1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
//
// Copyright 2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tree
import (
"fmt"
"strconv"
"strings"
)
type binTree[E Key, V any] struct {
root *binTreeNode[E, V]
}
// GetRoot returns the root node of this trie, which can be nil for a zero-valued uninitialized trie, but not for any other trie
func (tree *binTree[E, V]) GetRoot() *binTreeNode[E, V] {
return tree.root
}
// Size returns the number of elements in the tree.
// Only nodes for which IsAdded() returns true are counted.
// When zero is returned, IsEmpty() returns true.
func (tree *binTree[E, V]) Size() int {
if tree == nil {
return 0
}
return tree.GetRoot().Size()
}
// NodeSize returns the number of nodes in the tree, which is always more than the number of elements.
func (tree *binTree[E, V]) NodeSize() int {
if tree == nil {
return 0
}
return tree.GetRoot().NodeSize()
}
// Clear removes all added nodes from the tree, after which IsEmpty() will return true
func (tree *binTree[E, V]) Clear() {
if root := tree.GetRoot(); root != nil {
root.Clear()
}
}
// IsEmpty returns true if there are not any added nodes within this tree
func (tree *binTree[E, V]) IsEmpty() bool {
return tree.Size() == 0
}
func (tree binTree[E, V]) format(state fmt.State, verb rune) {
switch verb {
case 's', 'v':
_, _ = state.Write([]byte(tree.String()))
return
}
// In default fmt handling (see printValue), we write all the fields of each struct inside curlies {}
// When a pointer is encountered, the pointer is printed unless the nesting depth is 0
// How that pointer is printed varies a lot depending on the verb and flags.
// So, in the case of unsupported flags, let's print { rootPointer } where rootPointer is printed according to the flags and verb.
s := flagsFromState(state, verb)
rootStr := fmt.Sprintf(s, binTreeNodePtr[E, V](tree.root))
bytes := make([]byte, len(rootStr)+2)
bytes[0] = '{'
shifted := bytes[1:]
copy(shifted, rootStr)
shifted[len(rootStr)] = '}'
_, _ = state.Write(bytes)
}
// String returns a visual representation of the tree with one node per line.
func (tree *binTree[E, V]) String() string {
return tree.TreeString(true)
}
// TreeString returns a visual representation of the tree with one node per line, with or without the non-added keys.
func (tree *binTree[E, V]) TreeString(withNonAddedKeys bool) string {
return tree.GetRoot().TreeString(withNonAddedKeys, true)
}
func (tree *binTree[E, V]) printTree(builder *strings.Builder, inds indents, withNonAddedKeys bool) {
if tree == nil {
builder.WriteString(inds.nodeIndent)
builder.WriteString(nilString())
builder.WriteByte('\n')
} else {
tree.GetRoot().printTree(builder, inds, withNonAddedKeys, true)
}
}
const treeKeyWildcard = '*'
// Produces a visual representation of the given tries joined by a single root node, with one node per line.
func treesString[E Key, V any](withNonAddedKeys bool, trees ...*binTree[E, V]) string {
totalEntrySize := 0
for _, tree := range trees {
totalEntrySize += tree.Size()
}
builder := strings.Builder{}
builder.Grow(totalEntrySize * 120) // 2 labels 60 chars each
builder.WriteByte('\n')
builder.WriteString(nonAddedNodeCircle)
isEmpty := len(trees) == 0
if !isEmpty {
totalSize := 0
for _, tree := range trees {
totalSize += tree.Size()
}
if withNonAddedKeys {
builder.WriteByte(' ')
builder.WriteByte(treeKeyWildcard)
builder.WriteString(" (")
builder.WriteString(strconv.Itoa(totalSize))
builder.WriteByte(')')
}
builder.WriteByte('\n')
lastTreeIndex := len(trees) - 1
for i := 0; i < lastTreeIndex; i++ {
trees[i].printTree(&builder, indents{
nodeIndent: leftElbow,
subNodeInd: inBetweenElbows,
}, withNonAddedKeys)
}
trees[lastTreeIndex].printTree(&builder, indents{
nodeIndent: rightElbow,
subNodeInd: belowElbows,
}, withNonAddedKeys)
} else {
if withNonAddedKeys {
builder.WriteByte(' ')
builder.WriteByte(treeKeyWildcard)
builder.WriteString(" (0)")
}
builder.WriteByte('\n')
}
return builder.String()
}
|