1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
|
//
// Copyright 2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tree
import (
"fmt"
"strings"
"unsafe"
)
// BinTrie is a binary trie.
//
// To use BinTrie, your keys implement TrieKey.
//
// All keys are either fixed, in which the key value does not change,
// or comprising of a prefix in which an initial sequence of bits does not change, and the the remaining bits represent all bit values.
// The length of the initial fixed sequence of bits is the prefix length.
// The total bit length is the same for all keys.
//
// A key with a prefix is also known as a prefix block, and represents all bit sequences with the same prefix.
//
// The zero value for BinTrie is a binary trie ready for use.
//
// Each node can be associated with a value, making BinTrie an associative binary trie.
// If you do not wish to associate values to nodes, then use the type EmptyValueType,
// in which case the value will be ignored in functions that print node strings.
type BinTrie[E TrieKey[E], V any] struct {
binTree[E, V]
}
type EmptyValueType struct{}
func (trie *BinTrie[E, V]) toBinTree() *binTree[E, V] {
return (*binTree[E, V])(unsafe.Pointer(trie))
}
// GetRoot returns the root of this trie (in the case of bounded tries, this would be the bounded root)
func (trie *BinTrie[E, V]) GetRoot() (root *BinTrieNode[E, V]) {
if trie != nil {
root = toTrieNode(trie.root)
}
return
}
// Returns the root of this trie (in the case of bounded tries, the absolute root ignores the bounds)
func (trie *BinTrie[E, V]) absoluteRoot() (root *BinTrieNode[E, V]) {
if trie != nil {
root = toTrieNode(trie.root)
}
return
}
// Size returns the number of elements in the tree.
// Only nodes for which IsAdded() returns true are counted.
// When zero is returned, IsEmpty() returns true.
func (trie *BinTrie[E, V]) Size() int {
return trie.toBinTree().Size()
}
// NodeSize returns the number of nodes in the tree, which is always more than the number of elements.
func (trie *BinTrie[E, V]) NodeSize() int {
return trie.toBinTree().NodeSize()
}
func (trie *BinTrie[E, V]) ensureRoot(key E) *BinTrieNode[E, V] {
root := trie.root
if root == nil {
root = trie.setRoot(key.ToPrefixBlockLen(0))
}
return toTrieNode(root)
}
func (trie *BinTrie[E, V]) setRoot(key E) *binTreeNode[E, V] {
root := &binTreeNode[E, V]{
item: key,
cTracker: &changeTracker{},
}
root.setAddr()
trie.root = root
return root
}
// Iterator returns an iterator that iterates through the elements of the sub-tree with this node as the root.
// The iteration is in sorted element order.
func (trie *BinTrie[E, V]) Iterator() TrieKeyIterator[E] {
return trie.GetRoot().Iterator()
}
// DescendingIterator returns an iterator that iterates through the elements of the subtrie with this node as the root.
// The iteration is in reverse sorted element order.
func (trie *BinTrie[E, V]) DescendingIterator() TrieKeyIterator[E] {
return trie.GetRoot().DescendingIterator()
}
// String returns a visual representation of the tree with one node per line.
func (trie *BinTrie[E, V]) String() string {
if trie == nil {
return nilString()
}
return trie.binTree.String()
}
// TreeString returns a visual representation of the tree with one node per line, with or without the non-added keys.
func (trie *BinTrie[E, V]) TreeString(withNonAddedKeys bool) string {
if trie == nil {
return "\n" + nilString()
}
return trie.binTree.TreeString(withNonAddedKeys)
}
// Add adds the given key to the trie, returning true if not there already.
func (trie *BinTrie[E, V]) Add(key E) bool {
root := trie.ensureRoot(key)
result := &opResult[E, V]{
key: key,
op: insert,
}
root.matchBits(result)
return !result.exists
}
// AddNode is similar to Add but returns the new or existing node.
func (trie *BinTrie[E, V]) AddNode(key E) *BinTrieNode[E, V] {
root := trie.ensureRoot(key)
result := &opResult[E, V]{
key: key,
op: insert,
}
root.matchBits(result)
node := result.existingNode
if node == nil {
node = result.inserted
}
return node
}
func (trie *BinTrie[E, V]) addNode(result *opResult[E, V], fromNode *BinTrieNode[E, V]) *BinTrieNode[E, V] {
fromNode.matchBitsFromIndex(fromNode.GetKey().GetPrefixLen().Len(), result)
node := result.existingNode
if node == nil {
return result.inserted
}
return node
}
func (trie *BinTrie[E, V]) addTrie(addedTreeNode *BinTrieNode[E, V], withValues bool) *BinTrieNode[E, V] {
if addedTreeNode == nil { // addedTreeNode can be nil when the root of a zero-valued trie
return nil
}
iterator := addedTreeNode.ContainingFirstAllNodeIterator(true)
toAdd := iterator.Next()
firstKey := toAdd.GetKey()
result := &opResult[E, V]{
key: firstKey,
op: insert,
}
var firstNode *BinTrieNode[E, V]
root := trie.ensureRoot(firstKey)
firstAdded := toAdd.IsAdded()
if firstAdded {
if withValues {
result.newValue = toAdd.GetValue()
// new value assignment
}
firstNode = trie.addNode(result, root)
} else {
firstNode = root
}
lastAddedNode := firstNode
for iterator.HasNext() {
iterator.CacheWithLowerSubNode(lastAddedNode)
iterator.CacheWithUpperSubNode(lastAddedNode)
toAdd = iterator.Next()
cachedNode := iterator.GetCached().(*BinTrieNode[E, V])
if toAdd.IsAdded() {
addrNext := toAdd.GetKey()
result.key = addrNext
result.existingNode = nil
result.inserted = nil
if withValues {
result.newValue = toAdd.GetValue()
// new value assignment
}
lastAddedNode = trie.addNode(result, cachedNode)
} else {
lastAddedNode = cachedNode
}
}
if !firstAdded {
firstNode = trie.GetNode(addedTreeNode.GetKey())
}
return firstNode
}
// AddTrieKeys copies the trie node structure of addedTrie into trie, but does not copy node mapped values
func AddTrieKeys[E TrieKey[E], V1 any, V2 any](trie *BinTrie[E, V1], addedTreeNode *BinTrieNode[E, V2]) *BinTrieNode[E, V1] {
if addedTreeNode == nil { // addedTreeNode can be nil when the root of a zero-valued trie
return nil
}
iterator := addedTreeNode.ContainingFirstAllNodeIterator(true)
toAdd := iterator.Next()
firstKey := toAdd.GetKey()
result := &opResult[E, V1]{
key: firstKey,
op: insert,
}
var firstNode *BinTrieNode[E, V1]
root := trie.ensureRoot(firstKey)
firstAdded := toAdd.IsAdded()
if firstAdded {
firstNode = trie.addNode(result, root)
} else {
firstNode = root
}
lastAddedNode := firstNode
for iterator.HasNext() {
iterator.CacheWithLowerSubNode(lastAddedNode)
iterator.CacheWithUpperSubNode(lastAddedNode)
toAdd = iterator.Next()
cachedNode := iterator.GetCached().(*BinTrieNode[E, V1])
if toAdd.IsAdded() {
result.key = toAdd.GetKey()
result.existingNode = nil
result.inserted = nil
lastAddedNode = trie.addNode(result, cachedNode)
} else {
lastAddedNode = cachedNode
}
}
if !firstAdded {
firstNode = trie.GetNode(addedTreeNode.GetKey())
}
return firstNode
}
func (trie *BinTrie[E, V]) AddTrie(trieNode *BinTrieNode[E, V]) *BinTrieNode[E, V] {
if trieNode == nil {
return nil
}
trie.ensureRoot(trieNode.GetKey())
return trie.addTrie(trieNode, false)
}
func (trie *BinTrie[E, V]) Contains(key E) bool {
return trie.absoluteRoot().Contains(key)
}
func (trie *BinTrie[E, V]) Remove(key E) bool {
return trie.absoluteRoot().RemoveNode(key)
}
func (trie *BinTrie[E, V]) RemoveElementsContainedBy(key E) *BinTrieNode[E, V] {
return trie.absoluteRoot().RemoveElementsContainedBy(key)
}
func (trie *BinTrie[E, V]) ElementsContainedBy(key E) *BinTrieNode[E, V] {
return trie.absoluteRoot().ElementsContainedBy(key)
}
func (trie *BinTrie[E, V]) ElementsContaining(key E) *Path[E, V] {
return trie.absoluteRoot().ElementsContaining(key)
}
// LongestPrefixMatch finds the key with the longest matching prefix.
func (trie *BinTrie[E, V]) LongestPrefixMatch(key E) (E, bool) {
return trie.absoluteRoot().LongestPrefixMatch(key)
}
// LongestPrefixMatchNode finds the node with the longest matching prefix.
func (trie *BinTrie[E, V]) LongestPrefixMatchNode(key E) *BinTrieNode[E, V] {
return trie.absoluteRoot().LongestPrefixMatchNode(key)
}
func (trie *BinTrie[E, V]) ElementContains(key E) bool {
return trie.absoluteRoot().ElementContains(key)
}
// GetNode gets the node in the sub-trie corresponding to the given address,
// or returns nil if not such element exists.
//
// It returns any node, whether added or not,
// including any prefix block node that was not added.
func (trie *BinTrie[E, V]) GetNode(key E) *BinTrieNode[E, V] {
return trie.absoluteRoot().GetNode(key)
}
// GetAddedNode gets trie nodes representing added elements.
//
// Use Contains to check for the existence of a given address in the trie,
// as well as GetNode to search for all nodes including those not-added but also auto-generated nodes for subnet blocks.
func (trie *BinTrie[E, V]) GetAddedNode(key E) *BinTrieNode[E, V] {
return trie.absoluteRoot().GetAddedNode(key)
}
// Put associates the specified value with the specified key in this map.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The Partition type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// If this map previously contained a mapping for a key,
// the old value is replaced by the specified value, and false is returned along with the old value, which may be the zero value.
// If this map did not previously contain a mapping for the key, true is returned along with the zero value.
func (trie *BinTrie[E, V]) Put(key E, value V) (V, bool) {
root := trie.ensureRoot(key)
result := &opResult[E, V]{
key: key,
op: insert,
newValue: value,
// new value assignment
}
root.matchBits(result)
return result.existingValue, !result.exists
}
func (trie *BinTrie[E, V]) PutTrie(trieNode *BinTrieNode[E, V]) *BinTrieNode[E, V] {
if trieNode == nil {
return nil
}
trie.ensureRoot(trieNode.GetKey())
return trie.addTrie(trieNode, true)
}
func (trie *BinTrie[E, V]) PutNode(key E, value V) *BinTrieNode[E, V] {
root := trie.ensureRoot(key)
result := &opResult[E, V]{
key: key,
op: insert,
newValue: value,
// new value assignment
}
root.matchBits(result)
resultNode := result.existingNode
if resultNode == nil {
resultNode = result.inserted
}
return resultNode
}
func (trie *BinTrie[E, V]) Remap(key E, remapper func(existing V, found bool) (mapped V, mapIt bool)) *BinTrieNode[E, V] {
return trie.remapImpl(key,
func(existingVal V, exists bool) (V, remapAction) {
result, mapIt := remapper(existingVal, exists)
if mapIt {
return result, remapValue
}
var v V
return v, removeNode
})
}
func (trie *BinTrie[E, V]) RemapIfAbsent(key E, supplier func() V) *BinTrieNode[E, V] {
return trie.remapImpl(key,
func(existingVal V, exists bool) (V, remapAction) {
if !exists {
return supplier(), remapValue
}
var v V
return v, doNothing
})
}
func (trie *BinTrie[E, V]) remapImpl(key E, remapper func(val V, exists bool) (V, remapAction)) *BinTrieNode[E, V] {
root := trie.ensureRoot(key)
result := &opResult[E, V]{
key: key,
op: remap,
remapper: remapper,
}
root.matchBits(result)
resultNode := result.existingNode
if resultNode == nil {
resultNode = result.inserted
}
return resultNode
}
func (trie *BinTrie[E, V]) Get(key E) (V, bool) {
return trie.absoluteRoot().Get(key)
}
// NodeIterator returns an iterator that iterates through the added nodes of the trie in forward or reverse tree order.
func (trie *BinTrie[E, V]) NodeIterator(forward bool) TrieNodeIteratorRem[E, V] {
return trie.absoluteRoot().NodeIterator(forward)
}
// AllNodeIterator returns an iterator that iterates through all the nodes of the trie in forward or reverse tree order.
func (trie *BinTrie[E, V]) AllNodeIterator(forward bool) TrieNodeIteratorRem[E, V] {
return trie.absoluteRoot().AllNodeIterator(forward)
}
// BlockSizeNodeIterator returns an iterator that iterates the added nodes in the trie, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (trie *BinTrie[E, V]) BlockSizeNodeIterator(lowerSubNodeFirst bool) TrieNodeIteratorRem[E, V] {
return trie.absoluteRoot().BlockSizeNodeIterator(lowerSubNodeFirst)
}
// BlockSizeAllNodeIterator returns an iterator that iterates all nodes in the trie, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (trie *BinTrie[E, V]) BlockSizeAllNodeIterator(lowerSubNodeFirst bool) TrieNodeIteratorRem[E, V] {
return trie.absoluteRoot().BlockSizeAllNodeIterator(lowerSubNodeFirst)
}
// BlockSizeCachingAllNodeIterator returns an iterator that iterates all nodes, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
func (trie *BinTrie[E, V]) BlockSizeCachingAllNodeIterator() CachingTrieNodeIterator[E, V] {
return trie.absoluteRoot().BlockSizeCachingAllNodeIterator()
}
func (trie *BinTrie[E, V]) ContainingFirstIterator(forwardSubNodeOrder bool) CachingTrieNodeIterator[E, V] {
return trie.absoluteRoot().ContainingFirstIterator(forwardSubNodeOrder)
}
func (trie *BinTrie[E, V]) ContainingFirstAllNodeIterator(forwardSubNodeOrder bool) CachingTrieNodeIterator[E, V] {
return trie.absoluteRoot().ContainingFirstAllNodeIterator(forwardSubNodeOrder)
}
func (trie *BinTrie[E, V]) ContainedFirstIterator(forwardSubNodeOrder bool) TrieNodeIteratorRem[E, V] {
return trie.absoluteRoot().ContainedFirstIterator(forwardSubNodeOrder)
}
func (trie *BinTrie[E, V]) ContainedFirstAllNodeIterator(forwardSubNodeOrder bool) TrieNodeIterator[E, V] {
return trie.absoluteRoot().ContainedFirstAllNodeIterator(forwardSubNodeOrder)
}
func (trie *BinTrie[E, V]) FirstNode() *BinTrieNode[E, V] {
return trie.absoluteRoot().FirstNode()
}
func (trie *BinTrie[E, V]) FirstAddedNode() *BinTrieNode[E, V] {
return trie.absoluteRoot().FirstAddedNode()
}
func (trie *BinTrie[E, V]) LastNode() *BinTrieNode[E, V] {
return trie.absoluteRoot().LastNode()
}
func (trie *BinTrie[E, V]) LastAddedNode() *BinTrieNode[E, V] {
return trie.absoluteRoot().LastAddedNode()
}
func (trie *BinTrie[E, V]) LowerAddedNode(key E) *BinTrieNode[E, V] {
return trie.absoluteRoot().LowerAddedNode(key)
}
func (trie *BinTrie[E, V]) FloorAddedNode(key E) *BinTrieNode[E, V] {
return trie.absoluteRoot().FloorAddedNode(key)
}
func (trie *BinTrie[E, V]) HigherAddedNode(key E) *BinTrieNode[E, V] {
return trie.absoluteRoot().HigherAddedNode(key)
}
func (trie *BinTrie[E, V]) CeilingAddedNode(key E) *BinTrieNode[E, V] {
return trie.absoluteRoot().CeilingAddedNode(key)
}
func (trie *BinTrie[E, V]) Clone() *BinTrie[E, V] {
if trie == nil {
return nil
}
return &BinTrie[E, V]{binTree[E, V]{root: trie.absoluteRoot().CloneTree().toBinTreeNode()}}
}
// DeepEqual returns whether the given argument is a trie with a set of nodes with the same keys as in this trie according to the Compare method,
// and the same values according to the reflect.DeepEqual method
func (trie *BinTrie[E, V]) DeepEqual(other *BinTrie[E, V]) bool {
return trie.absoluteRoot().TreeDeepEqual(other.absoluteRoot())
}
// Equal returns whether the given argument is a trie with a set of nodes with the same keys as in this trie according to the Compare method
func (trie *BinTrie[E, V]) Equal(other *BinTrie[E, V]) bool {
return trie.absoluteRoot().TreeEqual(other.absoluteRoot())
}
// For some reason Format must be here and not in addressTrieNode for nil node.
// It panics in fmt code either way, but if in here then it is handled by a recover() call in fmt properly.
// Seems to be a problem only in the debugger.
// Format implements the fmt.Formatter interface
func (trie BinTrie[E, V]) Format(state fmt.State, verb rune) {
trie.format(state, verb)
}
// NewBinTrie creates a new trie with root key.ToPrefixBlockLen(0).
// If the key argument is not Equal to its zero-length prefix block, then the key will be added as well.
func NewBinTrie[E TrieKey[E], V any](key E) BinTrie[E, V] {
trie := BinTrie[E, V]{binTree[E, V]{}}
root := key.ToPrefixBlockLen(0)
trie.setRoot(root)
if key.Compare(root) != 0 {
trie.Add(key)
}
return trie
}
func TreesString[E TrieKey[E], V any](withNonAddedKeys bool, tries ...*BinTrie[E, V]) string {
binTrees := make([]*binTree[E, V], 0, len(tries))
for _, trie := range tries {
binTrees = append(binTrees, tobinTree(trie))
}
return treesString(withNonAddedKeys, binTrees...)
}
func tobinTree[E TrieKey[E], V any](trie *BinTrie[E, V]) *binTree[E, V] {
return (*binTree[E, V])(unsafe.Pointer(trie))
}
// ConstructAddedNodesTree provides an associative trie in which the root and each added node of this trie are mapped to a list of their respective direct added sub-nodes.
// This trie provides an alternative non-binary tree structure of the added nodes.
// It is used by ToAddedNodesTreeString to produce a string showing the alternative structure.
// If there are no non-added nodes in this trie,
// then the alternative tree structure provided by this method is the same as the original trie.
// The trie values of this trie are of type []*BinTrieNode
func (trie *BinTrie[E, V]) ConstructAddedNodesTree() BinTrie[E, AddedSubnodeMapping] {
var newRoot *binTreeNode[E, AddedSubnodeMapping]
existingRoot := trie.GetRoot()
if existingRoot != nil {
newRoot := &binTreeNode[E, AddedSubnodeMapping]{
item: trie.root.item,
cTracker: &changeTracker{},
}
newRoot.setAddr()
if trie.root.IsAdded() {
newRoot.SetAdded()
}
}
newTrie := BinTrie[E, AddedSubnodeMapping]{binTree[E, AddedSubnodeMapping]{newRoot}}
// populate the keys from the original trie into the new trie
AddTrieKeys(&newTrie, existingRoot)
// now, as we iterate,
// we find our parent and add ourselves to that parent's list of subnodes
var cachingIterator CachingTrieNodeIterator[E, AddedSubnodeMapping]
cachingIterator = newTrie.ContainingFirstAllNodeIterator(true)
thisIterator := trie.ContainingFirstAllNodeIterator(true)
var newNext *BinTrieNode[E, AddedSubnodeMapping]
var thisNext *BinTrieNode[E, V]
for newNext, thisNext = cachingIterator.Next(), thisIterator.Next(); newNext != nil; newNext, thisNext = cachingIterator.Next(), thisIterator.Next() {
// populate the values from the original trie into the new trie
newNext.SetValue(SubNodesMapping[E, V]{Value: thisNext.GetValue()})
cachingIterator.CacheWithLowerSubNode(newNext)
cachingIterator.CacheWithUpperSubNode(newNext)
// the cached object is our parent
if newNext.IsAdded() {
var parent *BinTrieNode[E, AddedSubnodeMapping]
parent = cachingIterator.GetCached().(*BinTrieNode[E, AddedSubnodeMapping])
if parent != nil {
// find added parent, or the root if no added parent
for !parent.IsAdded() {
parentParent := parent.GetParent()
if parentParent == nil {
break
}
parent = parentParent
}
// store ourselves with that added parent or root
var val SubNodesMapping[E, V]
val = parent.GetValue().(SubNodesMapping[E, V])
var list []*BinTrieNode[E, AddedSubnodeMapping]
if val.SubNodes == nil {
list = make([]*BinTrieNode[E, AddedSubnodeMapping], 0, 3)
} else {
list = val.SubNodes
}
val.SubNodes = append(list, newNext)
parent.SetValue(val)
} // else root
}
}
return newTrie
}
// AddedNodesTreeString provides a flattened version of the trie showing only the contained added nodes and their containment structure, which is non-binary.
// The root node is included, which may or may not be added.
func (trie *BinTrie[E, V]) AddedNodesTreeString() string {
if trie == nil {
return "\n" + nilString()
}
addedTree := trie.ConstructAddedNodesTree()
return AddedNodesTreeString[E, V](addedTree.GetRoot())
}
// AddedNodesTreeString provides a flattened version of the trie showing only the contained added nodes and their containment structure, which is non-binary.
// The root node is included, which may or may not be added.
func AddedNodesTreeString[E TrieKey[E], V any](addedTree *BinTrieNode[E, AddedSubnodeMapping]) string {
var stack []indentsNode[E]
builder := strings.Builder{}
builder.WriteByte('\n')
nodeIndent, subNodeIndent := "", ""
nextNode := addedTree
for {
builder.WriteString(nodeIndent)
builder.WriteString(NodeString[E, V](printWrapper[E, V]{nextNode}))
builder.WriteByte('\n')
var nextVal AddedSubnodeMapping // SubNodesMapping[E, V]
nextVal = nextNode.GetValue()
var nextNodes []*BinTrieNode[E, AddedSubnodeMapping]
if nextVal != nil {
mapping := nextVal.(SubNodesMapping[E, V])
if mapping.SubNodes != nil {
nextNodes = mapping.SubNodes
}
}
if len(nextNodes) > 0 {
i := len(nextNodes) - 1
lastIndents := indents{
nodeIndent: subNodeIndent + rightElbow,
subNodeInd: subNodeIndent + belowElbows,
}
var nNode *BinTrieNode[E, AddedSubnodeMapping] // SubNodesMapping[E, V]
nNode = nextNodes[i]
if stack == nil {
stack = make([]indentsNode[E], 0, addedTree.Size())
}
stack = append(stack, indentsNode[E]{lastIndents, nNode})
if len(nextNodes) > 1 {
firstIndents := indents{
nodeIndent: subNodeIndent + leftElbow,
subNodeInd: subNodeIndent + inBetweenElbows,
}
for i--; i >= 0; i-- {
nNode = nextNodes[i]
stack = append(stack, indentsNode[E]{firstIndents, nNode})
}
}
}
stackLen := len(stack)
if stackLen == 0 {
break
}
newLen := stackLen - 1
nextItem := stack[newLen]
stack = stack[:newLen]
nextNode = nextItem.node
nextIndents := nextItem.inds
nodeIndent = nextIndents.nodeIndent
subNodeIndent = nextIndents.subNodeInd
}
return builder.String()
}
type SubNodesMapping[E TrieKey[E], V any] struct {
Value V
// subNodes is the list of direct and indirect added subnodes in the original trie
SubNodes []*BinTrieNode[E, AddedSubnodeMapping]
}
type AddedSubnodeMapping any // AddedSubnodeMapping / any is always SubNodesMapping[E,V]
type printWrapper[E TrieKey[E], V any] struct {
*BinTrieNode[E, AddedSubnodeMapping]
}
func (p printWrapper[E, V]) GetValue() V {
var nodeValue AddedSubnodeMapping = p.BinTrieNode.GetValue()
if nodeValue == nil {
var v V
return v
}
return nodeValue.(SubNodesMapping[E, V]).Value
}
type indentsNode[E TrieKey[E]] struct {
inds indents
node *BinTrieNode[E, AddedSubnodeMapping]
}
|