1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
//
// Copyright 2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tree
import (
"strconv"
"strings"
)
// Path is a list of nodes derived from following a path in a tree.
// Each node in the list corresponds to a node in the tree.
// Each node in the list corresponds to a tree node that is a direct or indirect sub-node of the tree node corresponding to the previous node in the list.
// Not all nodes in the pathway through the tree need to be included in the linked list.
//
// In other words, a path follows a pathway through a tree from root to leaf, but not necessarily including all nodes encountered along the way.
type Path[E Key, V any] struct {
root, leaf *PathNode[E, V]
}
// GetRoot returns the beginning of the Path, which may or may not match the tree root of the originating tree.
func (path *Path[E, V]) GetRoot() *PathNode[E, V] {
return path.root
}
// GetLeaf returns the end of the Path, which may or may not match a leaf in the originating tree.
func (path *Path[E, V]) GetLeaf() *PathNode[E, V] {
return path.leaf
}
// String returns a visual representation of the Path with one node per line.
func (path *Path[E, V]) String() string {
return path.ListString(true)
}
// ListString returns a visual representation of the tree with one node per line, with or without the non-added keys.
func (path *Path[E, V]) ListString(withNonAddedKeys bool) string {
if path.Size() == 0 {
builder := strings.Builder{}
builder.WriteByte('\n')
if path == nil || !withNonAddedKeys {
builder.WriteString(nilString())
} else {
builder.WriteString(nonAddedNodeCircle)
}
builder.WriteByte('\n')
return builder.String()
}
return path.GetRoot().ListString(withNonAddedKeys, true)
}
// Size returns the count of nodes in the list
// This is a constant-time operation since the size is maintained in each node.
func (path *Path[E, V]) Size() (storedSize int) {
if path == nil || path.root == nil {
return 0
}
return path.root.Size()
}
// PathNode is an element in the list of a Path
type PathNode[E Key, V any] struct {
previous, next *PathNode[E, V]
// the key for the node
item E
// only for associative trie nodes
value V
// the number of added nodes below this one, including this one if added
storedSize int
added bool
}
// Next returns the next node in the path
func (node *PathNode[E, V]) Next() *PathNode[E, V] {
return node.next
}
// Previous returns the previous node in the path
func (node *PathNode[E, V]) Previous() *PathNode[E, V] {
return node.previous
}
// GetKey gets the key used for placing the node in the tree.
func (node *PathNode[E, V]) GetKey() (key E) {
//return node.getKey()
if node != nil {
return node.item
}
return
}
// GetValue returns the value assigned to the node
func (node *PathNode[E, V]) GetValue() (val V) {
if node != nil {
val = node.value
}
return
}
// IsAdded returns whether the node was "added".
// Some binary tree nodes are considered "added" and others are not.
// Those nodes created for key elements added to the tree are "added" nodes.
// Those that are not added are those nodes created to serve as junctions for the added nodes.
// Only added elements contribute to the size of a tree.
// When removing nodes, non-added nodes are removed automatically whenever they are no longer needed,
// which is when an added node has less than two added sub-nodes.
func (node *PathNode[E, V]) IsAdded() bool {
return node != nil && node.added
}
// Size returns the count of nodes added to the sub-tree starting from this node as root and moving downwards to sub-nodes.
// This is a constant-time operation since the size is maintained in each node.
func (node *PathNode[E, V]) Size() (storedSize int) {
if node != nil {
storedSize = node.storedSize
if storedSize == sizeUnknown {
prev, next := node, node.next
for ; next != nil && next.storedSize == sizeUnknown; prev, next = next, next.next {
}
var nodeSize int
for {
if prev.IsAdded() {
nodeSize++
}
if next != nil {
nodeSize += next.storedSize
}
prev.storedSize = nodeSize
if prev == node {
break
}
prev = node.previous
}
storedSize = node.storedSize
}
}
return
}
// Returns a visual representation of this node including the key, with an open circle indicating this node is not an added node,
// a closed circle indicating this node is an added node.
func (node *PathNode[E, V]) String() string {
if node == nil {
return NodeString[E, V](nil)
}
return NodeString[E, V](node)
}
// ListString returns a visual representation of the sub-list with this node as root, with one node per line.
//
// withNonAddedKeys: whether to show nodes that are not added nodes
// withSizes: whether to include the counts of added nodes in each sub-list
func (node *PathNode[E, V]) ListString(withNonAddedKeys, withSizes bool) string {
builder := strings.Builder{}
builder.WriteByte('\n')
node.printList(&builder, indents{}, withNonAddedKeys, withSizes)
return builder.String()
}
func (node *PathNode[E, V]) printList(builder *strings.Builder,
indents indents,
withNonAdded,
withSizes bool) {
if node == nil {
builder.WriteString(indents.nodeIndent)
builder.WriteString(nilString())
builder.WriteByte('\n')
return
}
next := node
for {
if withNonAdded || next.IsAdded() {
builder.WriteString(indents.nodeIndent)
builder.WriteString(next.String())
if withSizes {
builder.WriteString(" (")
builder.WriteString(strconv.Itoa(next.Size()))
builder.WriteByte(')')
}
builder.WriteByte('\n')
} else {
builder.WriteString(indents.nodeIndent)
builder.WriteString(nonAddedNodeCircle)
builder.WriteByte('\n')
}
indents.nodeIndent = indents.subNodeInd + rightElbow
indents.subNodeInd = indents.subNodeInd + belowElbows
if next = next.next; next == nil {
break
}
}
}
|