1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
package lo
import (
"math/rand"
"sync"
"time"
)
type DispatchingStrategy[T any] func(msg T, index uint64, channels []<-chan T) int
// ChannelDispatcher distributes messages from input channels into N child channels.
// Close events are propagated to children.
// Underlying channels can have a fixed buffer capacity or be unbuffered when cap is 0.
func ChannelDispatcher[T any](stream <-chan T, count int, channelBufferCap int, strategy DispatchingStrategy[T]) []<-chan T {
children := createChannels[T](count, channelBufferCap)
roChildren := channelsToReadOnly(children)
go func() {
// propagate channel closing to children
defer closeChannels(children)
var i uint64 = 0
for {
msg, ok := <-stream
if !ok {
return
}
destination := strategy(msg, i, roChildren) % count
children[destination] <- msg
i++
}
}()
return roChildren
}
func createChannels[T any](count int, channelBufferCap int) []chan T {
children := make([]chan T, 0, count)
for i := 0; i < count; i++ {
children = append(children, make(chan T, channelBufferCap))
}
return children
}
func channelsToReadOnly[T any](children []chan T) []<-chan T {
roChildren := make([]<-chan T, 0, len(children))
for i := range children {
roChildren = append(roChildren, children[i])
}
return roChildren
}
func closeChannels[T any](children []chan T) {
for i := 0; i < len(children); i++ {
close(children[i])
}
}
func channelIsNotFull[T any](ch <-chan T) bool {
return cap(ch) == 0 || len(ch) < cap(ch)
}
// DispatchingStrategyRoundRobin distributes messages in a rotating sequential manner.
// If the channel capacity is exceeded, the next channel will be selected and so on.
func DispatchingStrategyRoundRobin[T any](msg T, index uint64, channels []<-chan T) int {
for {
i := int(index % uint64(len(channels)))
if channelIsNotFull(channels[i]) {
return i
}
index++
time.Sleep(10 * time.Microsecond) // prevent CPU from burning 🔥
}
}
// DispatchingStrategyRandom distributes messages in a random manner.
// If the channel capacity is exceeded, another random channel will be selected and so on.
func DispatchingStrategyRandom[T any](msg T, index uint64, channels []<-chan T) int {
for {
i := rand.Intn(len(channels))
if channelIsNotFull(channels[i]) {
return i
}
time.Sleep(10 * time.Microsecond) // prevent CPU from burning 🔥
}
}
// DispatchingStrategyWeightedRandom distributes messages in a weighted manner.
// If the channel capacity is exceeded, another random channel will be selected and so on.
func DispatchingStrategyWeightedRandom[T any](weights []int) DispatchingStrategy[T] {
seq := []int{}
for i := 0; i < len(weights); i++ {
for j := 0; j < weights[i]; j++ {
seq = append(seq, i)
}
}
return func(msg T, index uint64, channels []<-chan T) int {
for {
i := seq[rand.Intn(len(seq))]
if channelIsNotFull(channels[i]) {
return i
}
time.Sleep(10 * time.Microsecond) // prevent CPU from burning 🔥
}
}
}
// DispatchingStrategyFirst distributes messages in the first non-full channel.
// If the capacity of the first channel is exceeded, the second channel will be selected and so on.
func DispatchingStrategyFirst[T any](msg T, index uint64, channels []<-chan T) int {
for {
for i := range channels {
if channelIsNotFull(channels[i]) {
return i
}
}
time.Sleep(10 * time.Microsecond) // prevent CPU from burning 🔥
}
}
// DispatchingStrategyLeast distributes messages in the emptiest channel.
func DispatchingStrategyLeast[T any](msg T, index uint64, channels []<-chan T) int {
seq := Range(len(channels))
return MinBy(seq, func(item int, min int) bool {
return len(channels[item]) < len(channels[min])
})
}
// DispatchingStrategyMost distributes messages in the fullest channel.
// If the channel capacity is exceeded, the next channel will be selected and so on.
func DispatchingStrategyMost[T any](msg T, index uint64, channels []<-chan T) int {
seq := Range(len(channels))
return MaxBy(seq, func(item int, max int) bool {
return len(channels[item]) > len(channels[max]) && channelIsNotFull(channels[item])
})
}
// SliceToChannel returns a read-only channels of collection elements.
func SliceToChannel[T any](bufferSize int, collection []T) <-chan T {
ch := make(chan T, bufferSize)
go func() {
for _, item := range collection {
ch <- item
}
close(ch)
}()
return ch
}
// ChannelToSlice returns a slice built from channels items. Blocks until channel closes.
func ChannelToSlice[T any](ch <-chan T) []T {
collection := []T{}
for item := range ch {
collection = append(collection, item)
}
return collection
}
// Generator implements the generator design pattern.
func Generator[T any](bufferSize int, generator func(yield func(T))) <-chan T {
ch := make(chan T, bufferSize)
go func() {
// WARNING: infinite loop
generator(func(t T) {
ch <- t
})
close(ch)
}()
return ch
}
// Buffer creates a slice of n elements from a channel. Returns the slice and the slice length.
// @TODO: we should probably provide an helper that reuse the same buffer.
func Buffer[T any](ch <-chan T, size int) (collection []T, length int, readTime time.Duration, ok bool) {
buffer := make([]T, 0, size)
index := 0
now := time.Now()
for ; index < size; index++ {
item, ok := <-ch
if !ok {
return buffer, index, time.Since(now), false
}
buffer = append(buffer, item)
}
return buffer, index, time.Since(now), true
}
// Batch creates a slice of n elements from a channel. Returns the slice and the slice length.
//
// Deprecated: Use [Buffer] instead.
func Batch[T any](ch <-chan T, size int) (collection []T, length int, readTime time.Duration, ok bool) {
return Buffer(ch, size)
}
// BufferWithTimeout creates a slice of n elements from a channel, with timeout. Returns the slice and the slice length.
// @TODO: we should probably provide an helper that reuse the same buffer.
func BufferWithTimeout[T any](ch <-chan T, size int, timeout time.Duration) (collection []T, length int, readTime time.Duration, ok bool) {
expire := time.NewTimer(timeout)
defer expire.Stop()
buffer := make([]T, 0, size)
index := 0
now := time.Now()
for ; index < size; index++ {
select {
case item, ok := <-ch:
if !ok {
return buffer, index, time.Since(now), false
}
buffer = append(buffer, item)
case <-expire.C:
return buffer, index, time.Since(now), true
}
}
return buffer, index, time.Since(now), true
}
// BatchWithTimeout creates a slice of n elements from a channel, with timeout. Returns the slice and the slice length.
//
// Deprecated: Use [BufferWithTimeout] instead.
func BatchWithTimeout[T any](ch <-chan T, size int, timeout time.Duration) (collection []T, length int, readTime time.Duration, ok bool) {
return BufferWithTimeout(ch, size, timeout)
}
// FanIn collects messages from multiple input channels into a single buffered channel.
// Output messages has no priority. When all upstream channels reach EOF, downstream channel closes.
func FanIn[T any](channelBufferCap int, upstreams ...<-chan T) <-chan T {
out := make(chan T, channelBufferCap)
var wg sync.WaitGroup
// Start an output goroutine for each input channel in upstreams.
wg.Add(len(upstreams))
for _, c := range upstreams {
go func(c <-chan T) {
for n := range c {
out <- n
}
wg.Done()
}(c)
}
// Start a goroutine to close out once all the output goroutines are done.
go func() {
wg.Wait()
close(out)
}()
return out
}
// ChannelMerge collects messages from multiple input channels into a single buffered channel.
// Output messages has no priority. When all upstream channels reach EOF, downstream channel closes.
//
// Deprecated: Use [FanIn] instead.
func ChannelMerge[T any](channelBufferCap int, upstreams ...<-chan T) <-chan T {
return FanIn(channelBufferCap, upstreams...)
}
// FanOut broadcasts all the upstream messages to multiple downstream channels.
// When upstream channel reach EOF, downstream channels close. If any downstream
// channels is full, broadcasting is paused.
func FanOut[T any](count int, channelsBufferCap int, upstream <-chan T) []<-chan T {
downstreams := createChannels[T](count, channelsBufferCap)
go func() {
for msg := range upstream {
for i := range downstreams {
downstreams[i] <- msg
}
}
// Close out once all the output goroutines are done.
for i := range downstreams {
close(downstreams[i])
}
}()
return channelsToReadOnly(downstreams)
}
|