1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"fmt"
"math/big"
"reflect"
"unsafe"
"github.com/seancfoley/bintree/tree"
"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
"github.com/seancfoley/ipaddress-go/ipaddr/addrstr"
)
const (
HexPrefix = "0x"
OctalPrefix = "0"
BinaryPrefix = "0b"
RangeSeparator = '-'
RangeSeparatorStr = "-"
AlternativeRangeSeparator = '\u00bb'
AlternativeRangeSeparatorStr = "\u00bb" // '»'
ExtendedDigitsRangeSeparatorStr = AlternativeRangeSeparatorStr
SegmentWildcard = '*'
SegmentWildcardStr = "*"
SegmentSqlWildcard = '%'
SegmentSqlWildcardStr = "%"
SegmentSqlSingleWildcard = '_'
SegmentSqlSingleWildcardStr = "_"
//ExtendedDigitsRangeSeparator = '\u00bb'
//AlternativeSegmentWildcard = '¿'
)
var segmentWildcardStr = SegmentWildcardStr
func createAddress(section *AddressSection, zone Zone) *Address {
res := &Address{
addressInternal{
section: section,
zone: zone,
cache: &addressCache{},
},
}
return res
}
// SegmentValueProvider provides values for segments.
// Values that fall outside the segment value type range will be truncated using standard golang integer type conversions https://golang.org/ref/spec#Conversions
type SegmentValueProvider func(segmentIndex int) SegInt
// AddressValueProvider provides values for addresses.
type AddressValueProvider interface {
GetSegmentCount() int
GetValues() SegmentValueProvider
GetUpperValues() SegmentValueProvider
}
type addrsCache struct {
lower, upper *Address
}
// identifierStr is a string representation of an address or host name.
type identifierStr struct {
idStr HostIdentifierString // MACAddressString or IPAddressString or HostName
}
type addressCache struct {
addrsCache *addrsCache
stringCache *stringCache // only used by IPv6 when there is a zone
identifierStr *identifierStr
}
type addressInternal struct {
section *AddressSection
zone Zone
cache *addressCache
}
// GetBitCount returns the number of bits comprising this address,
// or each address in the range if a subnet.
func (addr *addressInternal) GetBitCount() BitCount {
section := addr.section
if section == nil {
return 0
}
return section.GetBitCount()
}
// GetByteCount returns the number of bytes required for this address,
// or each address in the range if a subnet.
func (addr *addressInternal) GetByteCount() int {
section := addr.section
if section == nil {
return 0
}
return section.GetByteCount()
}
func (addr *addressInternal) getBytes() []byte {
return addr.section.getBytes()
}
func (addr *addressInternal) getUpperBytes() []byte {
return addr.section.getUpperBytes()
}
func (addr *addressInternal) getTrailingBitCount(ones bool) BitCount {
return addr.section.GetTrailingBitCount(ones)
}
func (addr *addressInternal) getLeadingBitCount(ones bool) BitCount {
return addr.section.GetLeadingBitCount(ones)
}
func (addr *addressInternal) getCount() *big.Int {
section := addr.section
if section == nil {
return bigOne()
}
return section.GetCount()
}
// GetPrefixCount returns the count of prefixes in this address or subnet.
//
// The prefix length is given by GetPrefixLen.
//
// If this has a non-nil prefix length, returns the count of the range of values in the prefix.
//
// If this has a nil prefix length, returns the same value as GetCount.
func (addr *addressInternal) GetPrefixCount() *big.Int {
section := addr.section
if section == nil {
return bigOne()
}
return section.GetPrefixCount()
}
// GetPrefixCountLen returns the count of prefixes in this address or subnet for the given prefix length.
//
// If not a subnet of multiple addresses, or a subnet with just single prefix of the given length, returns 1.
func (addr *addressInternal) GetPrefixCountLen(prefixLen BitCount) *big.Int {
section := addr.section
if section == nil {
return bigOne()
}
return section.GetPrefixCountLen(prefixLen)
}
// GetBlockCount returns the count of distinct values in the given number of initial (more significant) segments.
func (addr *addressInternal) GetBlockCount(segments int) *big.Int {
section := addr.section
if section == nil {
return bigOne()
}
return section.GetBlockCount(segments)
}
// testBit returns true if the bit in the lower value of this address at the given index is 1, where index 0 refers to the least significant bit.
// In other words, it computes (bits & (1 << n)) != 0), using the lower value of this address.
// TestBit will panic if n < 0, or if it matches or exceeds the bit count of this item.
func (addr *addressInternal) testBit(n BitCount) bool {
return addr.section.TestBit(n)
}
// isOneBit returns true if the bit in the lower value of this address at the given index is 1, where index 0 refers to the most significant bit.
// isOneBit will panic if bitIndex is less than zero or larger than the bit count of this item.
func (addr *addressInternal) isOneBit(bitIndex BitCount) bool {
return addr.section.IsOneBit(bitIndex)
}
// isMultiple returns true if this address represents more than a single individual address, whether it is a subnet of multiple addresses.
func (addr *addressInternal) isMultiple() bool {
return addr.section != nil && addr.section.isMultiple()
}
// isPrefixed returns whether this address has an associated prefix length.
func (addr *addressInternal) isPrefixed() bool {
return addr.section != nil && addr.section.IsPrefixed()
}
// GetPrefixLen returns the prefix length, or nil if there is no prefix length.
//
// A prefix length indicates the number of bits in the initial part (most significant bits) of the address that comprise the prefix.
//
// A prefix is a part of the address that is not specific to that address but common amongst a group of addresses, such as a CIDR prefix block subnet.
//
// For IP addresses, the prefix is explicitly defined when the address is created. For example, "1.2.0.0/16" has a prefix length of 16, while "1.2.*.*" has no prefix length,
// even though they both represent the same set of addresses and are considered equal. Prefixes can be considered variable for a given IP address and can depend on routing.
//
// The methods GetMinPrefixLenForBlock and GetPrefixLenForSingleBlock can help you to obtain or define a prefix length if one does not exist already.
// The method ToPrefixBlockLen allows you to create the subnet consisting of the block of addresses for any given prefix length.
//
// For MAC addresses, the prefix is initially inferred from the range, so "1:2:3:*:*:*" has a prefix length of 24.
// MAC addresses derived from an address with a prefix length may retain the prefix length regardless of their own range of values.
func (addr *addressInternal) GetPrefixLen() PrefixLen {
return addr.getPrefixLen().copy()
}
func (addr *addressInternal) getPrefixLen() PrefixLen {
if addr.section == nil {
return nil
}
return addr.section.getPrefixLen()
}
// IsSinglePrefixBlock returns whether the address range matches the block of values for a single prefix identified by the prefix length of this address.
// This is similar to IsPrefixBlock except that it returns false when the subnet has multiple prefixes.
//
// What distinguishes this method from ContainsSinglePrefixBlock is that this method returns
// false if the series does not have a prefix length assigned to it,
// or a prefix length that differs from the prefix length for which ContainsSinglePrefixBlock returns true.
//
// It is similar to IsPrefixBlock but returns false when there are multiple prefixes.
//
// For instance, "1.*.*.* /16" returns false from this method and returns true from IsPrefixBlock.
func (addr *addressInternal) IsSinglePrefixBlock() bool {
prefLen := addr.getPrefixLen()
return prefLen != nil && addr.section.IsSinglePrefixBlock()
}
// IsPrefixBlock returns whether the address has a prefix length and the address range includes the block of values for that prefix length.
// If the prefix length matches the bit count, this returns true.
//
// To create a prefix block from any address, use ToPrefixBlock.
//
// This is different from ContainsPrefixBlock in that this method returns
// false if the series has no prefix length, or a prefix length that differs from a prefix length for which ContainsPrefixBlock returns true.
func (addr *addressInternal) IsPrefixBlock() bool {
prefLen := addr.getPrefixLen()
return prefLen != nil && addr.section.ContainsPrefixBlock(prefLen.bitCount())
}
// ContainsPrefixBlock returns whether the range of this address or subnet contains the block of addresses for the given prefix length.
//
// Unlike ContainsSinglePrefixBlock, whether there are multiple prefix values in this item for the given prefix length makes no difference.
//
// Use GetMinPrefixLenForBlock to determine the smallest prefix length for which this method returns true.
func (addr *addressInternal) ContainsPrefixBlock(prefixLen BitCount) bool {
return addr.section == nil || addr.section.ContainsPrefixBlock(prefixLen)
}
// ContainsSinglePrefixBlock returns whether this address contains a single prefix block for the given prefix length.
//
// This means there is only one prefix value for the given prefix length, and it also contains the full prefix block for that prefix, all addresses with that prefix.
//
// Use GetPrefixLenForSingleBlock to determine whether there is a prefix length for which this method returns true.
func (addr *addressInternal) ContainsSinglePrefixBlock(prefixLen BitCount) bool {
return addr.section == nil || addr.section.ContainsSinglePrefixBlock(prefixLen)
}
// GetMinPrefixLenForBlock returns the smallest prefix length such that this includes the block of addresses for that prefix length.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use GetPrefixLenForSingleBlock to avoid the case of multiple prefix values.
//
// If this represents just a single address, returns the bit length of this address.
func (addr *addressInternal) GetMinPrefixLenForBlock() BitCount {
section := addr.section
if section == nil {
return 0
}
return section.GetMinPrefixLenForBlock()
}
// GetPrefixLenForSingleBlock returns a prefix length for which the range of this address subnet matches exactly the block of addresses for that prefix.
//
// If the range can be described this way, then this method returns the same value as GetMinPrefixLenForBlock.
//
// If no such prefix exists, returns nil.
//
// If this segment grouping represents a single value, returns the bit length of this address.
//
// IP address examples:
// - 1.2.3.4 returns 32
// - 1.2.3.4/16 returns 32
// - 1.2.*.* returns 16
// - 1.2.*.0/24 returns 16
// - 1.2.0.0/16 returns 16
// - 1.2.*.4 returns nil
// - 1.2.252-255.* returns 22
func (addr *addressInternal) GetPrefixLenForSingleBlock() PrefixLen {
section := addr.section
if section == nil {
return cacheBitCount(0)
}
return section.GetPrefixLenForSingleBlock()
}
// In callers, we always need to ensure init is called, otherwise a nil section will be zero-size instead of having size one.
func (addr *addressInternal) compareSize(other AddressItem) int {
return addr.section.compareSize(other)
}
func (addr *addressInternal) trieCompare(other *Address) int {
if addr.toAddress() == other {
return 0
}
segmentCount := addr.getDivisionCount()
bitsPerSegment := addr.GetBitsPerSegment()
o1Pref := addr.GetPrefixLen()
o2Pref := other.GetPrefixLen()
bitsMatchedSoFar := 0
i := 0
for {
segment1 := addr.getSegment(i)
segment2 := other.getSegment(i)
pref1 := getSegmentPrefLen(addr.toAddress(), o1Pref, bitsPerSegment, bitsMatchedSoFar, segment1)
pref2 := getSegmentPrefLen(other, o2Pref, bitsPerSegment, bitsMatchedSoFar, segment2)
if pref1 != nil {
segmentPref1 := pref1.Len()
segmentPref2 := pref2.Len()
if pref2 != nil && segmentPref2 <= segmentPref1 {
matchingBits := getMatchingBits(segment1, segment2, segmentPref2, bitsPerSegment)
if matchingBits >= segmentPref2 {
if segmentPref2 == segmentPref1 {
// same prefix block
return 0
}
// segmentPref2 is shorter prefix, prefix bits match, so depends on bit at index segmentPref2
if segment1.IsOneBit(segmentPref2) {
return 1
}
return -1
}
return compareSegInt(segment1.GetSegmentValue(), segment2.GetSegmentValue())
} else {
matchingBits := getMatchingBits(segment1, segment2, segmentPref1, bitsPerSegment)
if matchingBits >= segmentPref1 {
if segmentPref1 < bitsPerSegment {
if segment2.IsOneBit(segmentPref1) {
return -1
}
return 1
} else {
i++
if i == segmentCount {
return 1 // o1 with prefix length matching bit count is the bigger
} // else must check the next segment
}
} else {
return compareSegInt(segment1.GetSegmentValue(), segment2.GetSegmentValue())
}
}
} else if pref2 != nil {
segmentPref2 := pref2.Len()
matchingBits := getMatchingBits(segment1, segment2, segmentPref2, bitsPerSegment)
if matchingBits >= segmentPref2 {
if segmentPref2 < bitsPerSegment {
if segment1.IsOneBit(segmentPref2) {
return 1
}
return -1
} else {
i++
if i == segmentCount {
return -1 // o2 with prefix length matching bit count is the bigger
} // else must check the next segment
}
} else {
return compareSegInt(segment1.GetSegmentValue(), segment2.GetSegmentValue())
}
} else {
matchingBits := getMatchingBits(segment1, segment2, bitsPerSegment, bitsPerSegment)
if matchingBits < bitsPerSegment { // no match - the current subnet/address is not here
return compareSegInt(segment1.GetSegmentValue(), segment2.GetSegmentValue())
} else {
i++
if i == segmentCount {
// same address
return 0
} // else must check the next segment
}
}
bitsMatchedSoFar += bitsPerSegment
}
}
func trieIncrement[T TrieKeyConstraint[T]](addr T) (t T, ok bool) {
if res, ok := tree.TrieIncrement(trieKey[T]{addr}); ok {
return res.address, true
}
return
}
func trieDecrement[T TrieKeyConstraint[T]](addr T) (t T, ok bool) {
if res, ok := tree.TrieDecrement(trieKey[T]{addr}); ok {
return res.address, true
}
return
}
func (addr *addressInternal) toString() string {
section := addr.section
if section == nil {
return nilSection() // note no zone possible since a zero-address like Address{} or IPAddress{} cannot have a zone
} else if addr.isMAC() {
return addr.toNormalizedString()
}
return addr.toCanonicalString()
}
// IsSequential returns whether the address or subnet represents a range of addresses that are sequential.
//
// Generally, for a subnet this means that any segment covering a range of values must be followed by segments that are full range, covering all values.
//
// Individual addresses are sequential and CIDR prefix blocks are sequential.
// The subnet "1.2.3-4.5" is not sequential, since the two addresses it represents, "1.2.3.5" and "1.2.4.5", are not ("1.2.3.6" is in-between the two but not in the subnet).
//
// With any IP address subnet, you can use SequentialBlockIterator to convert any subnet to a collection of sequential subnets.
func (addr *addressInternal) IsSequential() bool {
section := addr.section
if section == nil {
return true
}
return section.IsSequential()
}
func (addr *addressInternal) getSegment(index int) *AddressSegment {
return addr.section.GetSegment(index)
}
// GetBitsPerSegment returns the number of bits comprising each segment in this address or subnet. Segments in the same address are equal length.
func (addr *addressInternal) GetBitsPerSegment() BitCount {
section := addr.section
if section == nil {
return 0
}
return section.GetBitsPerSegment()
}
// GetBytesPerSegment returns the number of bytes comprising each segment in this address or subnet. Segments in the same address are equal length.
func (addr *addressInternal) GetBytesPerSegment() int {
section := addr.section
if section == nil {
return 0
}
return section.GetBytesPerSegment()
}
func (addr *addressInternal) getMaxSegmentValue() SegInt {
return addr.section.GetMaxSegmentValue()
}
func (addr *addressInternal) checkIdentity(section *AddressSection) *Address {
if section == nil {
return nil
} else if section == addr.section {
return addr.toAddress()
}
return createAddress(section, addr.zone)
}
func (addr *addressInternal) getLower() *Address {
lower, _ := addr.getLowestHighestAddrs()
return lower
}
func (addr *addressInternal) getUpper() *Address {
_, upper := addr.getLowestHighestAddrs()
return upper
}
func (addr *addressInternal) getLowestHighestAddrs() (lower, upper *Address) {
if !addr.isMultiple() {
lower = addr.toAddress()
upper = lower
return
}
cache := addr.cache
if cache == nil {
return addr.createLowestHighestAddrs()
}
cached := (*addrsCache)(atomicLoadPointer((*unsafe.Pointer)(unsafe.Pointer(&cache.addrsCache))))
if cached == nil {
cached = &addrsCache{}
cached.lower, cached.upper = addr.createLowestHighestAddrs()
dataLoc := (*unsafe.Pointer)(unsafe.Pointer(&cache.addrsCache))
atomicStorePointer(dataLoc, unsafe.Pointer(cached))
}
lower, upper = cached.lower, cached.upper
return
}
func (addr *addressInternal) createLowestHighestAddrs() (lower, upper *Address) {
lower = addr.checkIdentity(addr.section.GetLower())
upper = addr.checkIdentity(addr.section.GetUpper())
return
}
func (addr *addressInternal) toMaxLower() *Address {
section := addr.section
if section == nil {
return addr.toAddress()
}
return addr.checkIdentity(addr.section.toMaxLower())
}
func (addr *addressInternal) toMinUpper() *Address {
section := addr.section
if section == nil {
return addr.toAddress()
}
return addr.checkIdentity(addr.section.toMinUpper())
}
// IsZero returns whether this address matches exactly the value of zero.
func (addr *addressInternal) IsZero() bool {
section := addr.section
if section == nil {
return true
}
return section.IsZero()
}
// IncludesZero returns whether this address includes the zero address within its range.
func (addr *addressInternal) IncludesZero() bool {
section := addr.section
if section == nil {
return true
}
return section.IncludesZero()
}
// IsFullRange returns whether this address covers the entire address space of this address version or type.
//
// This is true if and only if both IncludesZero and IncludesMax return true.
func (addr *addressInternal) IsFullRange() bool {
section := addr.section
if section == nil {
// when no bits, the only value 0 is the max value too
return true
}
return section.IsFullRange()
}
func (addr *addressInternal) toAddress() *Address {
return (*Address)(unsafe.Pointer(addr))
}
func (addr *addressInternal) getDivision(index int) *AddressDivision {
return addr.section.getDivision(index)
}
func (addr *addressInternal) getDivisionCount() int {
if addr.section == nil {
return 0
}
return addr.section.GetDivisionCount()
}
func (addr *addressInternal) getDivisionsInternal() []*AddressDivision {
return addr.section.getDivisionsInternal()
}
func (addr *addressInternal) toPrefixBlock() *Address {
return addr.checkIdentity(addr.section.toPrefixBlock())
}
func (addr *addressInternal) toPrefixBlockLen(prefLen BitCount) *Address {
return addr.checkIdentity(addr.section.toPrefixBlockLen(prefLen))
}
func (addr *addressInternal) toBlock(segmentIndex int, lower, upper SegInt) *Address {
return addr.checkIdentity(addr.section.toBlock(segmentIndex, lower, upper))
}
func (addr *addressInternal) reverseBytes() (*Address, addrerr.IncompatibleAddressError) {
sect, err := addr.section.ReverseBytes()
if err != nil {
return nil, err
}
return addr.checkIdentity(sect), nil
}
func (addr *addressInternal) reverseBits(perByte bool) (*Address, addrerr.IncompatibleAddressError) {
sect, err := addr.section.ReverseBits(perByte)
if err != nil {
return nil, err
}
return addr.checkIdentity(sect), nil
}
// reverseSegments returns a new address with the segments reversed.
func (addr *addressInternal) reverseSegments() *Address {
return addr.checkIdentity(addr.section.ReverseSegments())
}
// isIPv4 returns whether this matches an IPv4 address.
// we allow nil receivers to allow this to be called following a failed conversion like ToIP()
func (addr *addressInternal) isIPv4() bool {
return addr.section != nil && addr.section.matchesIPv4AddressType()
}
// isIPv6 returns whether this matches an IPv6 address.
// we allow nil receivers to allow this to be called following a failed conversion like ToIP()
func (addr *addressInternal) isIPv6() bool {
return addr.section != nil && addr.section.matchesIPv6AddressType()
}
// isIPv6 returns whether this matches an IPv6 address.
// we allow nil receivers to allow this to be called following a failed conversion like ToIP()
func (addr *addressInternal) isMAC() bool {
return addr.section != nil && addr.section.matchesMACAddressType()
}
// isIP returns whether this matches an IP address.
// It must be IPv4, IPv6, or the zero IPAddress which has no segments
// we allow nil receivers to allow this to be called following a failed conversion like ToIP()
func (addr *addressInternal) isIP() bool {
return addr.section == nil /* zero addr */ || addr.section.matchesIPAddressType()
}
func (addr *addressInternal) prefixEquals(other AddressType) bool {
otherAddr := other.ToAddressBase()
if addr.toAddress() == otherAddr {
return true
}
otherSection := otherAddr.GetSection()
if addr.section == nil {
return otherSection.GetSegmentCount() == 0
}
return addr.section.PrefixEqual(otherSection) &&
// if it is IPv6 and has a zone, then it does not contain addresses from other zones
addr.isSameZone(otherAddr)
}
func (addr *addressInternal) prefixContains(other AddressType) bool {
otherAddr := other.ToAddressBase()
if addr.toAddress() == otherAddr {
return true
}
otherSection := otherAddr.GetSection()
if addr.section == nil {
return otherSection.GetSegmentCount() == 0
}
return addr.section.PrefixContains(otherSection) &&
// if it is IPv6 and has a zone, then it does not contain addresses from other zones
addr.isSameZone(otherAddr)
}
func (addr *addressInternal) contains(other AddressType) bool {
if other == nil {
return true
}
otherAddr := other.ToAddressBase()
if addr.toAddress() == otherAddr || otherAddr == nil {
return true
}
otherSection := otherAddr.GetSection()
if addr.section == nil {
return otherSection.GetSegmentCount() == 0
}
return addr.section.Contains(otherSection) &&
// if it is IPv6 and has a zone, then it does not contain addresses from other zones
addr.isSameZone(otherAddr)
}
func (addr *addressInternal) equals(other AddressType) bool {
if other == nil {
return false
}
otherAddr := other.ToAddressBase()
if addr.toAddress() == otherAddr {
return true
} else if otherAddr == nil {
return false
}
otherSection := otherAddr.GetSection()
if addr.section == nil {
return otherSection.GetSegmentCount() == 0
}
return addr.section.Equal(otherSection) &&
// if it it is IPv6 and has a zone, then it does not equal addresses from other zones
addr.isSameZone(otherAddr)
}
func (addr *addressInternal) equalsSameVersion(other AddressType) bool {
otherAddr := other.ToAddressBase()
if addr.toAddress() == otherAddr {
return true
} else if otherAddr == nil {
return false
}
otherSection := otherAddr.GetSection()
return addr.section.sameCountTypeEquals(otherSection) &&
// if it it is IPv6 and has a zone, then it does not equal addresses from other zones
addr.isSameZone(otherAddr)
}
// withoutPrefixLen returns the same address but with no associated prefix length.
func (addr *addressInternal) withoutPrefixLen() *Address {
return addr.checkIdentity(addr.section.withoutPrefixLen())
}
func (addr *addressInternal) adjustPrefixLen(prefixLen BitCount) *Address {
return addr.checkIdentity(addr.section.adjustPrefixLen(prefixLen))
}
func (addr *addressInternal) adjustPrefixLenZeroed(prefixLen BitCount) (res *Address, err addrerr.IncompatibleAddressError) {
section, err := addr.section.adjustPrefixLenZeroed(prefixLen)
if err == nil {
res = addr.checkIdentity(section)
}
return
}
func (addr *addressInternal) setPrefixLen(prefixLen BitCount) *Address {
return addr.checkIdentity(addr.section.setPrefixLen(prefixLen))
}
func (addr *addressInternal) setPrefixLenZeroed(prefixLen BitCount) (res *Address, err addrerr.IncompatibleAddressError) {
section, err := addr.section.setPrefixLenZeroed(prefixLen)
if err == nil {
res = addr.checkIdentity(section)
}
return
}
func (addr *addressInternal) assignPrefixForSingleBlock() *Address {
newPrefix := addr.GetPrefixLenForSingleBlock()
if newPrefix == nil {
return nil
}
return addr.checkIdentity(addr.section.setPrefixLen(newPrefix.bitCount()))
}
// assignMinPrefixForBlock constructs an equivalent address section with the smallest CIDR prefix possible (largest network),
// such that the range of values are a set of subnet blocks for that prefix.
func (addr *addressInternal) assignMinPrefixForBlock() *Address {
return addr.setPrefixLen(addr.GetMinPrefixLenForBlock())
}
// toSingleBlockOrAddress converts to a single prefix block or address.
// If the given address is a single prefix block, it is returned.
// If it can be converted to a single prefix block by assigning a prefix length, the converted block is returned.
// If it is a single address, any prefix length is removed and the address is returned.
// Otherwise, nil is returned.
func (addr *addressInternal) toSinglePrefixBlockOrAddr() *Address {
if !addr.isMultiple() {
if !addr.isPrefixed() {
return addr.toAddress()
}
return addr.withoutPrefixLen()
//} else if addr.IsSinglePrefixBlock() {
// return addr.toAddress()
} else {
series := addr.assignPrefixForSingleBlock()
if series != nil {
return series
}
}
return nil
}
func (addr *addressInternal) isSameZone(other *Address) bool {
return addr.zone == other.ToAddressBase().zone
}
func (addr *addressInternal) getAddrType() addrType {
if addr.section == nil {
return zeroType
}
return addr.section.addrType
}
// equivalent to section.sectionIterator
func (addr *addressInternal) addrIterator(excludeFunc func([]*AddressDivision) bool) Iterator[*Address] {
useOriginal := !addr.isMultiple()
original := addr.toAddress()
var iterator Iterator[[]*AddressDivision]
if useOriginal {
if excludeFunc != nil && excludeFunc(addr.getDivisionsInternal()) {
original = nil // the single-valued iterator starts out empty
}
} else {
address := addr.toAddress()
iterator = allSegmentsIterator(
addr.getDivisionCount(),
nil,
func(index int) Iterator[*AddressSegment] { return address.getSegment(index).iterator() },
excludeFunc)
}
return addrIterator(
useOriginal,
original,
original.getPrefixLen(),
false,
iterator)
}
func (addr *addressInternal) prefixIterator(isBlockIterator bool) Iterator[*Address] {
prefLen := addr.getPrefixLen()
if prefLen == nil {
return addr.addrIterator(nil)
}
var useOriginal bool
if isBlockIterator {
useOriginal = addr.IsSinglePrefixBlock()
} else {
useOriginal = bigIsOne(addr.GetPrefixCount())
}
prefLength := prefLen.bitCount()
bitsPerSeg := addr.GetBitsPerSegment()
bytesPerSeg := addr.GetBytesPerSegment()
networkSegIndex := getNetworkSegmentIndex(prefLength, bytesPerSeg, bitsPerSeg)
hostSegIndex := getHostSegmentIndex(prefLength, bytesPerSeg, bitsPerSeg)
segCount := addr.getDivisionCount()
var iterator Iterator[[]*AddressDivision]
address := addr.toAddress()
if !useOriginal {
var hostSegIteratorProducer func(index int) Iterator[*AddressSegment]
if isBlockIterator {
hostSegIteratorProducer = func(index int) Iterator[*AddressSegment] {
seg := address.getSegment(index)
if seg.isPrefixed() { // IP address segments know their own prefix, MAC segments do not
return seg.prefixBlockIterator()
}
segPref := getPrefixedSegmentPrefixLength(bitsPerSeg, prefLength, index)
return seg.prefixedBlockIterator(segPref.bitCount())
}
} else {
hostSegIteratorProducer = func(index int) Iterator[*AddressSegment] {
seg := address.getSegment(index)
if seg.isPrefixed() { // IP address segments know their own prefix, MACS segments do not
return seg.prefixIterator()
}
segPref := getPrefixedSegmentPrefixLength(bitsPerSeg, prefLength, index)
return seg.prefixedIterator(segPref.bitCount())
}
}
iterator = segmentsIterator(
segCount,
nil, //when no prefix we defer to other iterator, when there is one we use the whole original section in the encompassing iterator and not just the original segments
func(index int) Iterator[*AddressSegment] { return address.getSegment(index).iterator() },
nil,
networkSegIndex,
hostSegIndex,
hostSegIteratorProducer)
}
if isBlockIterator {
return addrIterator(
useOriginal,
address,
address.getPrefixLen(),
prefLength < addr.GetBitCount(),
iterator)
}
return prefixAddrIterator(
useOriginal,
address,
address.getPrefixLen(),
iterator)
}
func (addr *addressInternal) blockIterator(segmentCount int) Iterator[*Address] {
if segmentCount < 0 {
segmentCount = 0
}
allSegsCount := addr.getDivisionCount()
if segmentCount >= allSegsCount {
return addr.addrIterator(nil)
}
useOriginal := !addr.section.isMultipleTo(segmentCount)
address := addr.toAddress()
var iterator Iterator[[]*AddressDivision]
if !useOriginal {
var hostSegIteratorProducer func(index int) Iterator[*AddressSegment]
hostSegIteratorProducer = func(index int) Iterator[*AddressSegment] {
return address.getSegment(index).identityIterator()
}
segIteratorProducer := func(index int) Iterator[*AddressSegment] {
return address.getSegment(index).iterator()
}
iterator = segmentsIterator(
allSegsCount,
nil, //when no prefix we defer to other iterator, when there is one we use the whole original section in the encompassing iterator and not just the original segments
segIteratorProducer,
nil,
segmentCount-1,
segmentCount,
hostSegIteratorProducer)
}
return addrIterator(
useOriginal,
address,
address.getPrefixLen(),
addr.section.isMultipleFrom(segmentCount),
iterator)
}
// sequentialBlockIterator iterates through the minimal number of maximum-sized blocks comprising this subnet
// a block is sequential if given any two addresses in the block, any intervening address between the two is also in the block
func (addr *addressInternal) sequentialBlockIterator() Iterator[*Address] {
return addr.blockIterator(addr.getSequentialBlockIndex())
}
func (addr *addressInternal) getSequentialBlockIndex() int {
if addr.section == nil {
return 0
}
return addr.section.GetSequentialBlockIndex()
}
func (addr *addressInternal) getSequentialBlockCount() *big.Int {
if addr.section == nil {
return bigOne()
}
return addr.section.GetSequentialBlockCount()
}
func (addr *addressInternal) hasZone() bool {
return addr.zone != NoZone
}
func (addr *addressInternal) increment(increment int64) *Address {
return addr.checkIdentity(addr.section.increment(increment))
}
func (addr *addressInternal) incrementBoundary(increment int64) *Address {
return addr.checkIdentity(addr.section.incrementBoundary(increment))
}
func (addr *addressInternal) getStringCache() *stringCache {
cache := addr.cache
if cache == nil {
return nil
}
return addr.cache.stringCache
}
func (addr *addressInternal) getSegmentStrings() []string {
return addr.section.getSegmentStrings()
}
func (addr *addressInternal) toCanonicalString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toCanonicalString(addr.zone)
}
return cacheStr(&cache.canonicalString,
func() string { return addr.section.ToIPv6().toCanonicalString(addr.zone) })
}
return addr.section.ToCanonicalString()
}
func (addr *addressInternal) toNormalizedString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toNormalizedString(addr.zone)
}
return cacheStr(&cache.normalizedIPv6String,
func() string { return addr.section.ToIPv6().toNormalizedString(addr.zone) })
}
return addr.section.ToNormalizedString()
}
func (addr *addressInternal) toNormalizedWildcardString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toNormalizedWildcardStringZoned(addr.zone)
}
return cacheStr(&cache.normalizedIPv6String,
func() string { return addr.section.ToIPv6().toNormalizedWildcardStringZoned(addr.zone) })
}
return addr.section.ToNormalizedWildcardString()
}
func (addr *addressInternal) toCompressedString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toCompressedString(addr.zone)
}
return cacheStr(&cache.compressedIPv6String,
func() string { return addr.section.ToIPv6().toCompressedString(addr.zone) })
}
return addr.section.ToCompressedString()
}
func (addr *addressInternal) toOctalString(with0Prefix bool) (string, addrerr.IncompatibleAddressError) {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.toOctalStringZoned(with0Prefix, addr.zone)
}
var cacheField **string
if with0Prefix {
cacheField = &cache.octalStringPrefixed
} else {
cacheField = &cache.octalString
}
return cacheStrErr(cacheField,
func() (string, addrerr.IncompatibleAddressError) {
return addr.section.toOctalStringZoned(with0Prefix, addr.zone)
})
}
return addr.section.ToOctalString(with0Prefix)
}
func (addr *addressInternal) toBinaryString(with0bPrefix bool) (string, addrerr.IncompatibleAddressError) {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.toBinaryStringZoned(with0bPrefix, addr.zone)
}
var cacheField **string
if with0bPrefix {
cacheField = &cache.binaryStringPrefixed
} else {
cacheField = &cache.binaryString
}
return cacheStrErr(cacheField,
func() (string, addrerr.IncompatibleAddressError) {
return addr.section.toBinaryStringZoned(with0bPrefix, addr.zone)
})
}
return addr.section.ToBinaryString(with0bPrefix)
}
func (addr *addressInternal) toHexString(with0xPrefix bool) (string, addrerr.IncompatibleAddressError) {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.toHexStringZoned(with0xPrefix, addr.zone)
}
var cacheField **string
if with0xPrefix {
cacheField = &cache.hexStringPrefixed
} else {
cacheField = &cache.hexString
}
return cacheStrErr(cacheField,
func() (string, addrerr.IncompatibleAddressError) {
return addr.section.toHexStringZoned(with0xPrefix, addr.zone)
})
}
return addr.section.ToHexString(with0xPrefix)
}
func (addr *addressInternal) format(state fmt.State, verb rune) {
section := addr.section
section.format(state, verb, addr.zone, addr.isIP())
}
var zeroAddr = createAddress(zeroSection, NoZone)
// Address represents a single address, or a collection of multiple addresses, such as with an IP subnet or a set of MAC addresses.
//
// Addresses consist of a sequence of segments, each of equal bit-size.
// The number of such segments and the bit-size are determined by the underlying version or type of the address, whether IPv4, IPv6, MAC, or other.
// Each segment can represent a single value or a sequential range of values. Addresses can also have an associated prefix length,
// which is the number of consecutive bits comprising the prefix, the most significant bits of an address.
//
// To construct one from a string, use
// NewIPAddressString or NewMACAddressString,
// then use the ToAddress or GetAddress methods to get an [IPAddress] or [MACAddress],
// and then you can convert to this type using the ToAddressBase method.
//
// Any given specific address types can be converted to Address with the ToAddressBase method,
// and then back again to their original types with methods like ToIPv6, ToIP, ToIPv4, and ToMAC.
// When calling such a method on a given address, if the address was not originally constructed as the type returned from the method,
// then the method will return nil. Conversion methods work with nil pointers (returning nil) so that they can be chained together safely.
//
// This allows for polymorphic code that works with all addresses, such as with the address trie code in this library,
// while still allowing for methods and code specific to each address version or type.
//
// You can also use the methods IsIPv6, IsIP, IsIPv4, and IsMAC,
// which will return true if and only if the corresponding method ToIPv6, ToIP, ToIPv4, and ToMAC returns non-nil, respectively.
//
// The zero value for an Address is an address with no segments and no associated address version or type, also known as the adaptive zero.
type Address struct {
addressInternal
}
func (addr *Address) init() *Address {
if addr.section == nil {
return zeroAddr // this has a zero section rather that a nil section
}
return addr
}
// GetCount returns the count of addresses that this address or subnet represents.
//
// If just a single address, not a collection nor subnet of multiple addresses, returns 1.
//
// For instance, the IP address subnet "2001:db8::/64" has the count of 2 to the power of 64.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (addr *Address) GetCount() *big.Int {
if addr == nil {
return bigZero()
}
return addr.getCount()
}
// IsMultiple returns true if this represents more than a single individual address, whether it is a collection or subnet of multiple addresses.
func (addr *Address) IsMultiple() bool {
return addr != nil && addr.isMultiple()
}
// IsPrefixed returns whether this address has an associated prefix length.
func (addr *Address) IsPrefixed() bool {
return addr != nil && addr.isPrefixed()
}
// PrefixEqual determines if the given address matches this address up to the prefix length of this address.
// It returns whether the two addresses share the same range of prefix values.
func (addr *Address) PrefixEqual(other AddressType) bool {
return addr.init().prefixEquals(other)
}
// PrefixContains returns whether the prefix values in the given address or subnet
// are prefix values in this address or subnet, using the prefix length of this address or subnet.
// If this address has no prefix length, the entire address is compared.
//
// It returns whether the prefix of this address contains all values of the same prefix length in the given address.
func (addr *Address) PrefixContains(other AddressType) bool {
return addr.init().prefixContains(other)
}
// Contains returns whether this is the same type and version as the given address or subnet and whether it contains all addresses in the given address or subnet.
func (addr *Address) Contains(other AddressType) bool {
if addr == nil {
return other == nil || other.ToAddressBase() == nil
}
return addr.init().contains(other)
}
// Compare returns a negative integer, zero, or a positive integer if this address or subnet is less than, equal, or greater than the given item.
// Any address item is comparable to any other. All address items use CountComparator to compare.
func (addr *Address) Compare(item AddressItem) int {
return CountComparator.Compare(addr, item)
}
// Equal returns whether the given address or subnet is equal to this address or subnet.
// Two address instances are equal if they represent the same set of addresses.
func (addr *Address) Equal(other AddressType) bool {
if addr == nil {
return other == nil || other.ToAddressBase() == nil
} else if other.ToAddressBase() == nil {
return false
}
return addr.init().equals(other)
}
// CompareSize compares the counts of two subnets or addresses or other address items, the number of individual items within.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether one subnet or collection represents more individual items than another.
//
// CompareSize returns a positive integer if this address or subnet has a larger count than the item given, zero if they are the same, or a negative integer if the other has a larger count.
func (addr *Address) CompareSize(other AddressItem) int {
if addr == nil {
if isNilItem(other) {
return 0
}
// we have size 0, other has size >= 1
return -1
}
return addr.init().compareSize(other)
}
// TrieCompare compares two addresses according to address trie ordering.
// It returns a number less than zero, zero, or a number greater than zero if the first address argument is less than, equal to, or greater than the second.
//
// The comparison is intended for individual addresses and CIDR prefix blocks.
// If an address is neither an individual address nor a prefix block, it is treated like one:
//
// - ranges that occur inside the prefix length are ignored, only the lower value is used.
// - ranges beyond the prefix length are assumed to be the full range across all hosts for that prefix length.
func (addr *Address) TrieCompare(other *Address) (int, addrerr.IncompatibleAddressError) {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
if oth := other.ToIPv4(); oth != nil {
return thisAddr.TrieCompare(oth), nil
}
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
if oth := other.ToIPv6(); oth != nil {
return thisAddr.TrieCompare(oth), nil
}
} else if thisAddr := addr.ToMAC(); thisAddr != nil {
if oth := other.ToMAC(); oth != nil {
return thisAddr.TrieCompare(oth)
}
}
if segmentCount, otherSegmentCount := addr.getDivisionCount(), other.getDivisionCount(); segmentCount == otherSegmentCount {
if bitsPerSegment, otherBitsPerSegment := addr.GetBitsPerSegment(), other.GetBitsPerSegment(); bitsPerSegment == otherBitsPerSegment {
return addr.trieCompare(other), nil
}
}
return 0, &incompatibleAddressError{addressError{key: "ipaddress.error.mismatched.bit.size"}}
}
// TrieIncrement returns the next address or block according to address trie ordering.
//
// If an address is neither an individual address nor a prefix block, it is treated like one:
//
// - ranges that occur inside the prefix length are ignored, only the lower value is used.
// - ranges beyond the prefix length are assumed to be the full range across all hosts for that prefix length.
func (addr *Address) TrieIncrement() *Address {
if res, ok := trieIncrement(addr); ok {
return res
}
return nil
}
// TrieDecrement returns the previous or block address according to address trie ordering.
//
// If an address is neither an individual address nor a prefix block, it is treated like one:
//
// - ranges that occur inside the prefix length are ignored, only the lower value is used.
// - ranges beyond the prefix length are assumed to be the full range across all hosts for that prefix length.
func (addr *Address) TrieDecrement() *Address {
if res, ok := trieDecrement(addr); ok {
return res
}
return nil
}
// GetSection returns the backing section for this address or subnet, comprising all segments.
func (addr *Address) GetSection() *AddressSection {
return addr.init().section
}
// GetTrailingSection gets the subsection from the series starting from the given index.
// The first segment is at index 0.
func (addr *Address) GetTrailingSection(index int) *AddressSection {
return addr.GetSection().GetTrailingSection(index)
}
// GetSubSection gets the subsection from the series starting from the given index and ending just before the give endIndex.
// The first segment is at index 0.
func (addr *Address) GetSubSection(index, endIndex int) *AddressSection {
return addr.GetSection().GetSubSection(index, endIndex)
}
// CopySubSegments copies the existing segments from the given start index until but not including the segment at the given end index,
// into the given slice, as much as can be fit into the slice, returning the number of segments copied.
func (addr *Address) CopySubSegments(start, end int, segs []*AddressSegment) (count int) {
return addr.GetSection().CopySubSegments(start, end, segs)
}
// CopySegments copies the existing segments into the given slice,
// as much as can be fit into the slice, returning the number of segments copied.
func (addr *Address) CopySegments(segs []*AddressSegment) (count int) {
return addr.GetSection().CopySegments(segs)
}
// GetSegments returns a slice with the address segments. The returned slice is not backed by the same array as this section.
func (addr *Address) GetSegments() []*AddressSegment {
return addr.GetSection().GetSegments()
}
// GetSegment returns the segment at the given index.
// The first segment is at index 0.
// GetSegment will panic given a negative index or an index matching or larger than the segment count.
func (addr *Address) GetSegment(index int) *AddressSegment {
return addr.getSegment(index)
}
// GetSegmentCount returns the segment count, the number of segments in this address.
// For example, IPv4 addresses have 4, IPv6 addresses have 8.
func (addr *Address) GetSegmentCount() int {
return addr.getDivisionCount()
}
// ForEachSegment visits each segment in order from most-significant to least, the most significant with index 0, calling the given function for each, terminating early if the function returns true.
// Returns the number of visited segments.
func (addr *Address) ForEachSegment(consumer func(segmentIndex int, segment *AddressSegment) (stop bool)) int {
return addr.GetSection().ForEachSegment(consumer)
}
// GetGenericDivision returns the segment at the given index as a DivisionType.
// The first segment is at index 0.
// GetGenericDivision will panic given a negative index or index larger than the division count.
func (addr *Address) GetGenericDivision(index int) DivisionType {
return addr.getDivision(index)
}
// GetGenericSegment returns the segment at the given index as an AddressSegmentType.
// The first segment is at index 0.
// GetGenericSegment will panic given a negative index or an index matching or larger than the segment count.
func (addr *Address) GetGenericSegment(index int) AddressSegmentType {
return addr.getSegment(index)
}
// GetDivisionCount returns the division count, which is the same as the segment count, since the divisions of an address are the segments.
func (addr *Address) GetDivisionCount() int {
return addr.getDivisionCount()
}
// TestBit returns true if the bit in the lower value of this address at the given index is 1, where index 0 refers to the least significant bit.
// In other words, it computes (bits & (1 << n)) != 0), using the lower value of this address.
// TestBit will panic if n < 0, or if it matches or exceeds the bit count of this item.
func (addr *Address) TestBit(n BitCount) bool {
return addr.init().testBit(n)
}
// IsOneBit returns true if the bit in the lower value of this address at the given index is 1, where index 0 refers to the most significant bit.
// IsOneBit will panic if bitIndex is less than zero, or if it is larger than the bit count of this item.
func (addr *Address) IsOneBit(bitIndex BitCount) bool {
return addr.init().isOneBit(bitIndex)
}
// GetLower returns the address in the subnet or address collection with the lowest numeric value,
// which will be the receiver if it represents a single address.
// For example, for "1.2-3.4.5-6", the series "1.2.4.5" is returned.
func (addr *Address) GetLower() *Address {
return addr.init().getLower()
}
// GetUpper returns the address in the subnet or address collection with the highest numeric value,
// which will be the receiver if it represents a single address.
// For example, for the subnet "1.2-3.4.5-6", the address "1.3.4.6" is returned.
func (addr *Address) GetUpper() *Address {
return addr.init().getUpper()
}
// GetValue returns the lowest address in this subnet or address collection as an integer value.
func (addr *Address) GetValue() *big.Int {
return addr.init().section.GetValue()
}
// GetUpperValue returns the highest address in this subnet or address collection as an integer value.
func (addr *Address) GetUpperValue() *big.Int {
return addr.init().section.GetUpperValue()
}
// Bytes returns the lowest address in this subnet or address collection as a byte slice.
func (addr *Address) Bytes() []byte {
return addr.init().section.Bytes()
}
// UpperBytes returns the highest address in this subnet or address collection as a byte slice.
func (addr *Address) UpperBytes() []byte {
return addr.init().section.UpperBytes()
}
// CopyBytes copies the value of the lowest individual address in the subnet into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *Address) CopyBytes(bytes []byte) []byte {
return addr.init().section.CopyBytes(bytes)
}
// CopyUpperBytes copies the value of the highest individual address in the subnet into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *Address) CopyUpperBytes(bytes []byte) []byte {
return addr.init().section.CopyUpperBytes(bytes)
}
// IsMax returns whether this address matches exactly the maximum possible value, the address whose bits are all ones.
func (addr *Address) IsMax() bool {
return addr.init().section.IsMax()
}
// IncludesMax returns whether this address includes the max address, the address whose bits are all ones, within its range.
func (addr *Address) IncludesMax() bool {
return addr.init().section.IncludesMax()
}
// ToPrefixBlock returns the address collection associated with the prefix of this address or address collection,
// the address whose prefix matches the prefix of this address, and the remaining bits span all values.
// If this address has no prefix length, this address is returned.
//
// The returned address collection will include all addresses with the same prefix as this one, the prefix "block".
func (addr *Address) ToPrefixBlock() *Address {
return addr.init().toPrefixBlock()
}
// ToPrefixBlockLen returns the address associated with the prefix length provided,
// the address collection whose prefix of that length matches the prefix of this address, and the remaining bits span all values.
//
// The returned address will include all addresses with the same prefix as this one, the prefix "block".
func (addr *Address) ToPrefixBlockLen(prefLen BitCount) *Address {
return addr.init().toPrefixBlockLen(prefLen)
}
// ToBlock creates a new block of addresses by changing the segment at the given index to have the given lower and upper value,
// and changing the following segments to be full-range.
func (addr *Address) ToBlock(segmentIndex int, lower, upper SegInt) *Address {
return addr.init().toBlock(segmentIndex, lower, upper)
}
// WithoutPrefixLen provides the same address but with no prefix length. The values remain unchanged.
func (addr *Address) WithoutPrefixLen() *Address {
if !addr.IsPrefixed() {
return addr
}
return addr.init().withoutPrefixLen()
}
// SetPrefixLen sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address.
// The provided prefix length will be adjusted to these boundaries if necessary.
func (addr *Address) SetPrefixLen(prefixLen BitCount) *Address {
return addr.init().setPrefixLen(prefixLen)
}
// SetPrefixLenZeroed sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address.
// The provided prefix length will be adjusted to these boundaries if necessary.
//
// If this address has a prefix length, and the prefix length is increased when setting the new prefix length, the bits moved within the prefix become zero.
// If this address has a prefix length, and the prefix length is decreased when setting the new prefix length, the bits moved outside the prefix become zero.
//
// In other words, bits that move from one side of the prefix length to the other (bits moved into the prefix or outside the prefix) are zeroed.
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (addr *Address) SetPrefixLenZeroed(prefixLen BitCount) (*Address, addrerr.IncompatibleAddressError) {
return addr.init().setPrefixLenZeroed(prefixLen)
}
// AdjustPrefixLen increases or decreases the prefix length by the given increment.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address.
//
// If this address has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
func (addr *Address) AdjustPrefixLen(prefixLen BitCount) *Address {
return addr.adjustPrefixLen(prefixLen).ToAddressBase()
}
// AdjustPrefixLenZeroed increases or decreases the prefix length by the given increment while zeroing out the bits that have moved into or outside the prefix.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address.
//
// If this address has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
//
// When prefix length is increased, the bits moved within the prefix become zero.
// When a prefix length is decreased, the bits moved outside the prefix become zero.
//
// For example, "1.2.0.0/16" adjusted by -8 becomes "1.0.0.0/8".
// "1.2.0.0/16" adjusted by 8 becomes "1.2.0.0/24".
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (addr *Address) AdjustPrefixLenZeroed(prefixLen BitCount) (*Address, addrerr.IncompatibleAddressError) {
res, err := addr.adjustPrefixLenZeroed(prefixLen)
return res.ToAddressBase(), err
}
// AssignPrefixForSingleBlock returns the equivalent prefix block that matches exactly the range of values in this address.
// The returned block will have an assigned prefix length indicating the prefix length for the block.
//
// There may be no such address - it is required that the range of values match the range of a prefix block.
// If there is no such address, then nil is returned.
//
// Examples:
// - 1.2.3.4 returns 1.2.3.4/32
// - 1.2.*.* returns 1.2.0.0/16
// - 1.2.*.0/24 returns 1.2.0.0/16
// - 1.2.*.4 returns nil
// - 1.2.0-1.* returns 1.2.0.0/23
// - 1.2.1-2.* returns nil
// - 1.2.252-255.* returns 1.2.252.0/22
// - 1.2.3.4/16 returns 1.2.3.4/32
func (addr *Address) AssignPrefixForSingleBlock() *Address {
return addr.init().assignPrefixForSingleBlock()
}
// AssignMinPrefixForBlock returns an equivalent subnet, assigned the smallest prefix length possible,
// such that the prefix block for that prefix length is in this subnet.
//
// In other words, this method assigns a prefix length to this subnet matching the largest prefix block in this subnet.
//
// Examples:
// - 1.2.3.4 returns 1.2.3.4/32
// - 1.2.*.* returns 1.2.0.0/16
// - 1.2.*.0/24 returns 1.2.0.0/16
// - 1.2.*.4 returns 1.2.*.4/32
// - 1.2.0-1.* returns 1.2.0.0/23
// - 1.2.1-2.* returns 1.2.1-2.0/24
// - 1.2.252-255.* returns 1.2.252.0/22
// - 1.2.3.4/16 returns 1.2.3.4/32
func (addr *Address) AssignMinPrefixForBlock() *Address {
return addr.init().assignMinPrefixForBlock()
}
// ToSinglePrefixBlockOrAddress converts to a single prefix block or address.
// If the given address is a single prefix block, it is returned.
// If it can be converted to a single prefix block by assigning a prefix length, the converted block is returned.
// If it is a single address, any prefix length is removed and the address is returned.
// Otherwise, nil is returned.
// This method provides the address formats used by tries.
// ToSinglePrefixBlockOrAddress is quite similar to AssignPrefixForSingleBlock, which always returns prefixed addresses, while this does not.
func (addr *Address) ToSinglePrefixBlockOrAddress() *Address {
return addr.init().toSinglePrefixBlockOrAddr()
}
func (addr *Address) toSinglePrefixBlockOrAddress() (*Address, addrerr.IncompatibleAddressError) {
if addr == nil {
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.address.not.block"}}
}
res := addr.ToSinglePrefixBlockOrAddress()
if res == nil {
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.address.not.block"}}
}
return res, nil
}
// GetMaxSegmentValue returns the maximum possible segment value for this type of address.
//
// Note this is not the maximum of the range of segment values in this specific address,
// this is the maximum value of any segment for this address type and version, determined by the number of bits per segment.
func (addr *Address) GetMaxSegmentValue() SegInt {
return addr.init().getMaxSegmentValue()
}
// Iterator provides an iterator to iterate through the individual addresses of this address or subnet.
//
// When iterating, the prefix length is preserved. Remove it using WithoutPrefixLen prior to iterating if you wish to drop it from all individual addresses.
//
// Call IsMultiple to determine if this instance represents multiple addresses, or GetCount for the count.
func (addr *Address) Iterator() Iterator[*Address] {
if addr == nil {
return nilAddrIterator()
}
return addr.addrIterator(nil)
}
// PrefixIterator provides an iterator to iterate through the individual prefixes of this subnet,
// each iterated element spanning the range of values for its prefix.
//
// It is similar to the prefix block iterator, except for possibly the first and last iterated elements, which might not be prefix blocks,
// instead constraining themselves to values from this subnet.
//
// If the subnet has no prefix length, then this is equivalent to Iterator.
func (addr *Address) PrefixIterator() Iterator[*Address] {
return addr.prefixIterator(false)
}
// PrefixBlockIterator provides an iterator to iterate through the individual prefix blocks, one for each prefix of this address or subnet.
// Each iterated address or subnet will be a prefix block with the same prefix length as this address or subnet.
//
// If this address has no prefix length, then this is equivalent to Iterator.
func (addr *Address) PrefixBlockIterator() Iterator[*Address] {
return addr.prefixIterator(true)
}
// BlockIterator iterates through the addresses that can be obtained by iterating through all the upper segments up to the given segment count.
// The segments following remain the same in all iterated addresses.
//
// For instance, given the IPv4 subnet "1-2.3-4.5-6.7" and the count argument 2,
// BlockIterator will iterate through "1.3.5-6.7", "1.4.5-6.7", "2.3.5-6.7" and "2.4.5-6.7".
func (addr *Address) BlockIterator(segmentCount int) Iterator[*Address] {
return addr.init().blockIterator(segmentCount)
}
// SequentialBlockIterator iterates through the sequential subnets or addresses that make up this address or subnet.
//
// Practically, this means finding the count of segments for which the segments that follow are not full range, and then using BlockIterator with that segment count.
//
// For instance, given the IPv4 subnet "1-2.3-4.5-6.7-8", it will iterate through "1.3.5.7-8", "1.3.6.7-8", "1.4.5.7-8", "1.4.6.7-8", "2.3.5.7-8", "2.3.6.7-8", "2.4.6.7-8" and "2.4.6.7-8".
//
// Use GetSequentialBlockCount to get the number of iterated elements.
func (addr *Address) SequentialBlockIterator() Iterator[*Address] {
return addr.init().sequentialBlockIterator()
}
// GetSequentialBlockIndex gets the minimal segment index for which all following segments are full-range blocks.
//
// The segment at this index is not a full-range block itself, unless all segments are full-range.
// The segment at this index and all following segments form a sequential range.
// For the full subnet to be sequential, the preceding segments must be single-valued.
func (addr *Address) GetSequentialBlockIndex() int {
return addr.getSequentialBlockIndex()
}
// GetSequentialBlockCount provides the count of elements from the sequential block iterator, the minimal number of sequential subnets that comprise this subnet.
func (addr *Address) GetSequentialBlockCount() *big.Int {
return addr.getSequentialBlockCount()
}
// IncrementBoundary returns the address that is the given increment from the range boundaries of this subnet or address collection.
//
// If the given increment is positive, adds the value to the upper address (GetUpper) in the range to produce a new address.
// If the given increment is negative, adds the value to the lower address (GetLower) in the range to produce a new address.
// If the increment is zero, returns this address.
//
// If this is a single address value, that address is simply incremented by the given increment value, positive or negative.
//
// On address overflow or underflow, IncrementBoundary returns nil.
func (addr *Address) IncrementBoundary(increment int64) *Address {
return addr.init().IncrementBoundary(increment)
}
// Increment returns the address from the subnet that is the given increment upwards into the subnet range,
// with the increment of 0 returning the first address in the range.
//
// If the increment i matches or exceeds the subnet size count c, then i - c + 1
// is added to the upper address of the range.
// An increment matching the subnet count gives you the address just above the highest address in the subnet.
//
// If the increment is negative, it is added to the lower address of the range.
// To get the address just below the lowest address of the subnet, use the increment -1.
//
// If this is just a single address value, the address is simply incremented by the given increment, positive or negative.
//
// If this is a subnet with multiple values, a positive increment i is equivalent i + 1 values from the subnet iterator and beyond.
// For instance, a increment of 0 is the first value from the iterator, an increment of 1 is the second value from the iterator, and so on.
// An increment of a negative value added to the subnet count is equivalent to the same number of iterator values preceding the upper bound of the iterator.
// For instance, an increment of count - 1 is the last value from the iterator, an increment of count - 2 is the second last value, and so on.
//
// On address overflow or underflow, Increment returns nil.
func (addr *Address) Increment(increment int64) *Address {
return addr.init().increment(increment)
}
// ReverseBytes returns a new address with the bytes reversed. Any prefix length is dropped.
//
// If each segment is more than 1 byte long, and the bytes within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, then this returns an error.
//
// In practice this means that to be reversible, a segment range must include all values except possibly the largest and/or smallest, which reverse to themselves.
func (addr *Address) ReverseBytes() (*Address, addrerr.IncompatibleAddressError) {
return addr.init().reverseBytes()
}
// ReverseBits returns a new address with the bits reversed. Any prefix length is dropped.
//
// If the bits within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, this returns an error.
//
// In practice this means that to be reversible, a segment range must include all values except possibly the largest and/or smallest, which reverse to themselves.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
func (addr *Address) ReverseBits(perByte bool) (*Address, addrerr.IncompatibleAddressError) {
return addr.init().reverseBits(perByte)
}
// ReverseSegments returns a new address with the segments reversed.
func (addr *Address) ReverseSegments() *Address {
return addr.init().reverseSegments()
}
// IsMulticast returns whether this address is multicast.
func (addr *Address) IsMulticast() bool {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
return thisAddr.IsMulticast()
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
return thisAddr.IsMulticast()
} else if thisAddr := addr.ToMAC(); thisAddr != nil {
return thisAddr.IsMulticast()
}
return false
}
// IsLocal returns whether the address can be considered a local address (as opposed to a global one).
func (addr *Address) IsLocal() bool {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
return thisAddr.IsLocal()
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
return thisAddr.IsLocal()
} else if thisAddr := addr.ToMAC(); thisAddr != nil {
return thisAddr.IsLocal()
}
return false
}
// GetLeadingBitCount returns the number of consecutive leading one or zero bits.
// If ones is true, returns the number of consecutive leading one bits.
// Otherwise, returns the number of consecutive leading zero bits.
//
// This method applies to the lower address of the range if this is a subnet representing multiple values.
func (addr *Address) GetLeadingBitCount(ones bool) BitCount {
return addr.init().getLeadingBitCount(ones)
}
// GetTrailingBitCount returns the number of consecutive trailing one or zero bits.
// If ones is true, returns the number of consecutive trailing zero bits.
// Otherwise, returns the number of consecutive trailing one bits.
//
// This method applies to the lower value of the range if this is a subnet representing multiple values.
func (addr *Address) GetTrailingBitCount(ones bool) BitCount {
return addr.init().getTrailingBitCount(ones)
}
// Format implements [fmt.Formatter] interface. It accepts the formats
// - 'v' for the default address and section format (either the normalized or canonical string),
// - 's' (string) for the same,
// - 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
// - 'd' (decimal), 'x' (lowercase hexadecimal), and
// - 'X' (uppercase hexadecimal).
// Also supported are some of fmt's format flags for integral types.
// Sign control is not supported since addresses and sections are never negative.
// '#' for an alternate format is supported, which adds a leading zero for octal, and for hexadecimal it adds
// a leading "0x" or "0X" for "%#x" and "%#X" respectively.
// Also supported is specification of minimum digits precision, output field width,
// space or zero padding, and '-' for left or right justification.
func (addr Address) Format(state fmt.State, verb rune) {
addr.init().format(state, verb)
}
// String implements the [fmt.Stringer] interface, returning the canonical string provided by ToCanonicalString, or "<nil>" if the receiver is a nil pointer.
func (addr *Address) String() string {
if addr == nil {
return nilString()
}
return addr.init().toString()
}
// GetSegmentStrings returns a slice with the string for each segment being the string that is normalized with wildcards.
func (addr *Address) GetSegmentStrings() []string {
if addr == nil {
return nil
}
return addr.init().getSegmentStrings()
}
// ToCanonicalString produces a canonical string for the address.
//
// For IPv4, dotted octet format, also known as dotted decimal format, is used.
// https://datatracker.ietf.org/doc/html/draft-main-ipaddr-text-rep-00#section-2.1
//
// For IPv6, RFC 5952 describes canonical string representation.
// https://en.wikipedia.org/wiki/IPv6_address#Representation
// http://tools.ietf.org/html/rfc5952
//
// For MAC, it uses the canonical standardized IEEE 802 MAC address representation of xx-xx-xx-xx-xx-xx. An example is "01-23-45-67-89-ab".
// For range segments, '|' is used: "11-22-33|44-55-66".
//
// Each address has a unique canonical string, not counting the prefix length.
// With IP addresses, the prefix length is included in the string, and the prefix length can cause two equal addresses to have different strings, for example "1.2.3.4/16" and "1.2.3.4".
// It can also cause two different addresses to have the same string, such as "1.2.0.0/16" for the individual address "1.2.0.0" and also the prefix block "1.2.*.*".
// Use the IPAddress method ToCanonicalWildcardString for a unique string for each IP address and subnet.
func (addr *Address) ToCanonicalString() string {
if addr == nil {
return nilString()
}
return addr.init().toCanonicalString()
}
// ToNormalizedString produces a normalized string for the address.
//
// For IPv4, it is the same as the canonical string.
//
// For IPv6, it differs from the canonical string. Zero-segments are not compressed.
//
// For MAC, it differs from the canonical string. It uses the most common representation of MAC addresses: "xx:xx:xx:xx:xx:xx". An example is "01:23:45:67:89:ab".
// For range segments, '-' is used: "11:22:33-44:55:66".
//
// Each address has a unique normalized string, not counting the prefix length.
// With IP addresses, the prefix length can cause two equal addresses to have different strings, for example "1.2.3.4/16" and "1.2.3.4".
// It can also cause two different addresses to have the same string, such as "1.2.0.0/16" for the individual address "1.2.0.0" and also the prefix block "1.2.*.*".
// Use the IPAddress method ToNormalizedWildcardString for a unique string for each IP address and subnet.
func (addr *Address) ToNormalizedString() string {
if addr == nil {
return nilString()
}
return addr.init().toNormalizedString()
}
// ToNormalizedWildcardString produces a string similar to the normalized string but avoids the CIDR prefix length in IP addresses.
// Multi-valued segments will be shown with wildcards and ranges (denoted by '*' and '-').
func (addr *Address) ToNormalizedWildcardString() string {
if addr == nil {
return nilString()
}
return addr.init().toNormalizedWildcardString()
}
// ToCompressedString produces a short representation of this address while remaining within the confines of standard representation(s) of the address.
//
// For IPv4, it is the same as the canonical string.
//
// For IPv6, it differs from the canonical string. It compresses the maximum number of zeros and/or host segments with the IPv6 compression notation '::'.
//
// For MAC, it differs from the canonical string. It produces a shorter string for the address that has no leading zeros.
func (addr *Address) ToCompressedString() string {
if addr == nil {
return nilString()
}
return addr.init().toCompressedString()
}
// ToHexString writes this address as a single hexadecimal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0x" prefix.
//
// If an address collection cannot be written as a single prefix block or a range of two values, an error is returned.
func (addr *Address) ToHexString(with0xPrefix bool) (string, addrerr.IncompatibleAddressError) {
if addr == nil {
return nilString(), nil
}
return addr.init().toHexString(with0xPrefix)
}
// ToOctalString writes this address as a single octal value (possibly two values if a range),
// the number of digits according to the bit count, with or without a preceding "0" prefix.
//
// If an address collection cannot be written as a single prefix block or a range of two values, an error is returned.
func (addr *Address) ToOctalString(with0Prefix bool) (string, addrerr.IncompatibleAddressError) {
if addr == nil {
return nilString(), nil
}
return addr.init().toOctalString(with0Prefix)
}
// ToBinaryString writes this address as a single binary value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0b" prefix.
//
// If a subnet cannot be written as a single prefix block or a range of two values, an error is returned.
func (addr *Address) ToBinaryString(with0bPrefix bool) (string, addrerr.IncompatibleAddressError) {
if addr == nil {
return nilString(), nil
}
return addr.init().toBinaryString(with0bPrefix)
}
// ToCustomString creates a customized string from this address or subnet according to the given string option parameters.
func (addr *Address) ToCustomString(stringOptions addrstr.StringOptions) string {
if addr == nil {
return nilString()
}
return addr.GetSection().toCustomStringZoned(stringOptions, addr.zone)
}
// ToAddressString retrieves or generates a HostIdentifierString instance for this Address object.
//
// This same Address instance can be retrieved from the resulting HostIdentifierString object using the GetAddress method.
//
// In general, users create Address instances from IPAddressString or MACAddressString instances,
// while the reverse direction is generally not common and not useful.
//
// However, the reverse direction can be useful under certain circumstances, such as when maintaining a collection of HostIdentifierString instances.
func (addr *Address) ToAddressString() HostIdentifierString {
if addr.isIP() {
return addr.ToIP().ToAddressString()
} else if addr.isMAC() {
return addr.ToMAC().ToAddressString()
}
return nil
}
// IsIPv4 returns true if this address or subnet originated as an IPv4 address or subnet. If so, use ToIPv4 to convert back to the IPv4-specific type.
func (addr *Address) IsIPv4() bool {
return addr != nil && addr.isIPv4()
}
// IsIPv6 returns true if this address or subnet originated as an IPv6 address or subnet. If so, use ToIPv6 to convert back to the IPv6-specific type.
func (addr *Address) IsIPv6() bool {
return addr != nil && addr.isIPv6()
}
// IsIP returns true if this address or subnet originated as an IPv4 or IPv6 address or subnet, or an implicitly zero-valued IP. If so, use ToIP to convert back to the IP-specific type.
func (addr *Address) IsIP() bool {
return addr != nil && addr.isIP()
}
// IsMAC returns true if this address or address collection originated as a MAC address or address collection. If so, use ToMAC to convert back to the MAC-specific type.
func (addr *Address) IsMAC() bool {
return addr != nil && addr.isMAC()
}
// ToAddressBase is an identity method.
//
// ToAddressBase can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *Address) ToAddressBase() *Address {
return addr
}
// ToIP converts to an IPAddress if this address or subnet originated as an IPv4 or IPv6 address or subnet, or an implicitly zero-valued IP.
// If not, ToIP returns nil.
//
// ToIP can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *Address) ToIP() *IPAddress {
if addr.IsIP() {
return (*IPAddress)(unsafe.Pointer(addr))
}
return nil
}
// ToIPv6 converts to an IPv6Address if this address or subnet originated as an IPv6 address or subnet.
// If not, ToIPv6 returns nil.
//
// ToIPv6 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *Address) ToIPv6() *IPv6Address {
if addr.IsIPv6() {
return (*IPv6Address)(unsafe.Pointer(addr))
}
return nil
}
// ToIPv4 converts to an IPv4Address if this address or subnet originated as an IPv4 address or subnet.
// If not, ToIPv4 returns nil.
//
// ToIPv4 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *Address) ToIPv4() *IPv4Address {
if addr.IsIPv4() {
return (*IPv4Address)(unsafe.Pointer(addr))
}
return nil
}
// ToMAC converts to a MACAddress if this address or subnet originated as a MAC address or subnet.
// If not, ToMAC returns nil.
//
// ToMAC can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *Address) ToMAC() *MACAddress {
if addr.IsMAC() {
return (*MACAddress)(addr)
}
return nil
}
// Wrap wraps this address, returning a WrappedAddress, an implementation of ExtendedSegmentSeries,
// which can be used to write code that works with both addresses and address sections.
func (addr *Address) Wrap() WrappedAddress {
return wrapAddress(addr.init())
}
// ToKey creates the associated address key.
// While addresses can be compared with the Compare, TrieCompare or Equal methods as well as various provided instances of AddressComparator,
// they are not comparable with Go operators.
// However, AddressKey instances are comparable with Go operators, and thus can be used as map keys.
func (addr *Address) ToKey() Key[*Address] {
key := Key[*Address]{}
contents := &key.keyContents
if thisAddr := addr.ToIPv4(); thisAddr != nil {
key.scheme = ipv4Scheme
thisAddr.toIPv4Key(contents)
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
key.scheme = ipv6Scheme
thisAddr.toIPv6Key(contents)
} else if thisAddr := addr.ToMAC(); thisAddr != nil {
if addr.GetSegmentCount() == ExtendedUniqueIdentifier64SegmentCount {
key.scheme = eui64Scheme
} else {
key.scheme = mac48Scheme
}
thisAddr.toMACKey(contents)
} // else key.scheme == adaptiveZeroScheme
return key
}
// ToGenericKey produces a generic Key[*Address] that can be used with generic code working with [Address], [IPAddress], [IPv4Address], [IPv6Address] and [MACAddress].
func (addr *Address) ToGenericKey() Key[*Address] {
return addr.ToKey()
}
func (addr *Address) fromKey(scheme addressScheme, key *keyContents) *Address {
if scheme == ipv4Scheme {
ipv4Addr := fromIPv4IPKey(key)
return ipv4Addr.ToAddressBase()
} else if scheme == ipv6Scheme {
ipv6Addr := fromIPv6IPKey(key)
return ipv6Addr.ToAddressBase()
} else if scheme == eui64Scheme || scheme == mac48Scheme {
macAddr := fromMACAddrKey(scheme, key)
return macAddr.ToAddressBase()
}
// scheme == adaptiveZeroScheme
zeroAddr := Address{}
return zeroAddr.init()
}
// AddrsMatchUnordered checks if the two slices share the same list of addresses, subnets, or address collections, in any order, using address equality.
// The function can handle duplicates and nil addresses.
func AddrsMatchUnordered[T, U AddressType](addrs1 []T, addrs2 []U) (result bool) {
len1 := len(addrs1)
len2 := len(addrs2)
sameLen := len1 == len2
if len1 == 0 || len2 == 0 {
result = sameLen
} else if len1 == 1 && sameLen {
result = addrs1[0].Equal(addrs2[0])
} else if len1 == 2 && sameLen {
if addrs1[0].Equal(addrs2[0]) {
result = addrs1[1].Equal(addrs2[1])
} else if result = addrs1[0].Equal(addrs2[1]); result {
result = addrs1[1].Equal(addrs2[0])
}
} else {
result = reflect.DeepEqual(asMap(addrs1), asMap(addrs2))
}
return
}
// AddrsMatchOrdered checks if the two slices share the same ordered list of addresses, subnets, or address collections, using address equality.
// Duplicates and nil addresses are allowed.
func AddrsMatchOrdered[T, U AddressType](addrs1 []T, addrs2 []U) (result bool) {
len1 := len(addrs1)
len2 := len(addrs2)
if len1 != len2 {
return
}
for i, addr := range addrs1 {
if !addr.Equal(addrs2[i]) {
return
}
}
return true
}
func asMap[T AddressType](addrs []T) (result map[string]struct{}) {
if addrLen := len(addrs); addrLen > 0 {
result = make(map[string]struct{})
for _, addr := range addrs {
result[addr.ToAddressBase().ToNormalizedWildcardString()] = struct{}{}
}
}
return
}
|