1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
package fuzzy
import (
"bufio"
"encoding/json"
"errors"
"fmt"
"index/suffixarray"
"io"
"log"
"os"
"regexp"
"sort"
"strings"
"sync"
)
const (
SpellDepthDefault = 2
SpellThresholdDefault = 5
SuffDivergenceThresholdDefault = 100
)
type Pair struct {
str1 string
str2 string
}
type Method int
const (
MethodIsWord Method = 0
MethodSuggestMapsToInput = 1
MethodInputDeleteMapsToDict = 2
MethodInputDeleteMapsToSuggest = 3
)
type Potential struct {
Term string // Potential term string
Score int // Score
Leven int // Levenstein distance from the suggestion to the input
Method Method // How this potential was matched
}
type Counts struct {
Corpus int `json:"corpus"`
Query int `json:"query"`
}
type Model struct {
Data map[string]*Counts `json:"data"`
Maxcount int `json:"maxcount"`
Suggest map[string][]string `json:"suggest"`
Depth int `json:"depth"`
Threshold int `json:"threshold"`
UseAutocomplete bool `json:"autocomplete"`
SuffDivergence int `json:"-"`
SuffDivergenceThreshold int `json:"suff_threshold"`
SuffixArr *suffixarray.Index `json:"-"`
SuffixArrConcat string `json:"-"`
sync.RWMutex
}
// For sorting autocomplete suggestions
// to bias the most popular first
type Autos struct {
Results []string
Model *Model
}
func (a Autos) Len() int { return len(a.Results) }
func (a Autos) Swap(i, j int) { a.Results[i], a.Results[j] = a.Results[j], a.Results[i] }
func (a Autos) Less(i, j int) bool {
icc := a.Model.Data[a.Results[i]].Corpus
jcc := a.Model.Data[a.Results[j]].Corpus
icq := a.Model.Data[a.Results[i]].Query
jcq := a.Model.Data[a.Results[j]].Query
if icq == jcq {
if icc == jcc {
return a.Results[i] > a.Results[j]
}
return icc > jcc
}
return icq > jcq
}
func (m Method) String() string {
switch m {
case MethodIsWord:
return "Input in dictionary"
case MethodSuggestMapsToInput:
return "Suggest maps to input"
case MethodInputDeleteMapsToDict:
return "Input delete maps to dictionary"
case MethodInputDeleteMapsToSuggest:
return "Input delete maps to suggest key"
}
return "unknown"
}
func (pot *Potential) String() string {
return fmt.Sprintf("Term: %v\n\tScore: %v\n\tLeven: %v\n\tMethod: %v\n\n", pot.Term, pot.Score, pot.Leven, pot.Method)
}
// Create and initialise a new model
func NewModel() *Model {
model := new(Model)
return model.Init()
}
func (model *Model) Init() *Model {
model.Data = make(map[string]*Counts)
model.Suggest = make(map[string][]string)
model.Depth = SpellDepthDefault
model.Threshold = SpellThresholdDefault // Setting this to 1 is most accurate, but "1" is 5x more memory and 30x slower processing than "4". This is a big performance tuning knob
model.UseAutocomplete = true // Default is to include Autocomplete
model.updateSuffixArr()
model.SuffDivergenceThreshold = SuffDivergenceThresholdDefault
return model
}
// WriteTo writes a model to a Writer
func (model *Model) WriteTo(w io.Writer) (int64, error) {
model.RLock()
defer model.RUnlock()
b, err := json.Marshal(model)
if err != nil {
return 0, err
}
n, err := w.Write(b)
if err != nil {
return int64(n), err
}
return int64(n), nil
}
// Save a spelling model to disk
func (model *Model) Save(filename string) error {
f, err := os.Create(filename)
if err != nil {
log.Println("Fuzzy model:", err)
return err
}
defer f.Close()
_, err = model.WriteTo(f)
if err != nil {
log.Println("Fuzzy model:", err)
return err
}
return nil
}
// Save a spelling model to disk, but discard all
// entries less than the threshold number of occurences
// Much smaller and all that is used when generated
// as a once off, but not useful for incremental usage
func (model *Model) SaveLight(filename string) error {
model.Lock()
for term, count := range model.Data {
if count.Corpus < model.Threshold {
delete(model.Data, term)
}
}
model.Unlock()
return model.Save(filename)
}
// FromReader loads a model from a Reader
func FromReader(r io.Reader) (*Model, error) {
model := new(Model)
d := json.NewDecoder(r)
err := d.Decode(model)
if err != nil {
return nil, err
}
model.updateSuffixArr()
return model, nil
}
// Load a saved model from disk
func Load(filename string) (*Model, error) {
f, err := os.Open(filename)
if err != nil {
return nil, err
}
defer f.Close()
model, err := FromReader(f)
if err != nil {
model = new(Model)
if err1 := model.convertOldFormat(filename); err1 != nil {
return model, err1
}
return model, nil
}
return model, nil
}
// Change the default depth value of the model. This sets how many
// character differences are indexed. The default is 2.
func (model *Model) SetDepth(val int) {
model.Lock()
model.Depth = val
model.Unlock()
}
// Change the default threshold of the model. This is how many times
// a term must be seen before suggestions are created for it
func (model *Model) SetThreshold(val int) {
model.Lock()
model.Threshold = val
model.Unlock()
}
// Optionally disabled suffixarray based autocomplete support
func (model *Model) SetUseAutocomplete(val bool) {
model.Lock()
old := model.UseAutocomplete
model.Unlock()
model.UseAutocomplete = val
if !old && val {
model.updateSuffixArr()
}
}
// Optionally set the suffix array divergence threshold. This is
// the number of query training steps between rebuilds of the
// suffix array. A low number will be more accurate but will use
// resources and create more garbage.
func (model *Model) SetDivergenceThreshold(val int) {
model.Lock()
model.SuffDivergenceThreshold = val
model.Unlock()
}
// Calculate the Levenshtein distance between two strings
func Levenshtein(a, b *string) int {
la := len(*a)
lb := len(*b)
d := make([]int, la+1)
var lastdiag, olddiag, temp int
for i := 1; i <= la; i++ {
d[i] = i
}
for i := 1; i <= lb; i++ {
d[0] = i
lastdiag = i - 1
for j := 1; j <= la; j++ {
olddiag = d[j]
min := d[j] + 1
if (d[j-1] + 1) < min {
min = d[j-1] + 1
}
if (*a)[j-1] == (*b)[i-1] {
temp = 0
} else {
temp = 1
}
if (lastdiag + temp) < min {
min = lastdiag + temp
}
d[j] = min
lastdiag = olddiag
}
}
return d[la]
}
// Add an array of words to train the model in bulk
func (model *Model) Train(terms []string) {
for _, term := range terms {
model.TrainWord(term)
}
model.updateSuffixArr()
}
// Manually set the count of a word. Optionally trigger the
// creation of suggestion keys for the term. This function lets
// you build a model from an existing dictionary with word popularity
// counts without needing to run "TrainWord" repeatedly
func (model *Model) SetCount(term string, count int, suggest bool) {
model.Lock()
model.Data[term] = &Counts{count, 0} // Note: This may reset a query count? TODO
if suggest {
model.createSuggestKeys(term)
}
model.Unlock()
}
// Train the model word by word. This is corpus training as opposed
// to query training. Word counts from this type of training are not
// likely to correlate with those of search queries
func (model *Model) TrainWord(term string) {
model.Lock()
if t, ok := model.Data[term]; ok {
t.Corpus++
} else {
model.Data[term] = &Counts{1, 0}
}
// Set the max
if model.Data[term].Corpus > model.Maxcount {
model.Maxcount = model.Data[term].Corpus
model.SuffDivergence++
}
// If threshold is triggered, store delete suggestion keys
if model.Data[term].Corpus == model.Threshold {
model.createSuggestKeys(term)
}
model.Unlock()
}
// Train using a search query term. This builds a second popularity
// index of terms used to search, as opposed to generally occurring
// in corpus text
func (model *Model) TrainQuery(term string) {
model.Lock()
if t, ok := model.Data[term]; ok {
t.Query++
} else {
model.Data[term] = &Counts{0, 1}
}
model.SuffDivergence++
update := model.SuffDivergence > model.SuffDivergenceThreshold
model.Unlock()
if update {
model.updateSuffixArr()
}
}
// For a given term, create the partially deleted lookup keys
func (model *Model) createSuggestKeys(term string) {
edits := model.EditsMulti(term, model.Depth)
for _, edit := range edits {
skip := false
for _, hit := range model.Suggest[edit] {
if hit == term {
// Already know about this one
skip = true
continue
}
}
if !skip && len(edit) > 1 {
model.Suggest[edit] = append(model.Suggest[edit], term)
}
}
}
// Edits at any depth for a given term. The depth of the model is used
func (model *Model) EditsMulti(term string, depth int) []string {
edits := Edits1(term)
for {
depth--
if depth <= 0 {
break
}
for _, edit := range edits {
edits2 := Edits1(edit)
for _, edit2 := range edits2 {
edits = append(edits, edit2)
}
}
}
return edits
}
// Edits1 creates a set of terms that are 1 char delete from the input term
func Edits1(word string) []string {
splits := []Pair{}
for i := 0; i <= len(word); i++ {
splits = append(splits, Pair{word[:i], word[i:]})
}
total_set := []string{}
for _, elem := range splits {
//deletion
if len(elem.str2) > 0 {
total_set = append(total_set, elem.str1+elem.str2[1:])
} else {
total_set = append(total_set, elem.str1)
}
}
// Special case ending in "ies" or "ys"
if strings.HasSuffix(word, "ies") {
total_set = append(total_set, word[:len(word)-3]+"ys")
}
if strings.HasSuffix(word, "ys") {
total_set = append(total_set, word[:len(word)-2]+"ies")
}
return total_set
}
func (model *Model) corpusCount(input string) int {
if score, ok := model.Data[input]; ok {
return score.Corpus
}
return 0
}
// From a group of potentials, work out the most likely result
func best(input string, potential map[string]*Potential) string {
var best string
var bestcalc, bonus int
// Create a sorted slice of strings to range over as `potential`
// is an unordered map (map[string]*Potential). Thus, for ties
// (terms with identical scores) the best term will be the last
// tied term when sorted in increasing order (note ge operator)
keys := make([]string, 0, len(potential))
for k := range potential {
keys = append(keys, k)
}
sort.Strings(keys)
for i := 0; i < 4; i++ {
for _, k := range keys {
pot := potential[k]
if pot.Leven == 0 {
return pot.Term
} else if pot.Leven == i {
bonus = 0
// If the first letter is the same, that's a good sign. Bias these potentials
if pot.Term[0] == input[0] {
bonus += 100
}
if pot.Score+bonus >= bestcalc {
bestcalc = pot.Score + bonus
best = pot.Term
}
}
}
if bestcalc > 0 {
return best
}
}
return best
}
// From a group of potentials, work out the most likely results, in order of
// best to worst
func bestn(input string, potential map[string]*Potential, n int) []string {
var output []string
for i := 0; i < n; i++ {
if len(potential) == 0 {
break
}
b := best(input, potential)
output = append(output, b)
delete(potential, b)
}
return output
}
// Test an input, if we get it wrong, look at why it is wrong. This
// function returns a bool indicating if the guess was correct as well
// as the term it is suggesting. Typically this function would be used
// for testing, not for production
func (model *Model) CheckKnown(input string, correct string) bool {
model.RLock()
defer model.RUnlock()
suggestions := model.suggestPotential(input, true)
best := best(input, suggestions)
if best == correct {
// This guess is correct
fmt.Printf("Input correctly maps to correct term")
return true
}
if pot, ok := suggestions[correct]; !ok {
if model.corpusCount(correct) > 0 {
fmt.Printf("\"%v\" - %v (%v) not in the suggestions. (%v) best option.\n", input, correct, model.corpusCount(correct), best)
for _, sugg := range suggestions {
fmt.Printf(" %v\n", sugg)
}
} else {
fmt.Printf("\"%v\" - Not in dictionary\n", correct)
}
} else {
fmt.Printf("\"%v\" - (%v) suggested, should however be (%v).\n", input, suggestions[best], pot)
}
return false
}
// For a given input term, suggest some alternatives. If exhaustive, each of the 4
// cascading checks will be performed and all potentials will be sorted accordingly
func (model *Model) suggestPotential(input string, exhaustive bool) map[string]*Potential {
input = strings.ToLower(input)
suggestions := make(map[string]*Potential, 20)
// 0 - If this is a dictionary term we're all good, no need to go further
if model.corpusCount(input) > model.Threshold {
suggestions[input] = &Potential{Term: input, Score: model.corpusCount(input), Leven: 0, Method: MethodIsWord}
if !exhaustive {
return suggestions
}
}
// 1 - See if the input matches a "suggest" key
if sugg, ok := model.Suggest[input]; ok {
for _, pot := range sugg {
if _, ok := suggestions[pot]; !ok {
suggestions[pot] = &Potential{Term: pot, Score: model.corpusCount(pot), Leven: Levenshtein(&input, &pot), Method: MethodSuggestMapsToInput}
}
}
if !exhaustive {
return suggestions
}
}
// 2 - See if edit1 matches input
max := 0
edits := model.EditsMulti(input, model.Depth)
for _, edit := range edits {
score := model.corpusCount(edit)
if score > 0 && len(edit) > 2 {
if _, ok := suggestions[edit]; !ok {
suggestions[edit] = &Potential{Term: edit, Score: score, Leven: Levenshtein(&input, &edit), Method: MethodInputDeleteMapsToDict}
}
if score > max {
max = score
}
}
}
if max > 0 {
if !exhaustive {
return suggestions
}
}
// 3 - No hits on edit1 distance, look for transposes and replaces
// Note: these are more complex, we need to check the guesses
// more thoroughly, e.g. levals=[valves] in a raw sense, which
// is incorrect
for _, edit := range edits {
if sugg, ok := model.Suggest[edit]; ok {
// Is this a real transpose or replace?
for _, pot := range sugg {
lev := Levenshtein(&input, &pot)
if lev <= model.Depth+1 { // The +1 doesn't seem to impact speed, but has greater coverage when the depth is not sufficient to make suggestions
if _, ok := suggestions[pot]; !ok {
suggestions[pot] = &Potential{Term: pot, Score: model.corpusCount(pot), Leven: lev, Method: MethodInputDeleteMapsToSuggest}
}
}
}
}
}
return suggestions
}
// Return the raw potential terms so they can be ranked externally
// to this package
func (model *Model) Potentials(input string, exhaustive bool) map[string]*Potential {
model.RLock()
defer model.RUnlock()
return model.suggestPotential(input, exhaustive)
}
// For a given input string, suggests potential replacements
func (model *Model) Suggestions(input string, exhaustive bool) []string {
model.RLock()
suggestions := model.suggestPotential(input, exhaustive)
model.RUnlock()
output := make([]string, 0, 10)
for _, suggestion := range suggestions {
output = append(output, suggestion.Term)
}
return output
}
// Return the most likely correction for the input term
func (model *Model) SpellCheck(input string) string {
model.RLock()
suggestions := model.suggestPotential(input, false)
model.RUnlock()
return best(input, suggestions)
}
// Return the most likely corrections in order from best to worst
func (model *Model) SpellCheckSuggestions(input string, n int) []string {
model.RLock()
suggestions := model.suggestPotential(input, true)
model.RUnlock()
return bestn(input, suggestions, n)
}
func SampleEnglish() []string {
var out []string
file, err := os.Open("data/big.txt")
if err != nil {
fmt.Println(err)
return out
}
reader := bufio.NewReader(file)
scanner := bufio.NewScanner(reader)
scanner.Split(bufio.ScanLines)
// Count the words.
count := 0
for scanner.Scan() {
exp, _ := regexp.Compile("[a-zA-Z]+")
words := exp.FindAll([]byte(scanner.Text()), -1)
for _, word := range words {
if len(word) > 1 {
out = append(out, strings.ToLower(string(word)))
count++
}
}
}
if err := scanner.Err(); err != nil {
fmt.Fprintln(os.Stderr, "reading input:", err)
}
return out
}
// Takes the known dictionary listing and creates a suffix array
// model for these terms. If a model already existed, it is discarded
func (model *Model) updateSuffixArr() {
if !model.UseAutocomplete {
return
}
model.RLock()
termArr := make([]string, 0, 1000)
for term, count := range model.Data {
if count.Corpus > model.Threshold || count.Query > 0 { // TODO: query threshold?
termArr = append(termArr, term)
}
}
model.SuffixArrConcat = "\x00" + strings.Join(termArr, "\x00") + "\x00"
model.SuffixArr = suffixarray.New([]byte(model.SuffixArrConcat))
model.SuffDivergence = 0
model.RUnlock()
}
// For a given string, autocomplete using the suffix array model
func (model *Model) Autocomplete(input string) ([]string, error) {
model.RLock()
defer model.RUnlock()
if !model.UseAutocomplete {
return []string{}, errors.New("Autocomplete is disabled")
}
if len(input) == 0 {
return []string{}, errors.New("Input cannot have length zero")
}
express := "\x00" + input + "[^\x00]*"
match, err := regexp.Compile(express)
if err != nil {
return []string{}, err
}
matches := model.SuffixArr.FindAllIndex(match, -1)
a := &Autos{Results: make([]string, 0, len(matches)), Model: model}
for _, m := range matches {
str := strings.Trim(model.SuffixArrConcat[m[0]:m[1]], "\x00")
if count, ok := model.Data[str]; ok {
if count.Corpus > model.Threshold || count.Query > 0 {
a.Results = append(a.Results, str)
}
}
}
sort.Sort(a)
if len(a.Results) >= 10 {
return a.Results[:10], nil
}
return a.Results, nil
}
|