1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
|
//
// Copyright 2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tree
import (
"fmt"
"reflect"
"unsafe"
)
type operation int
const (
// Given a key E
insert operation = iota // add node for E if not already there
remap // alters nodes based on the existing nodes and their values
lookup // find node for E, traversing all containing elements along the way
near // closest match, going down trie to get element considered closest. Whether one thing is closer than another is determined by the sorted order.
containing // list the nodes whose keys contain E
insertedDelete // Remove node for E
subtreeDelete // Remove nodes whose keys are contained by E
)
type opResult[E TrieKey[E], V any] struct {
key E
// whether near is searching for a floor or ceiling
// a floor is greatest element below addr
// a ceiling is lowest element above addr
nearestFloor,
// whether near cannot be an exact match
nearExclusive bool
op operation
// lookups:
// an inserted tree element matches the supplied argument
// exists is set to true only for "added" nodes
exists bool
// the matching tree element, when doing a lookup operation, or the pre-existing node for an insert operation
// existingNode is set for both added and not added nodes
existingNode,
// the closest tree element, when doing a near operation
nearestNode,
// if searching for a floor/lower, and the nearest node is above addr, then we must backtrack to get below
// if searching for a ceiling/higher, and the nearest node is below addr, then we must backtrack to get above
backtrackNode,
// contained by:
// this tree is contained by the supplied argument
containedBy,
// deletions:
// this tree was deleted
deleted *BinTrieNode[E, V]
// contains:
// A linked list of the tree elements, from largest to smallest,
// that contain the supplied argument, and the end of the list
containing, containingEnd *PathNode[E, V]
// The tree node with the smallest subnet or address containing the supplied argument
smallestContaining *BinTrieNode[E, V]
// adds and puts:
// new and existing values for add, put and remap operations
newValue, existingValue V
// this added tree node was newly created for an add
inserted,
// this added tree node previously existed but had not been added yet
added,
// this added tree node was already added to the trie
addedAlready *BinTrieNode[E, V]
// remaps:
// remaps values based on their current contents
remapper func(val V, exists bool) (V, remapAction)
}
func (result *opResult[E, V]) getContaining() *Path[E, V] {
containing := result.containing
if containing == nil {
return &Path[E, V]{}
}
return &Path[E, V]{
root: containing,
leaf: result.containingEnd,
}
}
// add to the list of tree elements that contain the supplied argument
func (result *opResult[E, V]) addContaining(containingSub *BinTrieNode[E, V]) {
if containingSub.IsAdded() {
node := &PathNode[E, V]{
item: containingSub.item,
value: containingSub.value,
storedSize: 1,
added: true,
}
if result.containing == nil {
result.containing = node
} else {
last := result.containingEnd
last.next = node
node.previous = last
last.storedSize++
for next := last.previous; next != nil; next = next.previous {
next.storedSize++
}
}
result.containingEnd = node
}
}
type TrieKeyIterator[E TrieKey[E]] interface {
HasNext
Next() E
// Remove removes the last iterated element from the underlying trie, and returns that element.
// If there is no such element, it returns the zero value.
Remove() E
}
type trieKeyIterator[E TrieKey[E]] struct {
keyIterator[E]
}
func (iter trieKeyIterator[E]) Next() E {
return iter.keyIterator.Next()
}
func (iter trieKeyIterator[E]) Remove() E {
return iter.keyIterator.Remove()
}
type TrieNodeIterator[E TrieKey[E], V any] interface {
HasNext
Next() *BinTrieNode[E, V]
}
type TrieNodeIteratorRem[E TrieKey[E], V any] interface {
TrieNodeIterator[E, V]
// Remove removes the last iterated element from the underlying trie, and returns that element.
// If there is no such element, it returns the zero value.
Remove() *BinTrieNode[E, V]
}
type trieNodeIteratorRem[E TrieKey[E], V any] struct {
nodeIteratorRem[E, V]
}
func (iter trieNodeIteratorRem[E, V]) Next() *BinTrieNode[E, V] {
return toTrieNode(iter.nodeIteratorRem.Next())
}
func (iter trieNodeIteratorRem[E, V]) Remove() *BinTrieNode[E, V] {
return toTrieNode(iter.nodeIteratorRem.Remove())
}
type trieNodeIterator[E TrieKey[E], V any] struct {
nodeIterator[E, V]
}
func (iter trieNodeIterator[E, V]) Next() *BinTrieNode[E, V] {
return toTrieNode(iter.nodeIterator.Next())
}
type CachingTrieNodeIterator[E TrieKey[E], V any] interface {
TrieNodeIteratorRem[E, V]
CachingIterator
}
type cachingTrieNodeIterator[E TrieKey[E], V any] struct {
cachingNodeIterator[E, V] // an interface
}
func (iter *cachingTrieNodeIterator[E, V]) Next() *BinTrieNode[E, V] {
return toTrieNode(iter.cachingNodeIterator.Next())
}
func (iter *cachingTrieNodeIterator[E, V]) Remove() *BinTrieNode[E, V] {
return toTrieNode(iter.cachingNodeIterator.Remove())
}
// KeyCompareResult has callbacks for a key comparison of a new key with a key pre-existing in the trie.
// At most one of the two methods should be called when comparing keys.
// If existing key is shorter, and the new key matches all bits in the existing key, then neither method should be called.
type KeyCompareResult interface {
// BitsMatch should be called when the existing key is the same size or large as the new key and the new key bits match the exiting key bits.
BitsMatch()
// BitsDoNotMatch should be called when at least one bit in the new key does not match the same bit in the existing key.
BitsDoNotMatch(matchedBits BitCount)
}
// TrieKey represents a key for a trie.
//
// All trie keys represent a sequence of bits.
// The bit count, which is the same for all keys, is the total number of bits in the key.
//
// Some trie keys represent a fixed sequence of bits. The bits have a single value.
//
// The remaining trie keys have an initial sequence of bits, the prefix, within which the bits are fixed,
// and the remaining bits beyond the prefix are not fixed and represent all potential bit values.
// Such keys represent all values with the same prefix.
//
// When all bits in a given key are fixed, the key has no prefix or prefix length.
//
// When not all bits are fixed, the prefix length is the number of bits in the initial fixed sequence.
// A key with a prefix length is also known as a prefix block.
//
// A key should never change.
// For keys with a prefix length, the prefix length must remain constance, and the prefix bits must remain constant.
// For keys with no prefix length, all the key bits must remain constant.
type TrieKey[E any] interface {
comparable
// MatchBits matches the bits in this key to the bits in the given key, starting from the given bit index.
// Only the remaining bits in the prefix can be compared for either key.
// If the prefix length of a key is nil, all the remaining bits can be compared.
//
// MatchBits returns true on a successful match or mismatch, and false if only a partial match.
//
// MatchBits calls BitsMatch in handleMatch when the given key matches all the bits in this key (even if this key has a shorter prefix),
// or calls BitsDoNotMatch in handleMatch when there is a mismatch of bits, returning true in both cases.
//
// If the given key has a shorter prefix length, so not all bits in this key can be compared to the given key,
// but the bits that can be compared are a match, then that is a partial match.
// MatchBits calls neither method in handleMatch and returns false in that case.
MatchBits(key E, bitIndex BitCount, handleMatch KeyCompareResult) bool
// Compare returns a negative integer, zero, or a positive integer if this instance is less than, equal, or greater than the give item.
// When comparing, the first mismatched bit determines the result.
// If either key is prefixed, you compare only the bits up until the minumum prefix length.
// If those bits are equal, and both have the same prefix length, they are equal.
// Otherwise, the next bit in the key with the longer prefix (or no prefix at all) determines the result.
// If that bit is 1, that key is larger, if it is 0, then smaller.
Compare(E) int
// GetBitCount returns the bit count for the key, which is a fixed value for any and all keys in the trie.
GetBitCount() BitCount
// GetPrefixLen returns the prefix length if this key has a prefix length (ie it is a prefix block).
// It returns nil if not a prefix block.
GetPrefixLen() PrefixLen
// IsOneBit returns whether a given bit in the prefix is 1.
// If the key is a prefix block, the operation is undefined if the bit index falls outside the prefix.
// This method will never be called with a bit index that exceeds the prefix.
IsOneBit(bitIndex BitCount) bool
// ToPrefixBlockLen creates a new key with a prefix of the given length
ToPrefixBlockLen(prefixLen BitCount) E
// GetTrailingBitCount returns the number of trailing ones or zeros in the key.
// If the key has a prefix length, GetTrailingBitCount is undefined.
// This method will never be called on a key with a prefix length.
GetTrailingBitCount(ones bool) BitCount
// ToMaxLower returns a new key. If this key has a prefix length, it is converted to a key with a 0 as the first bit following the prefix, followed by all ones to the end, and with the prefix length then removed.
// It returns this same key if it has no prefix length.
// For instance, if this key is 1010**** with a prefix length of 4, the returned key is 10100111 with no prefix length.
ToMaxLower() E
// ToMinUpper returns a new key. If this key has a prefix length, it is converted to a key with a 1 as the first bit following the prefix, followed by all zeros to the end, and with the prefix length then removed.
// It returns this same key if it has no prefix length.
// For instance, if this key is 1010**** with a prefix length of 4, the returned key is 10101000 with no prefix length.
ToMinUpper() E
}
type BinTrieNode[E TrieKey[E], V any] struct {
binTreeNode[E, V]
}
// works with nil
func (node *BinTrieNode[E, V]) toBinTreeNode() *binTreeNode[E, V] {
return (*binTreeNode[E, V])(unsafe.Pointer(node))
}
// setKey sets the key used for placing the node in the tree.
// when freezeRoot is true, this is never called (and freezeRoot is always true)
func (node *BinTrieNode[E, V]) setKey(item E) {
node.binTreeNode.setKey(item)
}
// GetKey gets the key used for placing the node in the tree.
func (node *BinTrieNode[E, V]) GetKey() E {
return node.toBinTreeNode().GetKey()
}
// IsRoot returns whether this is the root of the backing tree.
func (node *BinTrieNode[E, V]) IsRoot() bool {
return node.toBinTreeNode().IsRoot()
}
// IsAdded returns whether the node was "added".
// Some binary tree nodes are considered "added" and others are not.
// Those nodes created for key elements added to the tree are "added" nodes.
// Those that are not added are those nodes created to serve as junctions for the added nodes.
// Only added elements contribute to the size of a tree.
// When removing nodes, non-added nodes are removed automatically whenever they are no longer needed,
// which is when an added node has less than two added sub-nodes.
func (node *BinTrieNode[E, V]) IsAdded() bool {
return node.toBinTreeNode().IsAdded()
}
// Clear removes this node and all sub-nodes from the tree, after which isEmpty() will return true.
func (node *BinTrieNode[E, V]) Clear() {
node.toBinTreeNode().Clear()
}
// IsEmpty returns where there are not any elements in the sub-tree with this node as the root.
func (node *BinTrieNode[E, V]) IsEmpty() bool {
return node.toBinTreeNode().IsEmpty()
}
// IsLeaf returns whether this node is in the tree (a node for which IsAdded() is true)
// and there are no elements in the sub-tree with this node as the root.
func (node *BinTrieNode[E, V]) IsLeaf() bool {
return node.toBinTreeNode().IsLeaf()
}
func (node *BinTrieNode[E, V]) GetValue() (val V) {
return node.toBinTreeNode().GetValue()
}
func (node *BinTrieNode[E, V]) ClearValue() {
node.toBinTreeNode().ClearValue()
}
// Remove removes this node from the collection of added nodes,
// and also removes from the tree if possible.
// If it has two sub-nodes, it cannot be removed from the tree, in which case it is marked as not "added",
// nor is it counted in the tree size.
// Only added nodes can be removed from the tree. If this node is not added, this method does nothing.
func (node *BinTrieNode[E, V]) Remove() {
node.toBinTreeNode().Remove()
}
// NodeSize returns the count of all nodes in the tree starting from this node and extending to all sub-nodes.
// Unlike for the Size method, this is not a constant-time operation and must visit all sub-nodes of this node.
func (node *BinTrieNode[E, V]) NodeSize() int {
return node.toBinTreeNode().NodeSize()
}
// Size returns the count of nodes added to the sub-tree starting from this node as root and moving downwards to sub-nodes.
// This is a constant-time operation since the size is maintained in each node and adjusted with each add and Remove operation in the sub-tree.
func (node *BinTrieNode[E, V]) Size() int {
return node.toBinTreeNode().Size()
}
// TreeString returns a visual representation of the sub-tree with this node as root, with one node per line.
//
// withNonAddedKeys: whether to show nodes that are not added nodes
// withSizes: whether to include the counts of added nodes in each sub-tree
func (node *BinTrieNode[E, V]) TreeString(withNonAddedKeys, withSizes bool) string {
return node.toBinTreeNode().TreeString(withNonAddedKeys, withSizes)
}
// Returns a visual representation of this node including the key, with an open circle indicating this node is not an added node,
// a closed circle indicating this node is an added node.
func (node *BinTrieNode[E, V]) String() string {
return node.toBinTreeNode().String()
}
func (node *BinTrieNode[E, V]) setUpper(upper *BinTrieNode[E, V]) {
node.binTreeNode.setUpper(&upper.binTreeNode)
}
func (node *BinTrieNode[E, V]) setLower(lower *BinTrieNode[E, V]) {
node.binTreeNode.setLower(&lower.binTreeNode)
}
// GetUpperSubNode gets the direct child node whose key is largest in value
func (node *BinTrieNode[E, V]) GetUpperSubNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().getUpperSubNode())
//return node.toBinTreeNode().getUpperSubNode().toTrieNode()
}
// GetLowerSubNode gets the direct child node whose key is smallest in value
func (node *BinTrieNode[E, V]) GetLowerSubNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().getLowerSubNode())
//return node.toBinTreeNode().getLowerSubNode().toTrieNode()
}
// GetParent gets the node from which this node is a direct child node, or nil if this is the root.
func (node *BinTrieNode[E, V]) GetParent() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().getParent())
//return node.toBinTreeNode().getParent().toTrieNode()
}
func (node *BinTrieNode[E, V]) Contains(addr E) bool {
result := node.doLookup(addr)
return result.exists
}
func (node *BinTrieNode[E, V]) RemoveNode(key E) bool {
result := &opResult[E, V]{
key: key,
op: insertedDelete,
}
if node != nil {
node.matchBits(result)
}
return result.exists
}
// GetNode gets the node in the trie corresponding to the given address,
// or returns nil if not such element exists.
//
// It returns any node, whether added or not,
// including any prefix block node that was not added.
func (node *BinTrieNode[E, V]) GetNode(key E) *BinTrieNode[E, V] {
result := node.doLookup(key)
return result.existingNode
}
// GetAddedNode gets trie nodes representing added elements.
//
// Use Contains to check for the existence of a given address in the trie,
// as well as GetNode to search for all nodes including those not-added but also auto-generated nodes for subnet blocks.
func (node *BinTrieNode[E, V]) GetAddedNode(key E) *BinTrieNode[E, V] {
if res := node.GetNode(key); res == nil || res.IsAdded() {
return res
}
return nil
}
func (node *BinTrieNode[E, V]) Get(key E) (V, bool) {
result := &opResult[E, V]{
key: key,
op: lookup,
}
if node != nil {
node.matchBits(result)
}
resultNode := result.existingNode
if resultNode == nil {
var v V
return v, false
}
return resultNode.GetValue(), true
}
func (node *BinTrieNode[E, V]) RemoveElementsContainedBy(key E) *BinTrieNode[E, V] {
result := &opResult[E, V]{
key: key,
op: subtreeDelete,
}
if node != nil {
node.matchBits(result)
}
return result.deleted
}
func (node *BinTrieNode[E, V]) ElementsContainedBy(key E) *BinTrieNode[E, V] {
result := node.doLookup(key)
return result.containedBy
}
// ElementsContaining finds the trie nodes containing the given key and returns them as a linked list
// only added nodes are added to the linked list
func (node *BinTrieNode[E, V]) ElementsContaining(key E) *Path[E, V] {
result := &opResult[E, V]{
key: key,
op: containing,
}
if node != nil {
node.matchBits(result)
}
return result.getContaining()
}
// LongestPrefixMatch finds the longest matching prefix amongst keys added to the trie
func (node *BinTrieNode[E, V]) LongestPrefixMatch(key E) (E, bool) {
res := node.LongestPrefixMatchNode(key)
if res == nil {
var e E
return e, false
}
return res.GetKey(), true
}
// LongestPrefixMatchNode finds the node with the longest matching prefix
// only added nodes are added to the linked list
func (node *BinTrieNode[E, V]) LongestPrefixMatchNode(key E) *BinTrieNode[E, V] {
return node.doLookup(key).smallestContaining
}
func (node *BinTrieNode[E, V]) ElementContains(key E) bool {
_, ok := node.LongestPrefixMatch(key)
return ok
}
func (node *BinTrieNode[E, V]) doLookup(key E) *opResult[E, V] {
result := &opResult[E, V]{
key: key,
op: lookup,
}
if node != nil {
node.matchBits(result)
}
return result
}
func (node *BinTrieNode[E, V]) removeSubtree(result *opResult[E, V]) {
result.deleted = node
node.Clear()
}
func (node *BinTrieNode[E, V]) removeOp(result *opResult[E, V]) {
result.deleted = node
node.binTreeNode.Remove()
}
func (node *BinTrieNode[E, V]) matchBits(result *opResult[E, V]) {
node.matchBitsFromIndex(0, result)
}
// traverses the tree, matching bits with prefix block nodes, until we can match no longer,
// at which point it completes the operation, whatever that operation is
func (node *BinTrieNode[E, V]) matchBitsFromIndex(bitIndex int, result *opResult[E, V]) {
matchNode := node
for {
bits := matchNode.matchNodeBits(bitIndex, result)
if bits >= 0 {
// matched all node bits up the given count, so move into sub-nodes
matchNode = matchNode.matchSubNode(bits, result)
if matchNode == nil {
// reached the end of the line
break
}
// Matched a sub-node.
// The sub-node was chosen according to the next bit.
// That bit is therefore now a match,
// so increment the matched bits by 1, and keep going.
bitIndex = bits + 1
} else {
// reached the end of the line
break
}
}
}
func (node *BinTrieNode[E, V]) matchNodeBits(bitIndex int, result *opResult[E, V]) BitCount {
existingKey := node.GetKey()
newKey := result.key
if newKey.GetBitCount() != existingKey.GetBitCount() {
panic("mismatched bit length between trie keys")
} else if !newKey.MatchBits(existingKey, bitIndex, nodeCompare[E, V]{node: node, result: result}) {
if node.IsAdded() {
node.handleContains(result)
}
return existingKey.GetPrefixLen().Len()
}
return -1
}
type nodeCompare[E TrieKey[E], V any] struct {
result *opResult[E, V]
node *BinTrieNode[E, V]
}
func (comp nodeCompare[E, V]) BitsMatch() {
node := comp.node
result := comp.result
result.containedBy = node
//result.containedBy = node.toTrieNode()
existingKey := node.GetKey()
existingPref := existingKey.GetPrefixLen()
newKey := result.key
newPrefixLen := newKey.GetPrefixLen()
if existingPref == nil {
if newPrefixLen == nil {
// note that "added" is already true here,
// we can only be here if explicitly inserted already
// since it is a non-prefixed full address
node.handleMatch(result)
} else if newPrefixLen.Len() == newKey.GetBitCount() {
node.handleMatch(result)
} else {
node.handleContained(result, newPrefixLen.Len())
}
} else {
// we know newPrefixLen != nil since we know all of the bits of newAddr match,
// which is impossible if newPrefixLen is nil and existingPref not nil
if newPrefixLen.Len() == existingPref.Len() {
if node.IsAdded() {
node.handleMatch(result)
} else {
node.handleNodeMatch(result)
}
} else if existingPref.Len() == existingKey.GetBitCount() {
node.handleMatch(result)
} else { // existing prefix > newPrefixLen
node.handleContained(result, newPrefixLen.Len())
}
}
}
func (comp nodeCompare[E, V]) BitsDoNotMatch(matchedBits BitCount) {
comp.node.handleSplitNode(comp.result, matchedBits)
}
func (node *BinTrieNode[E, V]) handleContained(result *opResult[E, V], newPref int) {
op := result.op
if op == insert {
// if we have 1.2.3.4 and 1.2.3.4/32, and we are looking at the last segment,
// then there are no more bits to look at, and this makes the former a sub-node of the latter.
// In most cases, however, there are more bits in existingAddr, the latter, to look at.
node.replace(result, newPref)
} else if op == subtreeDelete {
node.removeSubtree(result)
} else if op == near {
node.findNearest(result, newPref)
} else if op == remap {
node.remapNonExistingReplace(result, newPref)
}
}
func (node *BinTrieNode[E, V]) handleContains(result *opResult[E, V]) bool {
result.smallestContaining = node
if result.op == containing {
result.addContaining(node)
return true
}
return false
}
func (node *BinTrieNode[E, V]) handleSplitNode(result *opResult[E, V], totalMatchingBits BitCount) {
op := result.op
if op == insert {
node.split(result, totalMatchingBits, node.createNew(result.key))
} else if op == near {
node.findNearest(result, totalMatchingBits)
} else if op == remap {
node.remapNonExistingSplit(result, totalMatchingBits)
}
}
// a node exists for the given key but the node is not added,
// so not a match, but a split not required
func (node *BinTrieNode[E, V]) handleNodeMatch(result *opResult[E, V]) {
op := result.op
if op == lookup {
result.existingNode = node
} else if op == insert {
node.existingAdded(result)
} else if op == subtreeDelete {
node.removeSubtree(result)
} else if op == near {
node.findNearestFromMatch(result)
} else if op == remap {
node.remapNonAdded(result)
}
}
func (node *BinTrieNode[E, V]) handleMatch(result *opResult[E, V]) {
result.exists = true
if !node.handleContains(result) {
op := result.op
if op == lookup {
node.matched(result)
} else if op == insert {
node.matchedInserted(result)
} else if op == insertedDelete {
node.removeOp(result)
} else if op == subtreeDelete {
node.removeSubtree(result)
} else if op == near {
if result.nearExclusive {
node.findNearestFromMatch(result)
} else {
node.matched(result)
}
} else if op == remap {
node.remapMatch(result)
}
}
}
func (node *BinTrieNode[E, V]) remapNonExistingReplace(result *opResult[E, V], totalMatchingBits BitCount) {
if node.remap(result, false) {
node.replace(result, totalMatchingBits)
}
}
func (node *BinTrieNode[E, V]) remapNonExistingSplit(result *opResult[E, V], totalMatchingBits BitCount) {
if node.remap(result, false) {
node.split(result, totalMatchingBits, node.createNew(result.key))
}
}
func (node *BinTrieNode[E, V]) remapNonExisting(result *opResult[E, V]) *BinTrieNode[E, V] {
if node.remap(result, false) {
return node.createNew(result.key)
}
return nil
}
func (node *BinTrieNode[E, V]) remapNonAdded(result *opResult[E, V]) {
if node.remap(result, false) {
node.existingAdded(result)
}
}
func (node *BinTrieNode[E, V]) remapMatch(result *opResult[E, V]) {
result.existingNode = node
if node.remap(result, true) {
node.matchedInserted(result)
}
}
type remapAction int
const (
doNothing remapAction = iota
removeNode
remapValue
)
// Remaps the value for a node to a new value.
// This operation works on mapped values
// It returns true if a new node needs to be created (match is nil) or added (match is non-nil)
func (node *BinTrieNode[E, V]) remap(result *opResult[E, V], isMatch bool) bool {
remapper := result.remapper
change := node.cTracker.getCurrent()
var existingValue V
if isMatch {
existingValue = node.GetValue()
}
result.existingValue = existingValue
newValue, action := remapper(existingValue, isMatch)
if action == doNothing {
return false
} else if action == removeNode {
if isMatch {
cTracker := node.cTracker
if cTracker != nil && cTracker.changedSince(change) {
panic("the tree has been modified by the remapper")
}
node.ClearValue()
node.removeOp(result)
}
return false
} else { // action is remapValue
cTracker := node.cTracker
if cTracker != nil && cTracker.changedSince(change) {
panic("the tree has been modified by the remapper")
}
result.newValue = newValue
return true
}
}
// this node matched when doing a lookup
func (node *BinTrieNode[E, V]) matched(result *opResult[E, V]) {
result.existingNode = node
result.nearestNode = node
}
// similar to matched, but when inserting we see it already there.
// this added node had already been added before
func (node *BinTrieNode[E, V]) matchedInserted(result *opResult[E, V]) {
result.existingNode = node
result.addedAlready = node
result.existingValue = node.GetValue()
node.SetValue(result.newValue)
}
// this node previously existed but was not added til now
func (node *BinTrieNode[E, V]) existingAdded(result *opResult[E, V]) {
result.existingNode = node
result.added = node
node.added(result)
}
// this node is newly inserted and added
func (node *BinTrieNode[E, V]) inserted(result *opResult[E, V]) {
result.inserted = node
node.added(result)
}
func (node *BinTrieNode[E, V]) added(result *opResult[E, V]) {
node.setNodeAdded(true)
node.adjustCount(1)
node.SetValue(result.newValue)
node.cTracker.changed()
}
// The current node and the new node both become sub-nodes of a new block node taking the position of the current node.
func (node *BinTrieNode[E, V]) split(result *opResult[E, V], totalMatchingBits BitCount, newSubNode *BinTrieNode[E, V]) {
newBlock := node.GetKey().ToPrefixBlockLen(totalMatchingBits)
node.replaceToSub(newBlock, totalMatchingBits, newSubNode)
newSubNode.inserted(result)
}
// The current node is replaced by the new node and becomes a sub-node of the new node.
func (node *BinTrieNode[E, V]) replace(result *opResult[E, V], totalMatchingBits BitCount) {
result.containedBy = node
newNode := node.replaceToSub(result.key, totalMatchingBits, nil)
newNode.inserted(result)
}
// The current node is replaced by a new block of the given key.
// The current node and given node become sub-nodes.
func (node *BinTrieNode[E, V]) replaceToSub(newAssignedKey E, totalMatchingBits BitCount, newSubNode *BinTrieNode[E, V]) *BinTrieNode[E, V] {
newNode := node.createNew(newAssignedKey)
newNode.storedSize = node.storedSize
parent := node.GetParent()
if parent.GetUpperSubNode() == node {
parent.setUpper(newNode)
} else if parent.GetLowerSubNode() == node {
parent.setLower(newNode)
}
existingKey := node.GetKey()
if totalMatchingBits < existingKey.GetBitCount() &&
existingKey.IsOneBit(totalMatchingBits) {
if newSubNode != nil {
newNode.setLower(newSubNode)
}
newNode.setUpper(node)
} else {
newNode.setLower(node)
if newSubNode != nil {
newNode.setUpper(newSubNode)
}
}
return newNode
}
// only called when lower/higher and not floor/ceiling since for a match ends things for the latter
func (node *BinTrieNode[E, V]) findNearestFromMatch(result *opResult[E, V]) {
if result.nearestFloor {
// looking for greatest element < queried address
// since we have matched the address, we must go lower again,
// and if we cannot, we must backtrack
lower := node.GetLowerSubNode()
if lower == nil {
// no nearest node yet
result.backtrackNode = node
} else {
var last *BinTrieNode[E, V]
for {
last = lower
lower = lower.GetUpperSubNode()
if lower == nil {
break
}
}
result.nearestNode = last
}
} else {
// looking for smallest element > queried address
upper := node.GetUpperSubNode()
if upper == nil {
// no nearest node yet
result.backtrackNode = node
} else {
var last *BinTrieNode[E, V]
for {
last = upper
upper = upper.GetLowerSubNode()
if upper == nil {
break
}
}
result.nearestNode = last
}
}
}
func (node *BinTrieNode[E, V]) findNearest(result *opResult[E, V], differingBitIndex BitCount) {
thisKey := node.GetKey()
if differingBitIndex < thisKey.GetBitCount() && thisKey.IsOneBit(differingBitIndex) {
// this element and all below are > than the query address
if result.nearestFloor {
// looking for greatest element < or <= queried address, so no need to go further
// need to backtrack and find the last right turn to find node < than the query address again
result.backtrackNode = node
} else {
// looking for smallest element > or >= queried address
lower := node
var last *BinTrieNode[E, V]
for {
last = lower
lower = lower.GetLowerSubNode()
if lower == nil {
break
}
}
result.nearestNode = last
}
} else {
// this element and all below are < than the query address
if result.nearestFloor {
// looking for greatest element < or <= queried address
upper := node
var last *BinTrieNode[E, V]
for {
last = upper
upper = upper.GetUpperSubNode()
if upper == nil {
break
}
}
result.nearestNode = last
} else {
// looking for smallest element > or >= queried address, so no need to go further
// need to backtrack and find the last left turn to find node > than the query address again
result.backtrackNode = node
}
}
}
func (node *BinTrieNode[E, V]) matchSubNode(bitIndex BitCount, result *opResult[E, V]) *BinTrieNode[E, V] {
newKey := result.key
if !freezeRoot && node.IsEmpty() {
if result.op == remap {
node.remapNonAdded(result)
} else if result.op == insert {
node.setKey(newKey)
node.existingAdded(result)
}
} else if bitIndex >= newKey.GetBitCount() {
// we matched all bits, yet somehow we are still going
// this can only happen when mishandling a match between 1.2.3.4/32 to 1.2.3.4
// which should never happen and so we do nothing, no match, no remap, no insert, no near
} else if newKey.IsOneBit(bitIndex) {
upper := node.GetUpperSubNode()
if upper == nil {
// no match
op := result.op
if op == insert {
upper = node.createNew(newKey)
node.setUpper(upper)
upper.inserted(result)
} else if op == near {
if result.nearestFloor {
// With only one sub-node at most, normally that would mean this node must be added.
// But there is one exception, when we are the non-added root node.
// So must check for added here.
if node.IsAdded() {
result.nearestNode = node
} else {
// check if our lower sub-node is there and added. It is underneath addr too.
// find the highest node in that direction.
lower := node.GetLowerSubNode()
if lower != nil {
res := lower
next := res.GetUpperSubNode()
for next != nil {
res = next
next = res.GetUpperSubNode()
}
result.nearestNode = res
}
}
} else {
result.backtrackNode = node
}
} else if op == remap {
upper = node.remapNonExisting(result)
if upper != nil {
node.setUpper(upper)
upper.inserted(result)
}
}
} else {
return upper
}
} else {
// In most cases, however, there are more bits in newKey, the former, to look at.
lower := node.GetLowerSubNode()
if lower == nil {
// no match
op := result.op
if op == insert {
lower = node.createNew(newKey)
node.setLower(lower)
lower.inserted(result)
} else if op == near {
if result.nearestFloor {
result.backtrackNode = node
} else {
// With only one sub-node at most, normally that would mean this node must be added.
// But there is one exception, when we are the non-added root node.
// So must check for added here.
if node.IsAdded() {
result.nearestNode = node
} else {
// check if our upper sub-node is there and added. It is above addr too.
// find the highest node in that direction.
upper := node.GetUpperSubNode()
if upper != nil {
res := upper
next := res.GetLowerSubNode()
for next != nil {
res = next
next = res.GetLowerSubNode()
}
result.nearestNode = res
}
}
}
} else if op == remap {
lower = node.remapNonExisting(result)
if lower != nil {
node.setLower(lower)
lower.inserted(result)
}
}
} else {
return lower
}
}
return nil
}
func (node *BinTrieNode[E, V]) createNew(newKey E) *BinTrieNode[E, V] {
res := &BinTrieNode[E, V]{
binTreeNode[E, V]{
item: newKey,
cTracker: node.cTracker,
},
}
res.setAddr()
return res
}
// PreviousAddedNode returns the previous node in the tree that is an added node, following the tree order in reverse,
// or nil if there is no such node.
func (node *BinTrieNode[E, V]) PreviousAddedNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().previousAddedNode())
}
// NextAddedNode returns the next node in the tree that is an added node, following the tree order,
// or nil if there is no such node.
func (node *BinTrieNode[E, V]) NextAddedNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().nextAddedNode())
}
// NextNode returns the node that follows this node following the tree order
func (node *BinTrieNode[E, V]) NextNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().nextNode())
}
// PreviousNode returns the node that precedes this node following the tree order.
func (node *BinTrieNode[E, V]) PreviousNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().previousNode())
}
func (node *BinTrieNode[E, V]) FirstNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().firstNode())
}
func (node *BinTrieNode[E, V]) FirstAddedNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().firstAddedNode())
}
func (node *BinTrieNode[E, V]) LastNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().lastNode())
}
func (node *BinTrieNode[E, V]) LastAddedNode() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().lastAddedNode())
}
func (node *BinTrieNode[E, V]) findNodeNear(key E, below, exclusive bool) *BinTrieNode[E, V] {
result := &opResult[E, V]{
key: key,
op: near,
nearestFloor: below,
nearExclusive: exclusive,
}
if node != nil {
node.matchBits(result)
}
backtrack := result.backtrackNode
if backtrack != nil {
parent := backtrack.GetParent()
for parent != nil {
if below {
if backtrack != parent.GetLowerSubNode() {
break
}
} else {
if backtrack != parent.GetUpperSubNode() {
break
}
}
backtrack = parent
parent = backtrack.GetParent()
}
if parent != nil {
if parent.IsAdded() {
result.nearestNode = parent
} else {
if below {
result.nearestNode = parent.PreviousAddedNode()
} else {
result.nearestNode = parent.NextAddedNode()
}
}
}
}
return result.nearestNode
}
func (node *BinTrieNode[E, V]) LowerAddedNode(key E) *BinTrieNode[E, V] {
return node.findNodeNear(key, true, true)
}
func (node *BinTrieNode[E, V]) FloorAddedNode(key E) *BinTrieNode[E, V] {
return node.findNodeNear(key, true, false)
}
func (node *BinTrieNode[E, V]) HigherAddedNode(key E) *BinTrieNode[E, V] {
return node.findNodeNear(key, false, true)
}
func (node *BinTrieNode[E, V]) CeilingAddedNode(key E) *BinTrieNode[E, V] {
return node.findNodeNear(key, false, false)
}
// Iterator returns an iterator that iterates through the elements of the sub-tree with this node as the root.
// The iteration is in sorted element order.
func (node *BinTrieNode[E, V]) Iterator() TrieKeyIterator[E] {
return trieKeyIterator[E]{node.toBinTreeNode().iterator()}
}
// DescendingIterator returns an iterator that iterates through the elements of the subtrie with this node as the root.
// The iteration is in reverse sorted element order.
func (node *BinTrieNode[E, V]) DescendingIterator() TrieKeyIterator[E] {
return trieKeyIterator[E]{node.toBinTreeNode().descendingIterator()}
}
// NodeIterator returns an iterator that iterates through the added nodes of the sub-tree with this node as the root, in forward or reverse tree order.
func (node *BinTrieNode[E, V]) NodeIterator(forward bool) TrieNodeIteratorRem[E, V] {
return trieNodeIteratorRem[E, V]{node.toBinTreeNode().nodeIterator(forward)}
}
// AllNodeIterator returns an iterator that iterates through all the nodes of the sub-tree with this node as the root, in forward or reverse tree order.
func (node *BinTrieNode[E, V]) AllNodeIterator(forward bool) TrieNodeIteratorRem[E, V] {
return trieNodeIteratorRem[E, V]{node.toBinTreeNode().allNodeIterator(forward)}
}
// BlockSizeNodeIterator returns an iterator that iterates the added nodes, ordered by keys from largest prefix blocks (smallest prefix length) to smallest (largest prefix length) and then to individual addresses,
// in the sub-trie with this node as the root.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order is taken.
func (node *BinTrieNode[E, V]) BlockSizeNodeIterator(lowerSubNodeFirst bool) TrieNodeIteratorRem[E, V] {
return node.blockSizeNodeIterator(lowerSubNodeFirst, true)
}
// BlockSizeAllNodeIterator returns an iterator that iterates all the nodes, ordered by keys from largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (node *BinTrieNode[E, V]) BlockSizeAllNodeIterator(lowerSubNodeFirst bool) TrieNodeIteratorRem[E, V] {
return node.blockSizeNodeIterator(lowerSubNodeFirst, false)
}
// BlockSizeCompare compares keys by block size and then by prefix value if block sizes are equal
func BlockSizeCompare[E TrieKey[E]](key1, key2 E, reverseBlocksEqualSize bool) int {
if key2 == key1 {
return 0
}
pref2 := key2.GetPrefixLen()
pref1 := key1.GetPrefixLen()
if pref2 != nil {
if pref1 != nil {
val := pref2.Len() - pref1.Len()
if val == 0 {
compVal := key2.Compare(key1)
if reverseBlocksEqualSize {
compVal = -compVal
}
return compVal
}
return val
}
return -1
}
if pref1 != nil {
return 1
}
compVal := key2.Compare(key1)
if reverseBlocksEqualSize {
compVal = -compVal
}
return compVal
}
func (node *BinTrieNode[E, V]) blockSizeNodeIterator(lowerSubNodeFirst, addedNodesOnly bool) TrieNodeIteratorRem[E, V] {
reverseBlocksEqualSize := !lowerSubNodeFirst
var size int
if addedNodesOnly {
size = node.Size()
}
iter := newPriorityNodeIterator(
size,
addedNodesOnly,
node.toBinTreeNode(),
func(one, two E) int {
val := BlockSizeCompare(one, two, reverseBlocksEqualSize)
return -val
})
return trieNodeIteratorRem[E, V]{&iter}
}
// BlockSizeCachingAllNodeIterator returns an iterator of all nodes, ordered by keys from largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
//
// This iterator allows you to cache an object with subnodes so that when those nodes are visited the cached object can be retrieved.
func (node *BinTrieNode[E, V]) BlockSizeCachingAllNodeIterator() CachingTrieNodeIterator[E, V] {
iter := newCachingPriorityNodeIterator(
node.toBinTreeNode(),
func(one, two E) int {
val := BlockSizeCompare(one, two, false)
return -val
})
return &cachingTrieNodeIterator[E, V]{&iter}
}
func (node *BinTrieNode[E, V]) ContainingFirstIterator(forwardSubNodeOrder bool) CachingTrieNodeIterator[E, V] {
return &cachingTrieNodeIterator[E, V]{node.toBinTreeNode().containingFirstIterator(forwardSubNodeOrder)}
}
func (node *BinTrieNode[E, V]) ContainingFirstAllNodeIterator(forwardSubNodeOrder bool) CachingTrieNodeIterator[E, V] {
return &cachingTrieNodeIterator[E, V]{node.toBinTreeNode().containingFirstAllNodeIterator(forwardSubNodeOrder)}
}
func (node *BinTrieNode[E, V]) ContainedFirstIterator(forwardSubNodeOrder bool) TrieNodeIteratorRem[E, V] {
return trieNodeIteratorRem[E, V]{node.toBinTreeNode().containedFirstIterator(forwardSubNodeOrder)}
}
func (node *BinTrieNode[E, V]) ContainedFirstAllNodeIterator(forwardSubNodeOrder bool) TrieNodeIterator[E, V] {
return trieNodeIterator[E, V]{node.toBinTreeNode().containedFirstAllNodeIterator(forwardSubNodeOrder)}
}
// Clone clones the node.
// Keys remain the same, but the parent node and the lower and upper sub-nodes are all set to nil.
func (node *BinTrieNode[E, V]) Clone() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().clone())
}
// CloneTree clones the sub-tree starting with this node as root.
// The nodes are cloned, but their keys and values are not cloned.
func (node *BinTrieNode[E, V]) CloneTree() *BinTrieNode[E, V] {
return toTrieNode(node.toBinTreeNode().cloneTree())
}
// AsNewTrie creates a new sub-trie, copying the nodes starting with this node as root.
// The nodes are copies of the nodes in this sub-trie, but their keys and values are not copies.
func (node *BinTrieNode[E, V]) AsNewTrie() *BinTrie[E, V] {
// I suspect clone is faster - in Java I used AddTrie to add the bounded part of the trie if it was bounded
// but AddTrie needs to insert nodes amongst existing nodes, clone does not
// newTrie := NewBinTrie(key)
// newTrie.AddTrie(node)
key := node.GetKey()
trie := &BinTrie[E, V]{binTree[E, V]{}}
rootKey := key.ToPrefixBlockLen(0)
trie.setRoot(rootKey)
root := trie.root
newNode := node.cloneTreeTrackerBounds(root.cTracker, nil)
if rootKey.Compare(key) == 0 {
root.setUpper(newNode.upper)
root.setLower(newNode.lower)
if node.IsAdded() {
root.SetAdded()
}
root.SetValue(node.GetValue())
} else if key.IsOneBit(0) {
root.setUpper(newNode)
} else {
root.setLower(newNode)
}
root.storedSize = sizeUnknown
return trie
}
// Equal returns whether the key matches the key of the given node
func (node *BinTrieNode[E, V]) Equal(other *BinTrieNode[E, V]) bool {
if node == nil {
return other == nil
} else if other == nil {
return false
}
return node == other || node.GetKey().Compare(other.GetKey()) == 0
}
// DeepEqual returns whether the key matches the key of the given node using Compare,
// and whether the value matches the other value using reflect.DeepEqual
func (node *BinTrieNode[E, V]) DeepEqual(other *BinTrieNode[E, V]) bool {
if node == nil {
return other == nil
} else if other == nil {
return false
}
return node.GetKey().Compare(other.GetKey()) == 0 && reflect.DeepEqual(node.GetValue(), other.GetValue())
}
// TreeEqual returns whether the sub-tree represented by this node as the root node matches the given sub-tree, matching the trie keys using the Compare method
func (node *BinTrieNode[E, V]) TreeEqual(other *BinTrieNode[E, V]) bool {
if other == node {
return true
} else if other.Size() != node.Size() {
return false
}
these, others := node.Iterator(), other.Iterator()
if these.HasNext() {
for thisKey := these.Next(); these.HasNext(); thisKey = these.Next() {
if thisKey.Compare(others.Next()) != 0 {
return false
}
}
}
return true
}
// TreeDeepEqual returns whether the sub-tree represented by this node as the root node matches the given sub-tree, matching the nodes using DeepEqual
func (node *BinTrieNode[E, V]) TreeDeepEqual(other *BinTrieNode[E, V]) bool {
if other == node {
return true
} else if other.Size() != node.Size() {
return false
}
these, others := node.NodeIterator(true), other.NodeIterator(true)
thisNode := these.Next()
for ; thisNode != nil; thisNode = these.Next() {
if thisNode.DeepEqual(others.Next()) {
return false
}
}
return true
}
// Compare returns -1, 0 or 1 if this node is less than, equal, or greater than the other, according to the key and the trie order.
func (node *BinTrieNode[E, V]) Compare(other *BinTrieNode[E, V]) int {
if node == nil {
if other == nil {
return 0
}
return -1
} else if other == nil {
return 1
}
return node.GetKey().Compare(other.GetKey())
}
// For some reason Format must be here and not in addressTrieNode for nil node.
// It panics in fmt code either way, but if in here then it is handled by a recover() call in fmt properly.
// Seems to be a problem only in the debugger.
// Format implements the fmt.Formatter interface
func (node BinTrieNode[E, V]) Format(state fmt.State, verb rune) {
node.format(state, verb)
}
// TrieIncrement returns the next key according to the trie ordering.
// The zero value is returned when there is no next key.
func TrieIncrement[E TrieKey[E]](key E) (next E, hasNext bool) {
prefLen := key.GetPrefixLen()
if prefLen != nil {
return key.ToMinUpper(), true
}
bitCount := key.GetBitCount()
trailingBits := key.GetTrailingBitCount(false)
if trailingBits < bitCount {
return key.ToPrefixBlockLen(bitCount - (trailingBits + 1)), true
}
return
}
// TrieDecrement returns the previous key according to the trie ordering
// The zero value is returned when there is no previous key.
func TrieDecrement[E TrieKey[E]](key E) (next E, hasNext bool) {
prefLen := key.GetPrefixLen()
if prefLen != nil {
return key.ToMaxLower(), true
}
bitCount := key.GetBitCount()
trailingBits := key.GetTrailingBitCount(true)
if trailingBits < bitCount {
return key.ToPrefixBlockLen(bitCount - (trailingBits + 1)), true
}
return
}
|