize attempts to further compress the runs of consecutive values found in the bitmap
func (rb *Bitmap) RunOptimize() {
rb.highlowcontainer.runOptimize()
}
// HasRunCompression returns true if the bitmap benefits from run compression
func (rb *Bitmap) HasRunCompression() bool {
return rb.highlowcontainer.hasRunCompression()
}
// Deprecated: ReadFromMsgpack reads a msgpack2/snappy-streaming serialized
// version of this bitmap from stream. The format is
// expected is that written by the WriteToMsgpack()
// call; see additional notes there.
func (rb *Bitmap) ReadFromMsgpack(stream io.Reader) (int64, error) {
return 0, rb.highlowcontainer.readFromMsgpack(stream)
}
// MarshalBinary implements the encoding.BinaryMarshaler interface for the bitmap
// (same as ToBytes)
func (rb *Bitmap) MarshalBinary() ([]byte, error) {
return rb.ToBytes()
}
// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface for the bitmap
func (rb *Bitmap) UnmarshalBinary(data []byte) error {
r := bytes.NewReader(data)
_, err := rb.ReadFrom(r)
return err
}
// NewBitmap creates a new empty Bitmap (see also New)
func NewBitmap() *Bitmap {
return &Bitmap{}
}
// New creates a new empty Bitmap (same as NewBitmap)
func New() *Bitmap {
return &Bitmap{}
}
// Clear resets the Bitmap to be logically empty, but may retain
// some memory allocations that may speed up future operations
func (rb *Bitmap) Clear() {
rb.highlowcontainer.clear()
}
// ToArray creates a new slice containing all of the integers stored in the Bitmap in sorted order
func (rb *Bitmap) ToArray() []uint32 {
array := make([]uint32, rb.GetCardinality())
pos := 0
pos2 := 0
for pos < rb.highlowcontainer.size() {
hs := uint32(rb.highlowcontainer.getKeyAtIndex(pos)) << 16
c := rb.highlowcontainer.getContainerAtIndex(pos)
pos++
c.fillLeastSignificant16bits(array, pos2, hs)
pos2 += c.getCardinality()
}
return array
}
// GetSizeInBytes estimates the memory usage of the Bitmap. Note that this
// might differ slightly from the amount of bytes required for persistent storage
func (rb *Bitmap) GetSizeInBytes() uint64 {
size := uint64(8)
for _, c := range rb.highlowcontainer.containers {
size += uint64(2) + uint64(c.getSizeInBytes())
}
return size
}
// GetSerializedSizeInBytes computes the serialized size in bytes
// of the Bitmap. It should correspond to the
// number of bytes written when invoking WriteTo. You can expect
// that this function is much cheaper computationally than WriteTo.
func (rb *Bitmap) GetSerializedSizeInBytes() uint64 {
return rb.highlowcontainer.serializedSizeInBytes()
}
// BoundSerializedSizeInBytes returns an upper bound on the serialized size in bytes
// assuming that one wants to store "cardinality" integers in [0, universe_size)
func BoundSerializedSizeInBytes(cardinality uint64, universeSize uint64) uint64 {
contnbr := (universeSize + uint64(65535)) / uint64(65536)
if contnbr > cardinality {
contnbr = cardinality
// we can't have more containers than we have values
}
headermax := 8*contnbr + 4
if 4 > (contnbr+7)/8 {
headermax += 4
} else {
headermax += (contnbr + 7) / 8
}
valsarray := uint64(arrayContainerSizeInBytes(int(cardinality)))
valsbitmap := contnbr * uint64(bitmapContainerSizeInBytes())
valsbest := valsarray
if valsbest > valsbitmap {
valsbest = valsbitmap
}
return valsbest + headermax
}
// IntIterable allows you to iterate over the values in a Bitmap
type IntIterable interface {
HasNext() bool
Next() uint32
}
// IntPeekable allows you to look at the next value without advancing and
// advance as long as the next value is smaller than minval
type IntPeekable interface {
IntIterable
// PeekNext peeks the next value without advancing the iterator
PeekNext() uint32
// AdvanceIfNeeded advances as long as the next value is smaller than minval
AdvanceIfNeeded(minval uint32)
}
type intIterator struct {
pos int
hs uint32
iter shortPeekable
highlowcontainer *roaringArray
}
// HasNext returns true if there are more integers to iterate over
func (ii *intIterator) HasNext() bool {
return ii.pos < ii.highlowcontainer.size()
}
func (ii *intIterator) init() {
if ii.highlowcontainer.size() > ii.pos {
ii.iter = ii.highlowcontainer.getContainerAtIndex(ii.pos).getShortIterator()
ii.hs = uint32(ii.highlowcontainer.getKeyAtIndex(ii.pos)) << 16
}
}
// Next returns the next integer
func (ii *intIterator) Next() uint32 {
x := uint32(ii.iter.next()) | ii.hs
if !ii.iter.hasNext() {
ii.pos = ii.pos + 1
ii.init()
}
return x
}
// PeekNext peeks the next value without advancing the iterator
func (ii *intIterator) PeekNext() uint32 {
return uint32(ii.iter.peekNext()&maxLowBit) | ii.hs
}
// AdvanceIfNeeded advances as long as the next value is smaller than minval
func (ii *intIterator) AdvanceIfNeeded(minval uint32) {
to := minval >> 16
for ii.HasNext() && (ii.hs>>16) < to {
ii.pos++
ii.init()
}
if ii.HasNext() && (ii.hs>>16) == to {
ii.iter.advanceIfNeeded(lowbits(minval))
if !ii.iter.hasNext() {
ii.pos++
ii.init()
}
}
}
func newIntIterator(a *Bitmap) *intIterator {
p := new(intIterator)
p.pos = 0
p.highlowcontainer = &a.highlowcontainer
p.init()
return p
}
type intReverseIterator struct {
pos int
hs uint32
iter shortIterable
highlowcontainer *roaringArray
}
// HasNext returns true if there are more integers to iterate over
func (ii *intReverseIterator) HasNext() bool {
return ii.pos >= 0
}
func (ii *intReverseIterator) init() {
if ii.pos >= 0 {
ii.iter = ii.highlowcontainer.getContainerAtIndex(ii.pos).getReverseIterator()
ii.hs = uint32(ii.highlowcontainer.getKeyAtIndex(ii.pos)) << 16
} else {
ii.iter = nil
}
}
// Next returns the next integer
func (ii *intReverseIterator) Next() uint32 {
x := uint32(ii.iter.next()) | ii.hs
if !ii.iter.hasNext() {
ii.pos = ii.pos - 1
ii.init()
}
return x
}
func newIntReverseIterator(a *Bitmap) *intReverseIterator {
p := new(intReverseIterator)
p.highlowcontainer = &a.highlowcontainer
p.pos = a.highlowcontainer.size() - 1
p.init()
return p
}
// ManyIntIterable allows you to iterate over the values in a Bitmap
type ManyIntIterable interface {
// pass in a buffer to fill up with values, returns how many values were returned
NextMany([]uint32) int
}
type manyIntIterator struct {
pos int
hs uint32
iter manyIterable
highlowcontainer *roaringArray
}
func (ii *manyIntIterator) init() {
if ii.highlowcontainer.size() > ii.pos {
ii.iter = ii.highlowcontainer.getContainerAtIndex(ii.pos).getManyIterator()
ii.hs = uint32(ii.highlowcontainer.getKeyAtIndex(ii.pos)) << 16
} else {
ii.iter = nil
}
}
func (ii *manyIntIterator) NextMany(buf []uint32) int {
n := 0
for n < len(buf) {
if ii.iter == nil {
break
}
moreN := ii.iter.nextMany(ii.hs, buf[n:])
n += moreN
if moreN == 0 {
ii.pos = ii.pos + 1
ii.init()
}
}
return n
}
func newManyIntIterator(a *Bitmap) *manyIntIterator {
p := new(manyIntIterator)
p.pos = 0
p.highlowcontainer = &a.highlowcontainer
p.init()
return p
}
// String creates a string representation of the Bitmap
func (rb *Bitmap) String() string {
// inspired by https://github.com/fzandona/goroar/
var buffer bytes.Buffer
start := []byte("{")
buffer.Write(start)
i := rb.Iterator()
counter := 0
if i.HasNext() {
counter = counter + 1
buffer.WriteString(strconv.FormatInt(int64(i.Next()), 10))
}
for i.HasNext() {
buffer.WriteString(",")
counter = counter + 1
// to avoid exhausting the memory
if counter > 0x40000 {
buffer.WriteString("...")
break
}
buffer.WriteString(strconv.FormatInt(int64(i.Next()), 10))
}
buffer.WriteString("}")
return buffer.String()
}
// Iterator creates a new IntPeekable to iterate over the integers contained in the bitmap, in sorted order;
// the iterator becomes invalid if the bitmap is modified (e.g., with Add or Remove).
func (rb *Bitmap) Iterator() IntPeekable {
return newIntIterator(rb)
}
// ReverseIterator creates a new IntIterable to iterate over the integers contained in the bitmap, in sorted order;
// the iterator becomes invalid if the bitmap is modified (e.g., with Add or Remove).
func (rb *Bitmap) ReverseIterator() IntIterable {
return newIntReverseIterator(rb)
}
// ManyIterator creates a new ManyIntIterable to iterate over the integers contained in the bitmap, in sorted order;
// the iterator becomes invalid if the bitmap is modified (e.g., with Add or Remove).
func (rb *Bitmap) ManyIterator() ManyIntIterable {
return newManyIntIterator(rb)
}
// Clone creates a copy of the Bitmap
func (rb *Bitmap) Clone() *Bitmap {
ptr := new(Bitmap)
ptr.highlowcontainer = *rb.highlowcontainer.clone()
return ptr
}
// Minimum get the smallest value stored in this roaring bitmap, assumes that it is not empty
func (rb *Bitmap) Minimum() uint32 {
return uint32(rb.highlowcontainer.containers[0].minimum()) | (uint32(rb.highlowcontainer.keys[0]) << 16)
}
// Maximum get the largest value stored in this roaring bitmap, assumes that it is not empty
func (rb *Bitmap) Maximum() uint32 {
lastindex := len(rb.highlowcontainer.containers) - 1
return uint32(rb.highlowcontainer.containers[lastindex].maximum()) | (uint32(rb.highlowcontainer.keys[lastindex]) << 16)
}
// Contains returns true if the integer is contained in the bitmap
func (rb *Bitmap) Contains(x uint32) bool {
hb := highbits(x)
c := rb.highlowcontainer.getContainer(hb)
return c != nil && c.contains(lowbits(x))
}
// ContainsInt returns true if the integer is contained in the bitmap (this is a convenience method, the parameter is casted to uint32 and Contains is called)
func (rb *Bitmap) ContainsInt(x int) bool {
return rb.Contains(uint32(x))
}
// Equals returns true if the two bitmaps contain the same integers
func (rb *Bitmap) Equals(o interface{}) bool {
srb, ok := o.(*Bitmap)
if ok {
return srb.highlowcontainer.equals(rb.highlowcontainer)
}
return false
}
// AddOffset adds the value 'offset' to each and every value in a bitmap, generating a new bitmap in the process
func AddOffset(x *Bitmap, offset uint32) (answer *Bitmap) {
containerOffset := highbits(offset)
inOffset := lowbits(offset)
if inOffset == 0 {
answer = x.Clone()
for pos := 0; pos < answer.highlowcontainer.size(); pos++ {
key := answer.highlowcontainer.getKeyAtIndex(pos)
key += containerOffset
answer.highlowcontainer.keys[pos] = key
}
} else {
answer = New()
for pos := 0; pos < x.highlowcontainer.size(); pos++ {
key := x.highlowcontainer.getKeyAtIndex(pos)
key += containerOffset
c := x.highlowcontainer.getContainerAtIndex(pos)
offsetted := c.addOffset(inOffset)
if offsetted[0].getCardinality() > 0 {
curSize := answer.highlowcontainer.size()
lastkey := uint16(0)
if curSize > 0 {
lastkey = answer.highlowcontainer.getKeyAtIndex(curSize - 1)
}
if curSize > 0 && lastkey == key {
prev := answer.highlowcontainer.getContainerAtIndex(curSize - 1)
orrseult := prev.ior(offsetted[0])
answer.highlowcontainer.setContainerAtIndex(curSize-1, orrseult)
} else {
answer.highlowcontainer.appendContainer(key, offsetted[0], false)
}
}
if offsetted[1].getCardinality() > 0 {
answer.highlowcontainer.appendContainer(key+1, offsetted[1], false)
}
}
}
return answer
}
// Add the integer x to the bitmap
func (rb *Bitmap) Add(x uint32) {
hb := highbits(x)
ra := &rb.highlowcontainer
i := ra.getIndex(hb)
if i >= 0 {
var c container
c = ra.getWritableContainerAtIndex(i).iaddReturnMinimized(lowbits(x))
rb.highlowcontainer.setContainerAtIndex(i, c)
} else {
newac := newArrayContainer()
rb.highlowcontainer.insertNewKeyValueAt(-i-1, hb, newac.iaddReturnMinimized(lowbits(x)))
}
}
// add the integer x to the bitmap, return the container and its index
func (rb *Bitmap) addwithptr(x uint32) (int, container) {
hb := highbits(x)
ra := &rb.highlowcontainer
i := ra.getIndex(hb)
var c container
if i >= 0 {
c = ra.getWritableContainerAtIndex(i).iaddReturnMinimized(lowbits(x))
rb.highlowcontainer.setContainerAtIndex(i, c)
return i, c
}
newac := newArrayContainer()
c = newac.iaddReturnMinimized(lowbits(x))
rb.highlowcontainer.insertNewKeyValueAt(-i-1, hb, c)
return -i - 1, c
}
// CheckedAdd adds the integer x to the bitmap and return true if it was added (false if the integer was already present)
func (rb *Bitmap) CheckedAdd(x uint32) bool {
// TODO: add unit tests for this method
hb := highbits(x)
i := rb.highlowcontainer.getIndex(hb)
if i >= 0 {
C := rb.highlowcontainer.getWritableContainerAtIndex(i)
oldcard := C.getCardinality()
C = C.iaddReturnMinimized(lowbits(x))
rb.highlowcontainer.setContainerAtIndex(i, C)
return C.getCardinality() > oldcard
}
newac := newArrayContainer()
rb.highlowcontainer.insertNewKeyValueAt(-i-1, hb, newac.iaddReturnMinimized(lowbits(x)))
return true
}
// AddInt adds the integer x to the bitmap (convenience method: the parameter is casted to uint32 and we call Add)
func (rb *Bitmap) AddInt(x int) {
rb.Add(uint32(x))
}
// Remove the integer x from the bitmap
func (rb *Bitmap) Remove(x uint32) {
hb := highbits(x)
i := rb.highlowcontainer.getIndex(hb)
if i >= 0 {
c := rb.highlowcontainer.getWritableContainerAtIndex(i).iremoveReturnMinimized(lowbits(x))
rb.highlowcontainer.setContainerAtIndex(i, c)
if rb.highlowcontainer.getContainerAtIndex(i).getCardinality() == 0 {
rb.highlowcontainer.removeAtIndex(i)
}
}
}
// CheckedRemove removes the integer x from the bitmap and return true if the integer was effectively remove (and false if the integer was not present)
func (rb *Bitmap) CheckedRemove(x uint32) bool {
// TODO: add unit tests for this method
hb := highbits(x)
i := rb.highlowcontainer.getIndex(hb)
if i >= 0 {
C := rb.highlowcontainer.getWritableContainerAtIndex(i)
oldcard := C.getCardinality()
C = C.iremoveReturnMinimized(lowbits(x))
rb.highlowcontainer.setContainerAtIndex(i, C)
if rb.highlowcontainer.getContainerAtIndex(i).getCardinality() == 0 {
rb.highlowcontainer.removeAtIndex(i)
return true
}
return C.getCardinality() < oldcard
}
return false
}
// IsEmpty returns true if the Bitmap is empty (it is faster than doing (GetCardinality() == 0))
func (rb *Bitmap) IsEmpty() bool {
return rb.highlowcontainer.size() == 0
}
// GetCardinality returns the number of integers contained in the bitmap
func (rb *Bitmap) GetCardinality() uint64 {
size := uint64(0)
for _, c := range rb.highlowcontainer.containers {
size += uint64(c.getCardinality())
}
return size
}
// Rank returns the number of integers that are smaller or equal to x (Rank(infinity) would be GetCardinality())
func (rb *Bitmap) Rank(x uint32) uint64 {
size := uint64(0)
for i := 0; i < rb.highlowcontainer.size(); i++ {
key := rb.highlowcontainer.getKeyAtIndex(i)
if key > highbits(x) {
return size
}
if key < highbits(x) {
size += uint64(rb.highlowcontainer.getContainerAtIndex(i).getCardinality())
} else {
return size + uint64(rb.highlowcontainer.getContainerAtIndex(i).rank(lowbits(x)))
}
}
return size
}
// Select returns the xth integer in the bitmap
func (rb *Bitmap) Select(x uint32) (uint32, error) {
if rb.GetCardinality() <= uint64(x) {
return 0, fmt.Errorf("can't find %dth integer in a bitmap with only %d items", x, rb.GetCardinality())
}
remaining := x
for i := 0; i < rb.highlowcontainer.size(); i++ {
c := rb.highlowcontainer.getContainerAtIndex(i)
if remaining >= uint32(c.getCardinality()) {
remaining -= uint32(c.getCardinality())
} else {
key := rb.highlowcontainer.getKeyAtIndex(i)
return uint32(key)<<16 + uint32(c.selectInt(uint16(remaining))), nil
}
}
return 0, fmt.Errorf("can't find %dth integer in a bitmap with only %d items", x, rb.GetCardinality())
}
// And computes the intersection between two bitmaps and stores the result in the current bitmap
func (rb *Bitmap) And(x2 *Bitmap) {
pos1 := 0
pos2 := 0
intersectionsize := 0
length1 := rb.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
main:
for {
if pos1 < length1 && pos2 < length2 {
s1 := rb.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
for {
if s1 == s2 {
c1 := rb.highlowcontainer.getWritableContainerAtIndex(pos1)
c2 := x2.highlowcontainer.getContainerAtIndex(pos2)
diff := c1.iand(c2)
if diff.getCardinality() > 0 {
rb.highlowcontainer.replaceKeyAndContainerAtIndex(intersectionsize, s1, diff, false)
intersectionsize++
}
pos1++
pos2++
if (pos1 == length1) || (pos2 == length2) {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
} else if s1 < s2 {
pos1 = rb.highlowcontainer.advanceUntil(s2, pos1)
if pos1 == length1 {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
} else { //s1 > s2
pos2 = x2.highlowcontainer.advanceUntil(s1, pos2)
if pos2 == length2 {
break main
}
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
}
}
} else {
break
}
}
rb.highlowcontainer.resize(intersectionsize)
}
// OrCardinality returns the cardinality of the union between two bitmaps, bitmaps are not modified
func (rb *Bitmap) OrCardinality(x2 *Bitmap) uint64 {
pos1 := 0
pos2 := 0
length1 := rb.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
answer := uint64(0)
main:
for {
if (pos1 < length1) && (pos2 < length2) {
s1 := rb.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
for {
if s1 < s2 {
answer += uint64(rb.highlowcontainer.getContainerAtIndex(pos1).getCardinality())
pos1++
if pos1 == length1 {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
} else if s1 > s2 {
answer += uint64(x2.highlowcontainer.getContainerAtIndex(pos2).getCardinality())
pos2++
if pos2 == length2 {
break main
}
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
} else {
// TODO: could be faster if we did not have to materialize the container
answer += uint64(rb.highlowcontainer.getContainerAtIndex(pos1).or(x2.highlowcontainer.getContainerAtIndex(pos2)).getCardinality())
pos1++
pos2++
if (pos1 == length1) || (pos2 == length2) {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
}
}
} else {
break
}
}
for ; pos1 < length1; pos1++ {
answer += uint64(rb.highlowcontainer.getContainerAtIndex(pos1).getCardinality())
}
for ; pos2 < length2; pos2++ {
answer += uint64(x2.highlowcontainer.getContainerAtIndex(pos2).getCardinality())
}
return answer
}
// AndCardinality returns the cardinality of the intersection between two bitmaps, bitmaps are not modified
func (rb *Bitmap) AndCardinality(x2 *Bitmap) uint64 {
pos1 := 0
pos2 := 0
answer := uint64(0)
length1 := rb.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
main:
for {
if pos1 < length1 && pos2 < length2 {
s1 := rb.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
for {
if s1 == s2 {
c1 := rb.highlowcontainer.getContainerAtIndex(pos1)
c2 := x2.highlowcontainer.getContainerAtIndex(pos2)
answer += uint64(c1.andCardinality(c2))
pos1++
pos2++
if (pos1 == length1) || (pos2 == length2) {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
} else if s1 < s2 {
pos1 = rb.highlowcontainer.advanceUntil(s2, pos1)
if pos1 == length1 {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
} else { //s1 > s2
pos2 = x2.highlowcontainer.advanceUntil(s1, pos2)
if pos2 == length2 {
break main
}
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
}
}
} else {
break
}
}
return answer
}
// Intersects checks whether two bitmap intersects, bitmaps are not modified
func (rb *Bitmap) Intersects(x2 *Bitmap) bool {
pos1 := 0
pos2 := 0
length1 := rb.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
main:
for {
if pos1 < length1 && pos2 < length2 {
s1 := rb.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
for {
if s1 == s2 {
c1 := rb.highlowcontainer.getContainerAtIndex(pos1)
c2 := x2.highlowcontainer.getContainerAtIndex(pos2)
if c1.intersects(c2) {
return true
}
pos1++
pos2++
if (pos1 == length1) || (pos2 == length2) {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
} else if s1 < s2 {
pos1 = rb.highlowcontainer.advanceUntil(s2, pos1)
if pos1 == length1 {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
} else { //s1 > s2
pos2 = x2.highlowcontainer.advanceUntil(s1, pos2)
if pos2 == length2 {
break main
}
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
}
}
} else {
break
}
}
return false
}
// Xor computes the symmetric difference between two bitmaps and stores the result in the current bitmap
func (rb *Bitmap) Xor(x2 *Bitmap) {
pos1 := 0
pos2 := 0
length1 := rb.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
for {
if (pos1 < length1) && (pos2 < length2) {
s1 := rb.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
if s1 < s2 {
pos1 = rb.highlowcontainer.advanceUntil(s2, pos1)
if pos1 == length1 {
break
}
} else if s1 > s2 {
c := x2.highlowcontainer.getWritableContainerAtIndex(pos2)
rb.highlowcontainer.insertNewKeyValueAt(pos1, x2.highlowcontainer.getKeyAtIndex(pos2), c)
length1++
pos1++
pos2++
} else {
// TODO: couple be computed in-place for reduced memory usage
c := rb.highlowcontainer.getContainerAtIndex(pos1).xor(x2.highlowcontainer.getContainerAtIndex(pos2))
if c.getCardinality() > 0 {
rb.highlowcontainer.setContainerAtIndex(pos1, c)
pos1++
} else {
rb.highlowcontainer.removeAtIndex(pos1)
length1--
}
pos2++
}
} else {
break
}
}
if pos1 == length1 {
rb.highlowcontainer.appendCopyMany(x2.highlowcontainer, pos2, length2)
}
}
// Or computes the union between two bitmaps and stores the result in the current bitmap
func (rb *Bitmap) Or(x2 *Bitmap) {
pos1 := 0
pos2 := 0
length1 := rb.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
main:
for (pos1 < length1) && (pos2 < length2) {
s1 := rb.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
for {
if s1 < s2 {
pos1++
if pos1 == length1 {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
} else if s1 > s2 {
rb.highlowcontainer.insertNewKeyValueAt(pos1, s2, x2.highlowcontainer.getContainerAtIndex(pos2).clone())
pos1++
length1++
pos2++
if pos2 == length2 {
break main
}
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
} else {
rb.highlowcontainer.replaceKeyAndContainerAtIndex(pos1, s1, rb.highlowcontainer.getWritableContainerAtIndex(pos1).ior(x2.highlowcontainer.getContainerAtIndex(pos2)), false)
pos1++
pos2++
if (pos1 == length1) || (pos2 == length2) {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
}
}
}
if pos1 == length1 {
rb.highlowcontainer.appendCopyMany(x2.highlowcontainer, pos2, length2)
}
}
// AndNot computes the difference between two bitmaps and stores the result in the current bitmap
func (rb *Bitmap) AndNot(x2 *Bitmap) {
pos1 := 0
pos2 := 0
intersectionsize := 0
length1 := rb.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
main:
for {
if pos1 < length1 && pos2 < length2 {
s1 := rb.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
for {
if s1 == s2 {
c1 := rb.highlowcontainer.getWritableContainerAtIndex(pos1)
c2 := x2.highlowcontainer.getContainerAtIndex(pos2)
diff := c1.iandNot(c2)
if diff.getCardinality() > 0 {
rb.highlowcontainer.replaceKeyAndContainerAtIndex(intersectionsize, s1, diff, false)
intersectionsize++
}
pos1++
pos2++
if (pos1 == length1) || (pos2 == length2) {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
} else if s1 < s2 {
c1 := rb.highlowcontainer.getContainerAtIndex(pos1)
mustCopyOnWrite := rb.highlowcontainer.needsCopyOnWrite(pos1)
rb.highlowcontainer.replaceKeyAndContainerAtIndex(intersectionsize, s1, c1, mustCopyOnWrite)
intersectionsize++
pos1++
if pos1 == length1 {
break main
}
s1 = rb.highlowcontainer.getKeyAtIndex(pos1)
} else { //s1 > s2
pos2 = x2.highlowcontainer.advanceUntil(s1, pos2)
if pos2 == length2 {
break main
}
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
}
}
} else {
break
}
}
// TODO:implement as a copy
for pos1 < length1 {
c1 := rb.highlowcontainer.getContainerAtIndex(pos1)
s1 := rb.highlowcontainer.getKeyAtIndex(pos1)
mustCopyOnWrite := rb.highlowcontainer.needsCopyOnWrite(pos1)
rb.highlowcontainer.replaceKeyAndContainerAtIndex(intersectionsize, s1, c1, mustCopyOnWrite)
intersectionsize++
pos1++
}
rb.highlowcontainer.resize(intersectionsize)
}
// Or computes the union between two bitmaps and returns the result
func Or(x1, x2 *Bitmap) *Bitmap {
answer := NewBitmap()
pos1 := 0
pos2 := 0
length1 := x1.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
main:
for (pos1 < length1) && (pos2 < length2) {
s1 := x1.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
for {
if s1 < s2 {
answer.highlowcontainer.appendCopy(x1.highlowcontainer, pos1)
pos1++
if pos1 == length1 {
break main
}
s1 = x1.highlowcontainer.getKeyAtIndex(pos1)
} else if s1 > s2 {
answer.highlowcontainer.appendCopy(x2.highlowcontainer, pos2)
pos2++
if pos2 == length2 {
break main
}
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
} else {
answer.highlowcontainer.appendContainer(s1, x1.highlowcontainer.getContainerAtIndex(pos1).or(x2.highlowcontainer.getContainerAtIndex(pos2)), false)
pos1++
pos2++
if (pos1 == length1) || (pos2 == length2) {
break main
}
s1 = x1.highlowcontainer.getKeyAtIndex(pos1)
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
}
}
}
if pos1 == length1 {
answer.highlowcontainer.appendCopyMany(x2.highlowcontainer, pos2, length2)
} else if pos2 == length2 {
answer.highlowcontainer.appendCopyMany(x1.highlowcontainer, pos1, length1)
}
return answer
}
// And computes the intersection between two bitmaps and returns the result
func And(x1, x2 *Bitmap) *Bitmap {
answer := NewBitmap()
pos1 := 0
pos2 := 0
length1 := x1.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
main:
for pos1 < length1 && pos2 < length2 {
s1 := x1.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
for {
if s1 == s2 {
C := x1.highlowcontainer.getContainerAtIndex(pos1)
C = C.and(x2.highlowcontainer.getContainerAtIndex(pos2))
if C.getCardinality() > 0 {
answer.highlowcontainer.appendContainer(s1, C, false)
}
pos1++
pos2++
if (pos1 == length1) || (pos2 == length2) {
break main
}
s1 = x1.highlowcontainer.getKeyAtIndex(pos1)
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
} else if s1 < s2 {
pos1 = x1.highlowcontainer.advanceUntil(s2, pos1)
if pos1 == length1 {
break main
}
s1 = x1.highlowcontainer.getKeyAtIndex(pos1)
} else { // s1 > s2
pos2 = x2.highlowcontainer.advanceUntil(s1, pos2)
if pos2 == length2 {
break main
}
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
}
}
}
return answer
}
// Xor computes the symmetric difference between two bitmaps and returns the result
func Xor(x1, x2 *Bitmap) *Bitmap {
answer := NewBitmap()
pos1 := 0
pos2 := 0
length1 := x1.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
for {
if (pos1 < length1) && (pos2 < length2) {
s1 := x1.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
if s1 < s2 {
answer.highlowcontainer.appendCopy(x1.highlowcontainer, pos1)
pos1++
} else if s1 > s2 {
answer.highlowcontainer.appendCopy(x2.highlowcontainer, pos2)
pos2++
} else {
c := x1.highlowcontainer.getContainerAtIndex(pos1).xor(x2.highlowcontainer.getContainerAtIndex(pos2))
if c.getCardinality() > 0 {
answer.highlowcontainer.appendContainer(s1, c, false)
}
pos1++
pos2++
}
} else {
break
}
}
if pos1 == length1 {
answer.highlowcontainer.appendCopyMany(x2.highlowcontainer, pos2, length2)
} else if pos2 == length2 {
answer.highlowcontainer.appendCopyMany(x1.highlowcontainer, pos1, length1)
}
return answer
}
// AndNot computes the difference between two bitmaps and returns the result
func AndNot(x1, x2 *Bitmap) *Bitmap {
answer := NewBitmap()
pos1 := 0
pos2 := 0
length1 := x1.highlowcontainer.size()
length2 := x2.highlowcontainer.size()
main:
for {
if pos1 < length1 && pos2 < length2 {
s1 := x1.highlowcontainer.getKeyAtIndex(pos1)
s2 := x2.highlowcontainer.getKeyAtIndex(pos2)
for {
if s1 < s2 {
answer.highlowcontainer.appendCopy(x1.highlowcontainer, pos1)
pos1++
if pos1 == length1 {
break main
}
s1 = x1.highlowcontainer.getKeyAtIndex(pos1)
} else if s1 == s2 {
c1 := x1.highlowcontainer.getContainerAtIndex(pos1)
c2 := x2.highlowcontainer.getContainerAtIndex(pos2)
diff := c1.andNot(c2)
if diff.getCardinality() > 0 {
answer.highlowcontainer.appendContainer(s1, diff, false)
}
pos1++
pos2++
if (pos1 == length1) || (pos2 == length2) {
break main
}
s1 = x1.highlowcontainer.getKeyAtIndex(pos1)
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
} else { //s1 > s2
pos2 = x2.highlowcontainer.advanceUntil(s1, pos2)
if pos2 == length2 {
break main
}
s2 = x2.highlowcontainer.getKeyAtIndex(pos2)
}
}
} else {
break
}
}
if pos2 == length2 {
answer.highlowcontainer.appendCopyMany(x1.highlowcontainer, pos1, length1)
}
return answer
}
// AddMany add all of the values in dat
func (rb *Bitmap) AddMany(dat []uint32) {
if len(dat) == 0 {
return
}
prev := dat[0]
idx, c := rb.addwithptr(prev)
for _, i := range dat[1:] {
if highbits(prev) == highbits(i) {
c = c.iaddReturnMinimized(lowbits(i))
rb.highlowcontainer.setContainerAtIndex(idx, c)
} else {
idx, c = rb.addwithptr(i)
}
prev = i
}
}
// BitmapOf generates a new bitmap filled with the specified integers
func BitmapOf(dat ...uint32) *Bitmap {
ans := NewBitmap()
ans.AddMany(dat)
return ans
}
// Flip negates the bits in the given range (i.e., [rangeStart,rangeEnd)), any integer present in this range and in the bitmap is removed,
// and any integer present in the range and not in the bitmap is added.
// The function uses 64-bit parameters even though a Bitmap stores 32-bit values because it is allowed and meaningful to use [0,uint64(0x100000000)) as a range
// while uint64(0x100000000) cannot be represented as a 32-bit value.
func (rb *Bitmap) Flip(rangeStart, rangeEnd uint64) {
if rangeEnd > MaxUint32+1 {
panic("rangeEnd > MaxUint32+1")
}
if rangeStart > MaxUint32+1 {
panic("rangeStart > MaxUint32+1")
}
if rangeStart >= rangeEnd {
return
}
hbStart := uint32(highbits(uint32(rangeStart)))
lbStart := uint32(lowbits(uint32(rangeStart)))
hbLast := uint32(highbits(uint32(rangeEnd - 1)))
lbLast := uint32(lowbits(uint32(rangeEnd - 1)))
var max uint32 = maxLowBit
for hb := hbStart; hb <= hbLast; hb++ {
var containerStart uint32
if hb == hbStart {
containerStart = uint32(lbStart)
}
containerLast := max
if hb == hbLast {
containerLast = uint32(lbLast)
}
i := rb.highlowcontainer.getIndex(uint16(hb))
if i >= 0 {
c := rb.highlowcontainer.getWritableContainerAtIndex(i).inot(int(containerStart), int(containerLast)+1)
if c.getCardinality() > 0 {
rb.highlowcontainer.setContainerAtIndex(i, c)
} else {
rb.highlowcontainer.removeAtIndex(i)
}
} else { // *think* the range of ones must never be
// empty.
rb.highlowcontainer.insertNewKeyValueAt(-i-1, uint16(hb), rangeOfOnes(int(containerStart), int(containerLast)))
}
}
}
// FlipInt calls Flip after casting the parameters (convenience method)
func (rb *Bitmap) FlipInt(rangeStart, rangeEnd int) {
rb.Flip(uint64(rangeStart), uint64(rangeEnd))
}
// AddRange adds the integers in [rangeStart, rangeEnd) to the bitmap.
// The function uses 64-bit parameters even though a Bitmap stores 32-bit values because it is allowed and meaningful to use [0,uint64(0x100000000)) as a range
// while uint64(0x100000000) cannot be represented as a 32-bit value.
func (rb *Bitmap) AddRange(rangeStart, rangeEnd uint64) {
if rangeStart >= rangeEnd {
return
}
if rangeEnd-1 > MaxUint32 {
panic("rangeEnd-1 > MaxUint32")
}
hbStart := uint32(highbits(uint32(rangeStart)))
lbStart := uint32(lowbits(uint32(rangeStart)))
hbLast := uint32(highbits(uint32(rangeEnd - 1)))
lbLast := uint32(lowbits(uint32(rangeEnd - 1)))
var max uint32 = maxLowBit
for hb := hbStart; hb <= hbLast; hb++ {
containerStart := uint32(0)
if hb == hbStart {
containerStart = lbStart
}
containerLast := max
if hb == hbLast {
containerLast = lbLast
}
i := rb.highlowcontainer.getIndex(uint16(hb))
if i >= 0 {
c := rb.highlowcontainer.getWritableContainerAtIndex(i).iaddRange(int(containerStart), int(containerLast)+1)
rb.highlowcontainer.setContainerAtIndex(i, c)
} else { // *think* the range of ones must never be
// empty.
rb.highlowcontainer.insertNewKeyValueAt(-i-1, uint16(hb), rangeOfOnes(int(containerStart), int(containerLast)))
}
}
}
// RemoveRange removes the integers in [rangeStart, rangeEnd) from the bitmap.
// The function uses 64-bit parameters even though a Bitmap stores 32-bit values because it is allowed and meaningful to use [0,uint64(0x100000000)) as a range
// while uint64(0x100000000) cannot be represented as a 32-bit value.
func (rb *Bitmap) RemoveRange(rangeStart, rangeEnd uint64) {
if rangeStart >= rangeEnd {
return
}
if rangeEnd-1 > MaxUint32 {
// logically, we should assume that the user wants to
// remove all values from rangeStart to infinity
// see https://github.com/RoaringBitmap/roaring/issues/141
rangeEnd = uint64(0x100000000)
}
hbStart := uint32(highbits(uint32(rangeStart)))
lbStart := uint32(lowbits(uint32(rangeStart)))
hbLast := uint32(highbits(uint32(rangeEnd - 1)))
lbLast := uint32(lowbits(uint32(rangeEnd - 1)))
var max uint32 = maxLowBit
if hbStart == hbLast {
i := rb.highlowcontainer.getIndex(uint16(hbStart))
if i < 0 {
return
}
c := rb.highlowcontainer.getWritableContainerAtIndex(i).iremoveRange(int(lbStart), int(lbLast+1))
if c.getCardinality() > 0 {
rb.highlowcontainer.setContainerAtIndex(i, c)
} else {
rb.highlowcontainer.removeAtIndex(i)
}
return
}
ifirst := rb.highlowcontainer.getIndex(uint16(hbStart))
ilast := rb.highlowcontainer.getIndex(uint16(hbLast))
if ifirst >= 0 {
if lbStart != 0 {
c := rb.highlowcontainer.getWritableContainerAtIndex(ifirst).iremoveRange(int(lbStart), int(max+1))
if c.getCardinality() > 0 {
rb.highlowcontainer.setContainerAtIndex(ifirst, c)
ifirst++
}
}
} else {
ifirst = -ifirst - 1
}
if ilast >= 0 {
if lbLast != max {
c := rb.highlowcontainer.getWritableContainerAtIndex(ilast).iremoveRange(int(0), int(lbLast+1))
if c.getCardinality() > 0 {
rb.highlowcontainer.setContainerAtIndex(ilast, c)
} else {
ilast++
}
} else {
ilast++
}
} else {
ilast = -ilast - 1
}
rb.highlowcontainer.removeIndexRange(ifirst, ilast)
}
// Flip negates the bits in the given range (i.e., [rangeStart,rangeEnd)), any integer present in this range and in the bitmap is removed,
// and any integer present in the range and not in the bitmap is added, a new bitmap is returned leaving
// the current bitmap unchanged.
// The function uses 64-bit parameters even though a Bitmap stores 32-bit values because it is allowed and meaningful to use [0,uint64(0x100000000)) as a range
// while uint64(0x100000000) cannot be represented as a 32-bit value.
func Flip(bm *Bitmap, rangeStart, rangeEnd uint64) *Bitmap {
if rangeStart >= rangeEnd {
return bm.Clone()
}
if rangeStart > MaxUint32 {
panic("rangeStart > MaxUint32")
}
if rangeEnd-1 > MaxUint32 {
panic("rangeEnd-1 > MaxUint32")
}
answer := NewBitmap()
hbStart := uint32(highbits(uint32(rangeStart)))
lbStart := uint32(lowbits(uint32(rangeStart)))
hbLast := uint32(highbits(uint32(rangeEnd - 1)))
lbLast := uint32(lowbits(uint32(rangeEnd - 1)))
// copy the containers before the active area
answer.highlowcontainer.appendCopiesUntil(bm.highlowcontainer, uint16(hbStart))
var max uint32 = maxLowBit
for hb := hbStart; hb <= hbLast; hb++ {
var containerStart uint32
if hb == hbStart {
containerStart = uint32(lbStart)
}
containerLast := max
if hb == hbLast {
containerLast = uint32(lbLast)
}
i := bm.highlowcontainer.getIndex(uint16(hb))
j := answer.highlowcontainer.getIndex(uint16(hb))
if i >= 0 {
c := bm.highlowcontainer.getContainerAtIndex(i).not(int(containerStart), int(containerLast)+1)
if c.getCardinality() > 0 {
answer.highlowcontainer.insertNewKeyValueAt(-j-1, uint16(hb), c)
}
} else { // *think* the range of ones must never be
// empty.
answer.highlowcontainer.insertNewKeyValueAt(-j-1, uint16(hb),
rangeOfOnes(int(containerStart), int(containerLast)))
}
}
// copy the containers after the active area.
answer.highlowcontainer.appendCopiesAfter(bm.highlowcontainer, uint16(hbLast))
return answer
}
// SetCopyOnWrite sets this bitmap to use copy-on-write so that copies are fast and memory conscious
// if the parameter is true, otherwise we leave the default where hard copies are made
// (copy-on-write requires extra care in a threaded context).
// Calling SetCopyOnWrite(true) on a bitmap created with FromBuffer is unsafe.
func (rb *Bitmap) SetCopyOnWrite(val bool) {
rb.highlowcontainer.copyOnWrite = val
}
// GetCopyOnWrite gets this bitmap's copy-on-write property
func (rb *Bitmap) GetCopyOnWrite() (val bool) {
return rb.highlowcontainer.copyOnWrite
}
// CloneCopyOnWriteContainers clones all containers which have
// needCopyOnWrite set to true.
// This can be used to make sure it is safe to munmap a []byte
// that the roaring array may still have a reference to, after
// calling FromBuffer.
// More generally this function is useful if you call FromBuffer
// to construct a bitmap with a backing array buf
// and then later discard the buf array. Note that you should call
// CloneCopyOnWriteContainers on all bitmaps that were derived
// from the 'FromBuffer' bitmap since they map have dependencies
// on the buf array as well.
func (rb *Bitmap) CloneCopyOnWriteContainers() {
rb.highlowcontainer.cloneCopyOnWriteContainers()
}
// FlipInt calls Flip after casting the parameters (convenience method)
func FlipInt(bm *Bitmap, rangeStart, rangeEnd int) *Bitmap {
return Flip(bm, uint64(rangeStart), uint64(rangeEnd))
}
// Statistics provides details on the container types in use.
type Statistics struct {
Cardinality uint64
Containers uint64
ArrayContainers uint64
ArrayContainerBytes uint64
ArrayContainerValues uint64
BitmapContainers uint64
BitmapContainerBytes uint64
BitmapContainerValues uint64
RunContainers uint64
RunContainerBytes uint64
RunContainerValues uint64
}
// Stats returns details on container type usage in a Statistics struct.
func (rb *Bitmap) Stats() Statistics {
stats := Statistics{}
stats.Containers = uint64(len(rb.highlowcontainer.containers))
for _, c := range rb.highlowcontainer.containers {
stats.Cardinality += uint64(c.getCardinality())
switch c.(type) {
case *arrayContainer:
stats.ArrayContainers++
stats.ArrayContainerBytes += uint64(c.getSizeInBytes())
stats.ArrayContainerValues += uint64(c.getCardinality())
case *bitmapContainer:
stats.BitmapContainers++
stats.BitmapContainerBytes += uint64(c.getSizeInBytes())
stats.BitmapContainerValues += uint64(c.getCardinality())
case *runContainer16:
stats.RunContainers++
stats.RunContainerBytes += uint64(c.getSizeInBytes())
stats.RunContainerValues += uint64(c.getCardinality())
}
}
return stats
}
|