1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"fmt"
"github.com/seancfoley/bintree/tree"
"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
"unsafe"
)
type trieBase[T TrieKeyConstraint[T], V any] struct {
trie tree.BinTrie[trieKey[T], V]
}
// clear removes all added nodes from the trie, after which IsEmpty will return true.
func (trie *trieBase[T, V]) clear() {
trie.trie.Clear()
}
// getRoot returns the root node of this trie, which can be nil for an implicitly zero-valued uninitialized trie, but not for any other trie.
func (trie *trieBase[T, V]) getRoot() *tree.BinTrieNode[trieKey[T], V] {
return trie.trie.GetRoot()
}
func (trie *trieBase[T, V]) add(addr T) bool {
addr = mustBeBlockOrAddress(addr)
return trie.trie.Add(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) addNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.AddNode(trieKey[T]{addr})
}
// constructAddedNodesTree constructs an associative trie in which the root and each added node are mapped to a list of their respective direct added sub-nodes.
// This trie provides an alternative non-binary tree structure of the added nodes.
// It is used by ToAddedNodesTreeString to produce a string showing the alternative structure.
// If there are no non-added nodes in this trie, then the alternative tree structure provided by this method is the same as the original trie.
func (trie *trieBase[T, V]) constructAddedNodesTree() trieBase[T, tree.AddedSubnodeMapping] {
return trieBase[T, tree.AddedSubnodeMapping]{trie.trie.ConstructAddedNodesTree()} // BinTrie[E, AddedSubnodeMapping]
}
func (trie *trieBase[T, V]) addTrie(added *trieNode[T, V]) *tree.BinTrieNode[trieKey[T], V] {
return trie.trie.AddTrie(added.toBinTrieNode())
}
func (trie *trieBase[T, V]) contains(addr T) bool {
addr = mustBeBlockOrAddress(addr)
return trie.trie.Contains(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) remove(addr T) bool {
addr = mustBeBlockOrAddress(addr)
return trie.trie.Remove(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) removeElementsContainedBy(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.RemoveElementsContainedBy(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) elementsContainedBy(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.ElementsContainedBy(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) elementsContaining(addr T) *containmentPath[T, V] {
addr = mustBeBlockOrAddress(addr)
return toContainmentPath[T, V](trie.trie.ElementsContaining(trieKey[T]{addr}))
}
func (trie *trieBase[T, V]) longestPrefixMatch(addr T) (t T) {
addr = mustBeBlockOrAddress(addr)
key, _ := trie.trie.LongestPrefixMatch(trieKey[T]{addr})
return key.address
}
// only added nodes are added to the linked list
func (trie *trieBase[T, V]) longestPrefixMatchNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.LongestPrefixMatchNode(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) elementContains(addr T) bool {
addr = mustBeBlockOrAddress(addr)
return trie.trie.ElementContains(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) getNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.GetNode(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) getAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.GetAddedNode(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) iterator() Iterator[T] {
if trie == nil {
return nilAddressIterator[T]()
}
return addressKeyIterator[T]{trie.trie.Iterator()}
}
func (trie *trieBase[T, V]) descendingIterator() Iterator[T] {
if trie == nil {
return nilAddressIterator[T]()
}
return addressKeyIterator[T]{trie.trie.DescendingIterator()}
}
func (trie *trieBase[T, V]) nodeIterator(forward bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return trie.toTrie().NodeIterator(forward)
}
func (trie *trieBase[T, V]) allNodeIterator(forward bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return trie.toTrie().AllNodeIterator(forward)
}
// Iterates the added nodes in the trie, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (trie *trieBase[T, V]) blockSizeNodeIterator(lowerSubNodeFirst bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return trie.toTrie().BlockSizeNodeIterator(lowerSubNodeFirst)
}
// Iterates all nodes in the trie, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (trie *trieBase[T, V]) blockSizeAllNodeIterator(lowerSubNodeFirst bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return trie.toTrie().BlockSizeAllNodeIterator(lowerSubNodeFirst)
}
// Iterates all nodes, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
func (trie *trieBase[T, V]) blockSizeCachingAllNodeIterator() tree.CachingTrieNodeIterator[trieKey[T], V] {
return trie.toTrie().BlockSizeCachingAllNodeIterator()
}
// Iterates all nodes, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
func (trie *trieBase[T, V]) containingFirstIterator(forwardSubNodeOrder bool) tree.CachingTrieNodeIterator[trieKey[T], V] {
return trie.toTrie().ContainingFirstIterator(forwardSubNodeOrder)
}
func (trie *trieBase[T, V]) containingFirstAllNodeIterator(forwardSubNodeOrder bool) tree.CachingTrieNodeIterator[trieKey[T], V] {
return trie.toTrie().ContainingFirstAllNodeIterator(forwardSubNodeOrder)
}
func (trie *trieBase[T, V]) containedFirstIterator(forwardSubNodeOrder bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return trie.toTrie().ContainedFirstIterator(forwardSubNodeOrder)
}
func (trie *trieBase[T, V]) containedFirstAllNodeIterator(forwardSubNodeOrder bool) tree.TrieNodeIterator[trieKey[T], V] {
return trie.toTrie().ContainedFirstAllNodeIterator(forwardSubNodeOrder)
}
func (trie *trieBase[T, V]) lowerAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.LowerAddedNode(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) floorAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.FloorAddedNode(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) higherAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.HigherAddedNode(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) ceilingAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return trie.trie.CeilingAddedNode(trieKey[T]{addr})
}
func (trie *trieBase[T, V]) clone() *tree.BinTrie[trieKey[T], V] {
return trie.toTrie().Clone()
}
func (trie *trieBase[T, V]) toTrie() *tree.BinTrie[trieKey[T], V] {
return (*tree.BinTrie[trieKey[T], V])(unsafe.Pointer(trie))
}
//
// Trie is a compact binary trie (aka compact binary prefix tree, or binary radix trie), for addresses and/or CIDR prefix block subnets.
// The prefixes in used by the prefix trie are the CIDR prefixes, or the full address in the case of individual addresses with no prefix length.
// The elements of the trie are CIDR prefix blocks or addresses.
//
// For the generic type T, you can choose *Address, *IPAddress, *IPv4Address, *IPv6Address, or *MACAddress.
//
// The zero-value of an AddressTrie is a trie ready for use. Its root will be nil until an element is added to it.
// Once any subnet or address is added to the trie, it will have an assigned root, and any further addition to the trie must match the type and version of the root,
// in addition to the generic type of the trie's keys.
// Once there is a root, the root cannot be removed.
//
// So, for instance, an instance of ipaddr.Trie[*ipaddr.IPAddress] can contain either IPv4 or IPv6 keys, but not both.
// Once it has been populated with the first key, all remaining additions must have the same IP version, even if the trie is cleared.
//
// Any trie can be copied. If a trie has no root, a copy produces a new zero-valued trie with no root.
// If a trie has a root, a copy produces a reference to the same trie, much like copying a map or slice.
//
// The trie data structure allows you to check an address for containment in many subnets at once, in constant time.
// The trie allows you to check a subnet for containment of many smaller subnets or addresses at once, in constant time.
// The trie allows you to check for equality of a subnet or address with a large number of subnets or addresses at once.
//
// There is only a single possible trie for any given set of address and subnets. For one thing, this means they are automatically balanced.
// Also, this makes access to subtries and to the nodes themselves more useful, allowing for many of the same operations performed on the original trie.
//
// Each node has either a prefix block or a single address as its key.
// Each prefix block node can have two sub-nodes, each sub-node a prefix block or address contained by the node.
//
// There are more nodes in the trie than elements added to the trie.
// A node is considered "added" if it was explicitly added to the trie and is included as an element when viewed as a set.
// There are non-added prefix block nodes that are generated in the trie as well.
// When two or more added addresses share the same prefix up until they differ with the bit at index x,
// then a prefix block node is generated (if not already added to the trie) for the common prefix of length x,
// with the nodes for those addresses to be found following the lower
// or upper sub-nodes according to the bit at index x + 1 in each address.
// If that bit is 1, the node can be found by following the upper sub-node,
// and when it is 0, the lower sub-node.
//
// Nodes that were generated as part of the trie structure only
// because of other added elements are not elements of the represented set of addresses and subnets.
// The set elements are the elements that were explicitly added.
//
// You can work with parts of the trie, starting from any node in the trie,
// calling methods that start with any given node, such as iterating the subtrie,
// finding the first or last in the subtrie, doing containment checks with the subtrie, and so on.
//
// The binary trie structure defines a natural ordering of the trie elements.
// Addresses of equal prefix length are sorted by prefix value. Addresses with no prefix length are sorted by address value.
// Addresses of differing prefix length are sorted according to the bit that follows the shorter prefix length in the address with the longer prefix length,
// whether that bit is 0 or 1 determines if that address is ordered before or after the address of shorter prefix length.
//
// The unique and pre-defined structure for a trie means that different means of traversing the trie can be more meaningful.
// This trie implementation provides 8 different ways of iterating through the trie:
// - 1, 2: the natural sorted trie order, forward and reverse (spliterating is also an option for these two orders). Use the methods NodeIterator, Iterator or DescendingIterator. Functions for incrementing and decrementing keys, or comparing keys, is also provided for this order.
// - 3, 4: pre-order tree traversal, in which parent node is visited before sub-nodes, with sub-nodes visited in forward or reverse order
// - 5, 6: post-order tree traversal, in which sub-nodes are visited before parent nodes, with sub-nodes visited in forward or reverse order
// - 7, 8: prefix-block order, in which larger prefix blocks are visited before smaller, and blocks of equal size are visited in forward or reverse sorted order
//
// All of these orderings are useful in specific contexts.
//
// If you create an iterator, then that iterator can no longer be advanced following any further modification to the trie.
// Any call to Next or Remove will panic if the trie was changed following creation of the iterator.
//
// You can do lookup and containment checks on all the subnets and addresses in the trie at once, in constant time.
// A generic trie data structure lookup is O(m) where m is the entry length.
// For this trie, which operates on address bits, entry length is capped at 128 bits for IPv6 and 32 bits for IPv4.
// That makes lookup a constant time operation.
// Subnet containment or equality checks are also constant time since they work the same way as lookup, by comparing prefix bits.
//
// For a generic trie data structure, construction is O(m * n) where m is entry length and n is the number of addresses,
// but for this trie, since entry length is capped at 128 bits for IPv6 and 32 bits for IPv4, construction is O(n),
// in linear proportion to the number of added elements.
//
// This trie also allows for constant time size queries (count of added elements, not node count), by storing sub-trie size in each node.
// It works by updating the size of every node in the path to any added or removed node.
// This does not change insertion or deletion operations from being constant time (because tree-depth is limited to address bit count).
// At the same this makes size queries constant time, rather than being O(n) time.
//
// A single trie can use just a single address type or version, since it works with bits alone,
// and cannot distinguish between different versions and types in the trie structure.
//
// Instead, you could aggregate multiple subtries to create a collection of multiple address types or versions.
// You can use the method ToString for a String that represents multiple tries as a single tree.
//
// Tries are concurrency-safe when not being modified (elements added or removed), but are not concurrency-safe when any goroutine is modifying the trie.
type Trie[T TrieKeyConstraint[T]] struct {
trieBase[T, emptyValue]
}
func (trie *Trie[T]) tobase() *trieBase[T, emptyValue] {
return (*trieBase[T, emptyValue])(unsafe.Pointer(trie))
}
// GetRoot returns the root node of this trie, which can be nil for an implicitly zero-valued uninitialized trie, but not for any other trie.
func (trie *Trie[T]) GetRoot() *TrieNode[T] {
return toAddressTrieNode[T](trie.getRoot())
}
// Size returns the number of elements in the trie.
// It does not return the number of nodes, it returns the number of added nodes.
// Only nodes for which IsAdded returns true are counted (those nodes corresponding to added addresses and prefix blocks).
// When zero is returned, IsEmpty returns true.
func (trie *Trie[T]) Size() int {
return trie.toTrie().Size()
}
// NodeSize returns the number of nodes in the trie, which is always more than the number of elements.
func (trie *Trie[T]) NodeSize() int {
return trie.toTrie().NodeSize()
}
// Clear removes all added nodes from the trie, after which IsEmpty will return true.
func (trie *Trie[T]) Clear() {
trie.clear()
}
// IsEmpty returns true if there are not any added nodes within this trie.
func (trie *Trie[T]) IsEmpty() bool {
return trie.Size() == 0
}
// TreeString returns a visual representation of the trie with one node per line, with or without the non-added keys.
func (trie *Trie[T]) TreeString(withNonAddedKeys bool) string {
return trie.toTrie().TreeString(withNonAddedKeys)
}
// String returns a visual representation of the trie with one node per line.
func (trie *Trie[T]) String() string {
return trie.toTrie().String()
}
// AddedNodesTreeString provides a flattened version of the trie showing only the contained added nodes and their containment structure, which is non-binary.
// The root node is included, which may or may not be added.
func (trie *Trie[T]) AddedNodesTreeString() string {
return trie.toTrie().AddedNodesTreeString()
}
// Add adds the address to this trie.
// The address must match the same type and version of any existing addresses already in the trie.
// Returns true if the address did not already exist in the trie.
func (trie *Trie[T]) Add(addr T) bool {
return trie.add(addr)
}
// AddNode adds the address to this trie.
// The address must match the same type and version of any existing addresses already in the trie.
// The new or existing node for the address is returned.
func (trie *Trie[T]) AddNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.addNode(addr))
}
// AddTrie adds nodes for the keys in the trie with the root node as the passed in node.
// AddTrie returns the sub-node in the trie where the added trie begins, where the first node of the added trie is located.
func (trie *Trie[T]) AddTrie(added *TrieNode[T]) *TrieNode[T] {
return toAddressTrieNode[T](trie.addTrie(added.tobase()))
}
// ConstructAddedNodesTree constructs an associative trie in which the root and each added node have been mapped to a slice of their respective direct added sub-nodes.
// This trie provides an alternative non-binary tree structure of the added nodes.
// It is used by ToAddedNodesTreeString to produce a string showing the alternative structure.
// The returned AddedTree instance wraps the associative trie, presenting it as a non-binary tree with the alternative tree structure,
// the structure in which each node's child nodes are the list of direct and indirect added child nodes in the original trie.
// If there are no non-added nodes in this trie, then the alternative tree structure provided by this method is the same as the original trie.
func (trie *Trie[T]) ConstructAddedNodesTree() AddedTree[T] {
var t trieBase[T, tree.AddedSubnodeMapping] = trie.constructAddedNodesTree()
return AddedTree[T]{AssociativeTrie[T, tree.AddedSubnodeMapping]{t}}
}
// Contains returns whether the given address or prefix block subnet is in the trie as an added element.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the prefix block or address exists already in the trie, false otherwise.
//
// Use GetAddedNode to get the node for the address rather than just checking for its existence.
func (trie *Trie[T]) Contains(addr T) bool {
return trie.contains(addr)
}
// Remove removes the given single address or prefix block subnet from the trie.
//
// Removing an element will not remove contained elements (nodes for contained blocks and addresses).
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the prefix block or address was removed, false if not already in the trie.
//
// You can also remove by calling GetAddedNode to get the node and then calling Remove on the node.
//
// When an address is removed, the corresponding node may remain in the trie if it remains a subnet block for two sub-nodes.
// If the corresponding node can be removed from the trie, it will be removed.
func (trie *Trie[T]) Remove(addr T) bool {
return trie.remove(addr)
}
// RemoveElementsContainedBy removes any single address or prefix block subnet from the trie that is contained in the given individual address or prefix block subnet.
//
// This goes further than Remove, not requiring a match to an inserted node, and also removing all the sub-nodes of any removed node or sub-node.
//
// For example, after inserting 1.2.3.0 and 1.2.3.1, passing 1.2.3.0/31 to RemoveElementsContainedBy will remove them both,
// while the Remove method will remove nothing.
// After inserting 1.2.3.0/31, then Remove will remove 1.2.3.0/31, but will leave 1.2.3.0 and 1.2.3.1 in the trie.
//
// It cannot partially delete a node, such as deleting a single address from a prefix block represented by a node.
// It can only delete the whole node if the whole address or block represented by that node is contained in the given address or block.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
//Returns the root node of the sub-trie that was removed from the trie, or nil if nothing was removed.
func (trie *Trie[T]) RemoveElementsContainedBy(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.removeElementsContainedBy(addr))
}
// ElementsContainedBy checks if a part of this trie is contained by the given prefix block subnet or individual address.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns the root node of the contained sub-trie, or nil if no sub-trie is contained.
// The node returned need not be an "added" node, see IsAdded for more details on added nodes.
// The returned sub-trie is backed by this trie, so changes in this trie are reflected in those nodes and vice-versa.
func (trie *Trie[T]) ElementsContainedBy(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.elementsContainedBy(addr))
}
// ElementsContaining finds the trie nodes in the trie containing the given key and returns them as a linked list.
// Only added nodes are added to the linked list.
//
// If the argument is not a single address nor prefix block, this method will panic.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (trie *Trie[T]) ElementsContaining(addr T) *ContainmentPath[T] {
return &ContainmentPath[T]{*trie.elementsContaining(addr)}
}
// LongestPrefixMatch returns the address added to the trie with the longest matching prefix compared to the provided address, or nil if no matching address.
func (trie *Trie[T]) LongestPrefixMatch(addr T) T {
return trie.longestPrefixMatch(addr)
}
// only added nodes are added to the linked list
// LongestPrefixMatchNode returns the node of address added to the trie with the longest matching prefix compared to the provided address, or nil if no matching address.
func (trie *Trie[T]) LongestPrefixMatchNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.longestPrefixMatchNode(addr))
}
// ElementContains checks if a prefix block subnet or address in the trie contains the given subnet or address.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the subnet or address is contained by a trie element, false otherwise.
//
// To get all the containing addresses, use ElementsContaining.
func (trie *Trie[T]) ElementContains(addr T) bool {
return trie.elementContains(addr)
}
// GetNode gets the node in the trie corresponding to the given address,
// or returns nil if not such element exists.
//
// It returns any node, whether added or not,
// including any prefix block node that was not added.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (trie *Trie[T]) GetNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.getNode(addr))
}
// GetAddedNode gets trie nodes representing added elements.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Use Contains to check for the existence of a given address in the trie,
// as well as GetNode to search for all nodes including those not-added but also auto-generated nodes for subnet blocks.
func (trie *Trie[T]) GetAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.getAddedNode(addr))
}
// Iterator returns an iterator that iterates through the added addresses and prefix blocks in the trie.
// The iteration is in sorted element order.
func (trie *Trie[T]) Iterator() Iterator[T] {
return trie.tobase().iterator()
}
// DescendingIterator returns an iterator that iterates through the added addresses and prefix blocks in the trie.
// The iteration is in reverse sorted element order.
func (trie *Trie[T]) DescendingIterator() Iterator[T] {
return trie.tobase().descendingIterator()
}
// NodeIterator returns an iterator that iterates through all the added nodes in the trie in forward or reverse trie order.
func (trie *Trie[T]) NodeIterator(forward bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{trie.tobase().nodeIterator(forward)}
}
// AllNodeIterator returns an iterator that iterates through all the nodes in the trie in forward or reverse trie order.
func (trie *Trie[T]) AllNodeIterator(forward bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{trie.tobase().allNodeIterator(forward)}
}
// BlockSizeNodeIterator returns an iterator that iterates the added nodes in the trie, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (trie *Trie[T]) BlockSizeNodeIterator(lowerSubNodeFirst bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{trie.tobase().blockSizeNodeIterator(lowerSubNodeFirst)}
}
// BlockSizeAllNodeIterator returns an iterator that iterates all nodes in the trie, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (trie *Trie[T]) BlockSizeAllNodeIterator(lowerSubNodeFirst bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{trie.tobase().blockSizeAllNodeIterator(lowerSubNodeFirst)}
}
// BlockSizeCachingAllNodeIterator returns an iterator that iterates all nodes, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
func (trie *Trie[T]) BlockSizeCachingAllNodeIterator() CachingTrieIterator[*TrieNode[T]] {
return cachingAddressTrieNodeIterator[T, emptyValue]{trie.tobase().blockSizeCachingAllNodeIterator()}
}
// ContainingFirstIterator returns an iterator that does a pre-order binary tree traversal of the added nodes.
// All added nodes will be visited before their added sub-nodes.
// For an address trie this means added containing subnet blocks will be visited before their added contained addresses and subnet blocks.
//
// Once a given node is visited, the iterator allows you to cache an object corresponding to the
// lower or upper sub-node that can be retrieved when you later visit that sub-node.
//
// Objects are cached only with nodes to be visited.
// So for this iterator that means an object will be cached with the first added lower or upper sub-node,
// the next lower or upper sub-node to be visited,
// which is not necessarily the direct lower or upper sub-node of a given node.
//
// The caching allows you to provide iteration context from a parent to its sub-nodes when iterating.
// The caching and retrieval is done in constant-time.
func (trie *Trie[T]) ContainingFirstIterator(forwardSubNodeOrder bool) CachingTrieIterator[*TrieNode[T]] {
return cachingAddressTrieNodeIterator[T, emptyValue]{trie.tobase().containingFirstIterator(forwardSubNodeOrder)}
}
// ContainingFirstAllNodeIterator returns an iterator that does a pre-order binary tree traversal.
// All nodes will be visited before their sub-nodes.
// For an address trie this means containing subnet blocks will be visited before their contained addresses and subnet blocks.
//
// Once a given node is visited, the iterator allows you to cache an object corresponding to the
// lower or upper sub-node that can be retrieved when you later visit that sub-node.
// That allows you to provide iteration context from a parent to its sub-nodes when iterating.
// The caching and retrieval is done in constant time.
func (trie *Trie[T]) ContainingFirstAllNodeIterator(forwardSubNodeOrder bool) CachingTrieIterator[*TrieNode[T]] {
return cachingAddressTrieNodeIterator[T, emptyValue]{trie.tobase().containingFirstAllNodeIterator(forwardSubNodeOrder)}
}
// ContainedFirstIterator returns an iterator that does a post-order binary tree traversal of the added nodes.
// All added sub-nodes will be visited before their parent nodes.
// For an address trie this means contained addresses and subnets will be visited before their containing subnet blocks.
func (trie *Trie[T]) ContainedFirstIterator(forwardSubNodeOrder bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{trie.tobase().containedFirstIterator(forwardSubNodeOrder)}
}
// ContainedFirstAllNodeIterator returns an iterator that does a post-order binary tree traversal.
// All sub-nodes will be visited before their parent nodes.
// For an address trie this means contained addresses and subnets will be visited before their containing subnet blocks.
func (trie *Trie[T]) ContainedFirstAllNodeIterator(forwardSubNodeOrder bool) Iterator[*TrieNode[T]] {
return addrTrieNodeIterator[T, emptyValue]{trie.tobase().containedFirstAllNodeIterator(forwardSubNodeOrder)}
}
// FirstNode returns the first (lowest valued) node in the trie.
func (trie *Trie[T]) FirstNode() *TrieNode[T] {
return toAddressTrieNode[T](trie.trieBase.trie.FirstNode())
}
// FirstAddedNode returns the first (lowest valued) added node in this trie,
// or nil if there are no added entries in this trie or sub-trie.
func (trie *Trie[T]) FirstAddedNode() *TrieNode[T] {
return toAddressTrieNode[T](trie.trieBase.trie.FirstAddedNode())
}
// LastNode returns the last (highest valued) node in this trie.
func (trie *Trie[T]) LastNode() *TrieNode[T] {
return toAddressTrieNode[T](trie.trieBase.trie.LastNode())
}
// LastAddedNode returns the last (highest valued) added node in the trie,
// or nil if there are no added entries in this tree or sub-tree.
func (trie *Trie[T]) LastAddedNode() *TrieNode[T] {
return toAddressTrieNode[T](trie.trieBase.trie.LastAddedNode())
}
// LowerAddedNode returns the added node whose address is the highest address strictly less than the given address.
func (trie *Trie[T]) LowerAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.lowerAddedNode(addr))
}
// FloorAddedNode returns the added node whose address is the highest address less than or equal to the given address.
func (trie *Trie[T]) FloorAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.floorAddedNode(addr))
}
// HigherAddedNode returns the added node whose address is the lowest address strictly greater than the given address.
func (trie *Trie[T]) HigherAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.higherAddedNode(addr))
}
// CeilingAddedNode returns the added node whose address is the lowest address greater than or equal to the given address.
func (trie *Trie[T]) CeilingAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](trie.ceilingAddedNode(addr))
}
// Clone clones this trie.
func (trie *Trie[T]) Clone() *Trie[T] {
return toAddressTrie[T](trie.tobase().clone())
}
// Equal returns whether the given argument is a trie with a set of nodes with the same keys as in this trie.
func (trie *Trie[T]) Equal(other *Trie[T]) bool {
return trie.toTrie().Equal(other.toTrie())
}
// For some reason Format must be here and not in addressTrieNode for nil node.
// It panics in fmt code either way, but if in here then it is handled by a recover() call in fmt properly.
// Seems to be a problem only in the debugger.
// Format implements the [fmt.Formatter] interface.
func (trie Trie[T]) Format(state fmt.State, verb rune) {
// without this, prints like {{{{<nil>}}}} or {{{{0xc00014ca50}}}}
// which is done by printValue in print.go of fmt
trie.trieBase.trie.Format(state, verb)
}
// TreesString merges the tree strings (as shown by the TreeString method) of multiple tries into a single merged tree string.
func TreesString[T TrieKeyConstraint[T]](withNonAddedKeys bool, tries ...*Trie[T]) string {
binTries := make([]*tree.BinTrie[trieKey[T], emptyValue], 0, len(tries))
for _, trie := range tries {
binTries = append(binTries, toBinTrie[T](trie))
}
return tree.TreesString(withNonAddedKeys, binTries...)
}
func toBinTrie[T TrieKeyConstraint[T]](trie *Trie[T]) *tree.BinTrie[trieKey[T], emptyValue] {
return (*tree.BinTrie[trieKey[T], emptyValue])(unsafe.Pointer(trie))
}
func toAddressTrie[T TrieKeyConstraint[T]](trie *tree.BinTrie[trieKey[T], emptyValue]) *Trie[T] {
return (*Trie[T])(unsafe.Pointer(trie))
}
////////
////////
////////
////////
////////
////////
////////
////////
// AssociativeTrie represents a binary address trie in which each added node can be associated with a value.
// It is an instance of [Trie] that can also function as a key-value map. The keys are addresses or prefix blocks.
// Each can be mapped to a value with type specified by the generic type V.
//
// For the generic type T, you can choose *Address, *IPAddress, *IPv4Address, *IPv6Address, or *MACAddress.
// The generic value type V can be any type of your choosing.
//
// All the characteristics of Trie are common to AssociativeTrie.
//
// The zero value is a binary trie ready for use.
type AssociativeTrie[T TrieKeyConstraint[T], V any] struct {
trieBase[T, V]
}
func (trie *AssociativeTrie[T, V]) tobase() *trieBase[T, V] {
return (*trieBase[T, V])(unsafe.Pointer(trie))
}
// GetRoot returns the root node of this trie, which can be nil for an implicitly zero-valued uninitialized trie, but not for any other trie.
func (trie *AssociativeTrie[T, V]) GetRoot() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.getRoot())
}
// Size returns the number of elements in the tree.
// It does not return the number of nodes.
// Only nodes for which IsAdded returns true are counted (those nodes corresponding to added addresses and prefix blocks).
// When zero is returned, IsEmpty returns true.
func (trie *AssociativeTrie[T, V]) Size() int {
return trie.toTrie().Size()
}
// NodeSize returns the number of nodes in the tree, which is always more than the number of elements.
func (trie *AssociativeTrie[T, V]) NodeSize() int {
return trie.toTrie().NodeSize()
}
// Clear removes all added nodes from the trie, after which IsEmpty will return true.
func (trie *AssociativeTrie[T, V]) Clear() {
trie.clear()
}
// IsEmpty returns true if there are not any added nodes within this tree.
func (trie *AssociativeTrie[T, V]) IsEmpty() bool {
return trie.Size() == 0
}
// TreeString returns a visual representation of the tree with one node per line, with or without the non-added keys.
func (trie *AssociativeTrie[T, V]) TreeString(withNonAddedKeys bool) string {
return trie.toTrie().TreeString(withNonAddedKeys)
}
// String returns a visual representation of the tree with one node per line.
func (trie *AssociativeTrie[T, V]) String() string {
return trie.toTrie().String()
}
// AddedNodesTreeString provides a flattened version of the trie showing only the contained added nodes and their containment structure, which is non-binary.
// The root node is included, which may or may not be added.
func (trie *AssociativeTrie[T, V]) AddedNodesTreeString() string {
return trie.toTrie().AddedNodesTreeString()
}
// Add adds the address to this trie.
// Returns true if the address did not already exist in the trie.
func (trie *AssociativeTrie[T, V]) Add(addr T) bool {
return trie.add(addr)
}
// AddNode adds the address key to this trie.
// The new or existing node for the address is returned.
func (trie *AssociativeTrie[T, V]) AddNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.addNode(addr))
}
// AddTrie adds nodes for the keys in the trie with the root node as the passed in node. To add both keys and values, use PutTrie.
// AddTrie returns the sub-node in the trie where the added trie begins, where the first node of the added trie is located.
func (trie *AssociativeTrie[T, V]) AddTrie(added *AssociativeTrieNode[T, V]) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.addTrie(added.toBase()))
}
// ConstructAddedNodesTree provides an associative trie in which the root and each added node are mapped to a list of their respective direct added sub-nodes.
// This trie provides an alternative non-binary tree structure of the added nodes.
// It is used by ToAddedNodesTreeString to produce a string showing the alternative structure.
// The returned AddedTree instance wraps the associative trie, presenting it as a non-binary tree with the alternative tree structure,
// the structure in which each node's child nodes are the list of direct and indirect added child nodes in the original trie.
// If there are no non-added nodes in this trie, then the alternative tree structure provided by this method is the same as the original trie.
func (trie *AssociativeTrie[T, V]) ConstructAddedNodesTree() AssociativeAddedTree[T, V] {
var t trieBase[T, tree.AddedSubnodeMapping] = trie.constructAddedNodesTree()
return AssociativeAddedTree[T, V]{AssociativeTrie[T, tree.AddedSubnodeMapping]{t}}
}
// Contains returns whether the given address or prefix block subnet is in the trie as an added element.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the prefix block or address exists already in the trie, false otherwise.
//
// Use GetAddedNode to get the node for the address rather than just checking for its existence.
func (trie *AssociativeTrie[T, V]) Contains(addr T) bool {
return trie.contains(addr)
}
// Remove removes the given single address or prefix block subnet from the trie.
//
// Removing an element will not remove contained elements (nodes for contained blocks and addresses).
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the prefix block or address was removed, false if not already in the trie.
//
// You can also remove by calling GetAddedNode to get the node and then calling Remove on the node.
//
// When an address is removed, the corresponding node may remain in the trie if it remains a subnet block for two sub-nodes.
// If the corresponding node can be removed from the trie, it will be removed.
func (trie *AssociativeTrie[T, V]) Remove(addr T) bool {
return trie.remove(addr)
}
// RemoveElementsContainedBy removes any single address or prefix block subnet from the trie that is contained in the given individual address or prefix block subnet.
//
// This goes further than Remove, not requiring a match to an inserted node, and also removing all the sub-nodes of any removed node or sub-node.
//
// For example, after inserting 1.2.3.0 and 1.2.3.1, passing 1.2.3.0/31 to RemoveElementsContainedBy will remove them both,
// while the Remove method will remove nothing.
// After inserting 1.2.3.0/31, then Remove will remove 1.2.3.0/31, but will leave 1.2.3.0 and 1.2.3.1 in the trie.
//
// It cannot partially delete a node, such as deleting a single address from a prefix block represented by a node.
// It can only delete the whole node if the whole address or block represented by that node is contained in the given address or block.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
//Returns the root node of the sub-trie that was removed from the trie, or nil if nothing was removed.
func (trie *AssociativeTrie[T, V]) RemoveElementsContainedBy(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.removeElementsContainedBy(addr))
}
// ElementsContainedBy checks if a part of this trie is contained by the given prefix block subnet or individual address.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns the root node of the contained sub-trie, or nil if no sub-trie is contained.
// The node returned need not be an "added" node, see IsAdded for more details on added nodes.
// The returned sub-trie is backed by this trie, so changes in this trie are reflected in those nodes and vice-versa.
func (trie *AssociativeTrie[T, V]) ElementsContainedBy(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.elementsContainedBy(addr))
}
// ElementsContaining finds the trie nodes in the trie containing the given key and returns them as a linked list.
// Only added nodes are added to the linked list.
//
// If the argument is not a single address nor prefix block, this method will panic.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (trie *AssociativeTrie[T, V]) ElementsContaining(addr T) *ContainmentValuesPath[T, V] {
return &ContainmentValuesPath[T, V]{*trie.elementsContaining(addr)}
}
// LongestPrefixMatch returns the address with the longest matching prefix compared to the provided address.
func (trie *AssociativeTrie[T, V]) LongestPrefixMatch(addr T) T {
return trie.longestPrefixMatch(addr)
}
// only added nodes are added to the linked list
// LongestPrefixMatchNode returns the node of the address with the longest matching prefix compared to the provided address.
func (trie *AssociativeTrie[T, V]) LongestPrefixMatchNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.longestPrefixMatchNode(addr))
}
// ElementContains checks if a prefix block subnet or address in the trie contains the given subnet or address.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the subnet or address is contained by a trie element, false otherwise.
//
// To get all the containing addresses, use ElementsContaining.
func (trie *AssociativeTrie[T, V]) ElementContains(addr T) bool {
return trie.elementContains(addr)
}
// GetNode gets the node in the trie corresponding to the given address,
// or returns nil if not such element exists.
//
// It returns any node, whether added or not,
// including any prefix block node that was not added.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (trie *AssociativeTrie[T, V]) GetNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.getNode(addr))
}
// GetAddedNode gets trie nodes representing added elements.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Use Contains to check for the existence of a given address in the trie,
// as well as GetNode to search for all nodes including those not added but also auto-generated nodes for subnet blocks.
func (trie *AssociativeTrie[T, V]) GetAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.getAddedNode(addr))
}
// Iterator returns an iterator that iterates through the added addresses and prefix blocks in the trie.
// The iteration is in sorted element order.
func (trie *AssociativeTrie[T, V]) Iterator() Iterator[T] {
return trie.tobase().iterator()
}
// DescendingIterator returns an iterator that iterates through the added addresses and prefix blocks in the trie.
// The iteration is in reverse sorted element order.
func (trie *AssociativeTrie[T, V]) DescendingIterator() Iterator[T] {
return trie.tobase().descendingIterator()
}
// NodeIterator returns an iterator that iterates through all the added nodes in the trie in forward or reverse tree order.
func (trie *AssociativeTrie[T, V]) NodeIterator(forward bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{trie.tobase().nodeIterator(forward)}
}
// AllNodeIterator returns an iterator that iterates through all the nodes in the trie in forward or reverse tree order.
func (trie *AssociativeTrie[T, V]) AllNodeIterator(forward bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{trie.tobase().allNodeIterator(forward)}
}
// BlockSizeNodeIterator returns an iterator that iterates the added nodes in the trie, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (trie *AssociativeTrie[T, V]) BlockSizeNodeIterator(lowerSubNodeFirst bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{trie.tobase().blockSizeNodeIterator(lowerSubNodeFirst)}
}
// BlockSizeAllNodeIterator returns an iterator that iterates all nodes in the trie, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (trie *AssociativeTrie[T, V]) BlockSizeAllNodeIterator(lowerSubNodeFirst bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{trie.tobase().blockSizeAllNodeIterator(lowerSubNodeFirst)}
}
// BlockSizeCachingAllNodeIterator returns an iterator that iterates all nodes, ordered by keys from largest prefix blocks to smallest, and then to individual addresses.
func (trie *AssociativeTrie[T, V]) BlockSizeCachingAllNodeIterator() CachingTrieIterator[*AssociativeTrieNode[T, V]] {
return cachingAssociativeAddressTrieNodeIteratorX[T, V]{trie.tobase().blockSizeCachingAllNodeIterator()}
}
// ContainingFirstIterator returns an iterator that does a pre-order binary trie traversal of the added nodes.
// All added nodes will be visited before their added sub-nodes.
// For an address trie this means added containing subnet blocks will be visited before their added contained addresses and subnet blocks.
//
// Once a given node is visited, the iterator allows you to cache an object corresponding to the
// lower or upper sub-node that can be retrieved when you later visit that sub-node.
//
// Objects are cached only with nodes to be visited.
// So for this iterator that means an object will be cached with the first added lower or upper sub-node,
// the next lower or upper sub-node to be visited,
// which is not necessarily the direct lower or upper sub-node of a given node.
//
// The caching allows you to provide iteration context from a parent to its sub-nodes when iterating.
// The caching and retrieval is done in constant-time.
func (trie *AssociativeTrie[T, V]) ContainingFirstIterator(forwardSubNodeOrder bool) CachingTrieIterator[*AssociativeTrieNode[T, V]] {
return cachingAssociativeAddressTrieNodeIteratorX[T, V]{trie.tobase().containingFirstIterator(forwardSubNodeOrder)}
}
// ContainingFirstAllNodeIterator returns an iterator that does a pre-order binary trie traversal.
// All nodes will be visited before their sub-nodes.
// For an address trie this means containing subnet blocks will be visited before their contained addresses and subnet blocks.
//
// Once a given node is visited, the iterator allows you to cache an object corresponding to the
// lower or upper sub-node that can be retrieved when you later visit that sub-node.
// That allows you to provide iteration context from a parent to its sub-nodes when iterating.
// The caching and retrieval is done in constant-time.
func (trie *AssociativeTrie[T, V]) ContainingFirstAllNodeIterator(forwardSubNodeOrder bool) CachingTrieIterator[*AssociativeTrieNode[T, V]] {
return cachingAssociativeAddressTrieNodeIteratorX[T, V]{trie.tobase().containingFirstAllNodeIterator(forwardSubNodeOrder)}
}
// ContainedFirstIterator returns an iterator that does a post-order binary trie traversal of the added nodes.
// All added sub-nodes will be visited before their parent nodes.
// For an address trie this means contained addresses and subnets will be visited before their containing subnet blocks.
func (trie *AssociativeTrie[T, V]) ContainedFirstIterator(forwardSubNodeOrder bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{trie.tobase().containedFirstIterator(forwardSubNodeOrder)}
}
// ContainedFirstAllNodeIterator returns an iterator that does a post-order binary trie traversal.
// All sub-nodes will be visited before their parent nodes.
// For an address trie this means contained addresses and subnets will be visited before their containing subnet blocks.
func (trie *AssociativeTrie[T, V]) ContainedFirstAllNodeIterator(forwardSubNodeOrder bool) Iterator[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIterator[T, V]{trie.tobase().containedFirstAllNodeIterator(forwardSubNodeOrder)}
}
// FirstNode returns the first (lowest-valued) node in the trie or nil if the trie is empty.
func (trie *AssociativeTrie[T, V]) FirstNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.trieBase.trie.FirstNode())
}
// FirstAddedNode returns the first (lowest-valued) added node in the trie
// or nil if there are no added entries in this trie.
func (trie *AssociativeTrie[T, V]) FirstAddedNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.trieBase.trie.FirstAddedNode())
}
// LastNode returns the last (highest-valued) node in the trie or nil if the trie is empty.
func (trie *AssociativeTrie[T, V]) LastNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.trieBase.trie.LastNode())
}
// LastAddedNode returns the last (highest-valued) added node in the sub-trie originating from this node,
// or nil if there are no added entries in this trie.
func (trie *AssociativeTrie[T, V]) LastAddedNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.trieBase.trie.LastAddedNode())
}
// LowerAddedNode returns the added node whose address is the highest address strictly less than the given address,
// or nil if there are no added entries in this trie.
func (trie *AssociativeTrie[T, V]) LowerAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.lowerAddedNode(addr))
}
// FloorAddedNode returns the added node whose address is the highest address less than or equal to the given address,
// or nil if there are no added entries in this trie.
func (trie *AssociativeTrie[T, V]) FloorAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.floorAddedNode(addr))
}
// HigherAddedNode returns the added node whose address is the lowest address strictly greater than the given address,
// or nil if there are no added entries in this trie.
func (trie *AssociativeTrie[T, V]) HigherAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.higherAddedNode(addr))
}
// CeilingAddedNode returns the added node whose address is the lowest address greater than or equal to the given address,
// or nil if there are no added entries in this trie.
func (trie *AssociativeTrie[T, V]) CeilingAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.ceilingAddedNode(addr))
}
// Clone clones this trie.
func (trie *AssociativeTrie[T, V]) Clone() *AssociativeTrie[T, V] {
return toAssociativeTrie[T, V](trie.tobase().clone())
}
// Equal returns whether the given argument is a trie with a set of nodes with the same keys as in this trie.
func (trie *AssociativeTrie[T, V]) Equal(other *AssociativeTrie[T, V]) bool {
return trie.toTrie().Equal(other.toTrie())
}
// DeepEqual returns whether the given argument is a trie with a set of nodes with the same keys and values as in this trie,
// the values being compared with reflect.DeepEqual.
func (trie *AssociativeTrie[T, V]) DeepEqual(other *AssociativeTrie[T, V]) bool {
return trie.toTrie().DeepEqual(other.toTrie())
}
// Put associates the specified value with the specified key in this map.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// If this map previously contained a mapping for a key,
// the old value is replaced by the specified value, and false is returned along with the old value.
// If this map did not previously contain a mapping for the key, true is returned along with a nil value.
// The boolean return value allows you to distinguish whether the address was previously mapped to nil or not mapped at all.
func (trie *AssociativeTrie[T, V]) Put(addr T, value V) (V, bool) {
addr = mustBeBlockOrAddress(addr)
return trie.trie.Put(trieKey[T]{addr}, value)
}
// PutTrie adds nodes for the address keys and values in the trie with the root node as the passed in node. To add only the keys, use AddTrie.
//
// For each added in the given node that does not exist in the trie, a copy of each node will be made,
// the copy including the associated value, and the copy will be inserted into the trie.
//
// The address type/version of the keys must match.
//
// When adding one trie to another, this method is more efficient than adding each node of the first trie individually.
// When using this method, searching for the location to add sub-nodes starts from the inserted parent node.
//
// Returns the node corresponding to the given sub-root node, whether it was already in the trie or not.
func (trie *AssociativeTrie[T, V]) PutTrie(added *AssociativeTrieNode[T, V]) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](trie.trie.PutTrie(added.toBinTrieNode()))
//return trie.putTrie(added.toBase())
}
// PutNode associates the specified value with the specified key in this map.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns the node for the added address, whether it was already in the trie or not.
//
// If you wish to know whether the node was already there when adding, use PutNew, or before adding you can use GetAddedNode.
func (trie *AssociativeTrie[T, V]) PutNode(addr T, value V) *AssociativeTrieNode[T, V] {
addr = mustBeBlockOrAddress(addr)
return toAssociativeTrieNode[T, V](trie.trie.PutNode(trieKey[T]{addr}, value))
}
// Remap remaps node values in the trie.
//
// This will look up the node corresponding to the given key.
// It will call the remapping function, regardless of whether the node is found or not.
//
// If the node is not found, or the node is not an "added" node, the existingValue argument will be the zero value.
// If the node is found, the existingValue argument will be the node's value, which can also be the zero value.
// The boolean "found" argument will be true if the node was found and it is an "added" node.
// If the node was not found or was not an "added" node, then the boolean "found" argument will be false.
//
// If the remapping function returns false as the "mapIt" argument, then the matched node will be removed or converted to a "non-added" node, if any.
// If it returns true, then either the existing node will be set to an "added" node with the "mapped" value given as the first argument,
// or if there was no matched node, it will create a new added node with the "mapped" value.
//
// The method will return the node involved, which is either the matched node, or the newly created node,
// or nil if there was no matched node nor newly created node.
//
// If the remapping function modifies the trie during its computation,
// and the returned values from the remapper requires changes to be made to the trie,
// then the trie will not be changed as required by the remapper, and Remap will panic.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (trie *AssociativeTrie[T, V]) Remap(addr T, remapper func(existingValue V, found bool) (mapped V, mapIt bool)) *AssociativeTrieNode[T, V] {
addr = mustBeBlockOrAddress(addr)
return toAssociativeTrieNode[T, V](trie.trieBase.trie.Remap(trieKey[T]{addr}, remapper))
}
// RemapIfAbsent remaps node values in the trie, but only for nodes that do not exist or are not "added".
//
// This will look up the node corresponding to the given key.
// If the node is not found or not "added", then RemapIfAbsent will call the supplier function.
// It will create a new node with the value returned from the supplier function.
// If the node is found and "added", then RemapIfAbsent will not call the supplier function.
//
// The method will return the node involved, which is either the matched node, the newly created node, or nil if there was no matched node nor newly created node.
//
// If the supplier function modifies the trie during its computation,
// then the trie will not be changed and RemapIfAbsent will panic.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (trie *AssociativeTrie[T, V]) RemapIfAbsent(addr T, supplier func() V) *AssociativeTrieNode[T, V] {
addr = mustBeBlockOrAddress(addr)
return toAssociativeTrieNode[T, V](trie.trieBase.trie.RemapIfAbsent(trieKey[T]{addr}, supplier))
}
// Get gets the value for the specified key in this mapped trie or sub-trie.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns the value for the given key.
// Returns nil if the contains no mapping for that key or if the mapped value is nil.
func (trie *AssociativeTrie[T, V]) Get(addr T) (V, bool) {
addr = mustBeBlockOrAddress(addr)
return trie.trie.Get(trieKey[T]{addr})
}
// For some reason Format must be here and not in addressTrieNode for nil node.
// It panics in fmt code either way, but if in here then it is handled by a recover() call in fmt properly in the debugger.
// Format implements the [fmt.Formatter] interface.
func (trie AssociativeTrie[T, V]) Format(state fmt.State, verb rune) {
trie.trieBase.trie.Format(state, verb)
}
// AssociativeTreesString merges the trie strings (as shown by the TreeString method) of multiple associative tries into a single merged trie string.
func AssociativeTreesString[T TrieKeyConstraint[T], V any](withNonAddedKeys bool, tries ...*AssociativeTrie[T, V]) string {
binTries := make([]*tree.BinTrie[trieKey[T], V], 0, len(tries))
for _, trie := range tries {
binTries = append(binTries, toAssocBinTrie[T, V](trie))
}
return tree.TreesString(withNonAddedKeys, binTries...)
}
func toAssocBinTrie[T TrieKeyConstraint[T], V any](trie *AssociativeTrie[T, V]) *tree.BinTrie[trieKey[T], V] {
return (*tree.BinTrie[trieKey[T], V])(unsafe.Pointer(trie))
}
func toAssociativeTrie[T TrieKeyConstraint[T], V any](trie *tree.BinTrie[trieKey[T], V]) *AssociativeTrie[T, V] {
return (*AssociativeTrie[T, V])(unsafe.Pointer(trie))
}
// Ensures the address is either an individual address or a prefix block subnet.
func mustBeBlockOrAddress[T TrieKeyConstraint[T]](addr T) T {
res, err := checkBlockOrAddress(addr)
if err != nil {
panic(err)
}
return res
}
// Ensures the address is either an individual address or a prefix block subnet.
// Returns a normalized address which has no prefix length if it is a single address,
// or has a prefix length matching the prefix block size if it is a prefix block.
func checkBlockOrAddress[T TrieKeyConstraint[T]](addr T) (res T, err addrerr.IncompatibleAddressError) {
return addr.toSinglePrefixBlockOrAddress()
}
// NewTrie constructs an address trie for the given type, without a root. For the generic type T,
// you can choose *Address, *IPAddress, *IPv4Address, *IPv6Address, or *MACAddress.
func NewTrie[T TrieKeyConstraint[T]]() *Trie[T] {
return &Trie[T]{}
}
// NewAssociativeTrie constructs an associative address trie for the given types, without a root.
func NewAssociativeTrie[T TrieKeyConstraint[T], V any]() *AssociativeTrie[T, V] {
return &AssociativeTrie[T, V]{}
}
type (
AssociativeAddressTrie = AssociativeTrie[*Address, any]
AddressTrie = Trie[*Address]
IPv4AddressAssociativeTrie = AssociativeTrie[*IPv4Address, any]
IPv4AddressTrie = Trie[*IPv4Address]
IPv6AddressAssociativeTrie = AssociativeTrie[*IPv6Address, any]
IPv6AddressTrie = Trie[*IPv6Address]
// NodeValue is an alias for the generic node value type for AssociativeAddressTrie, IPv4AddressAssociativeTrie, and IPv6AddressAssociativeTrie
NodeValue = any
)
// NewIPv4AddressTrie constructs an IPv4 address trie with the root as the 0.0.0.0/0 prefix block
// This is here for backwards compatibility. Using NewTrie is recommended instead.
func NewIPv4AddressTrie() *Trie[*IPv4Address] { // for backwards compatibility
return &Trie[*IPv4Address]{trieBase[*IPv4Address, emptyValue]{tree.NewBinTrie[trieKey[*IPv4Address], emptyValue](trieKey[*IPv4Address]{ipv4All})}}
}
// NewIPv4AddressAssociativeTrie constructs an IPv4 associative address trie with the root as the 0.0.0.0/0 prefix block
// This is here for backwards compatibility. Using NewAssociativeTrie is recommended instead.
func NewIPv4AddressAssociativeTrie() *AssociativeTrie[*IPv4Address, any] { // for backwards compatibility
return &AssociativeTrie[*IPv4Address, any]{trieBase[*IPv4Address, any]{tree.NewBinTrie[trieKey[*IPv4Address], any](trieKey[*IPv4Address]{ipv4All})}}
}
// NewIPv6AddressTrie constructs an IPv6 address trie with the root as the ::/0 prefix block
// This is here for backwards compatibility. Using NewTrie is recommended instead.
func NewIPv6AddressTrie() *Trie[*IPv6Address] { // for backwards compatibility
return &Trie[*IPv6Address]{trieBase[*IPv6Address, emptyValue]{tree.NewBinTrie[trieKey[*IPv6Address], emptyValue](trieKey[*IPv6Address]{ipv6All})}}
}
// NewIPv6AddressAssociativeTrie constructs an IPv6 associative address trie with the root as the ::/0 prefix block
// This is here for backwards compatibility. Using NewAssociativeTrie is recommended instead.
func NewIPv6AddressAssociativeTrie() *AssociativeTrie[*IPv6Address, any] { // for backwards compatibility
return &AssociativeTrie[*IPv6Address, any]{trieBase[*IPv6Address, any]{tree.NewBinTrie[trieKey[*IPv6Address], any](trieKey[*IPv6Address]{ipv6All})}}
}
// NewMACAddressTrie constructs a MAC address trie with the root as the zero-prefix block
// If extended is true, the trie will consist of 64-bit EUI addresses, otherwise the addresses will be 48-bit.
// If you wish to construct a trie in which the address size is determined by the first added address,
// use the zero-value MACAddressTrie{}
// This is here for backwards compatibility. Using NewTrie is recommended instead.
func NewMACAddressTrie(extended bool) *Trie[*MACAddress] {
var rootAddr *MACAddress
if extended {
rootAddr = macAllExtended
} else {
rootAddr = macAll
}
return &Trie[*MACAddress]{trieBase[*MACAddress, emptyValue]{tree.NewBinTrie[trieKey[*MACAddress], emptyValue](trieKey[*MACAddress]{rootAddr})}}
}
// NewMACAddressAssociativeTrie constructs a MAC associative address trie with the root as the zero-prefix prefix block
// This is here for backwards compatibility. Using NewAssociativeTrie is recommended instead.
func NewMACAddressAssociativeTrie(extended bool) *AssociativeTrie[*MACAddress, any] {
var rootAddr *MACAddress
if extended {
rootAddr = macAllExtended
} else {
rootAddr = macAll
}
return &AssociativeTrie[*MACAddress, any]{trieBase[*MACAddress, any]{tree.NewBinTrie[trieKey[*MACAddress], any](trieKey[*MACAddress]{rootAddr})}}
}
// AddedTree is an alternative non-binary tree data structure originating from a binary trie
// in which the nodes of this tree are the "added" nodes of the original trie,
// with the possible exception of the root, which matches the root node of the original.
// The root may or may not be an added node from the original trie.
// This tree is also read-only and is generated from the originating trie,
// but does not change in concert with changes to the original trie.
type AddedTree[T TrieKeyConstraint[T]] struct {
wrapped AssociativeTrie[T, tree.AddedSubnodeMapping]
}
// GetRoot returns the root of this tree, which corresponds to the root of the originating trie.
func (atree AddedTree[T]) GetRoot() AddedTreeNode[T] {
return AddedTreeNode[T]{atree.wrapped.getRoot()}
}
// String returns a string representation of the tree, which is the same as the string obtained from
// the AddedNodesTreeString method of the originating trie.
func (atree AddedTree[T]) String() string {
return tree.AddedNodesTreeString[trieKey[T], emptyValue](atree.wrapped.trie.GetRoot())
}
// AddedTreeNode represents a node in an AddedTree
type AddedTreeNode[T TrieKeyConstraint[T]] struct {
wrapped *tree.BinTrieNode[trieKey[T], tree.AddedSubnodeMapping]
}
// GetSubNodes returns the sub-nodes of this node, which are not the same as the 0, 1 or 2 direct sub-nodes of the originating binary trie.
// Instead, these are all the direct or indirect added sub-nodes of the node in the originating trie.
// If you can traverse from this node to another node in the originating trie, using a sequence of sub-nodes, without any intervening sub-node being an added node, then that other node will appear as a sub-node here.
func (node AddedTreeNode[T]) GetSubNodes() []AddedTreeNode[T] {
val := node.wrapped.GetValue()
if val == nil {
return nil
}
subnodeMapping := val.(tree.SubNodesMapping[trieKey[T], emptyValue])
var subNodes []*tree.BinTrieNode[trieKey[T], tree.AddedSubnodeMapping]
subNodes = subnodeMapping.SubNodes
if len(subNodes) == 0 {
return nil
}
res := make([]AddedTreeNode[T], len(subNodes))
for i, subNode := range subNodes {
res[i] = AddedTreeNode[T]{subNode}
}
return res
}
// IsAdded returns if the node was an added node in the original trie.
// This returns true for all nodes except possibly the root, since only added nodes are added to this tree, apart from the root.
func (node AddedTreeNode[T]) IsAdded() bool {
return node.wrapped.IsAdded()
}
// GetKey returns the key of this node, which is the same as the key of the corresponding node in the originating trie.
func (node AddedTreeNode[T]) GetKey() T {
return node.wrapped.GetKey().address
}
// String returns a visual representation of this node including the key.
// If this is the root, it will have an open circle if the root is not an added node.
// Otherwise, the node will have a closed circle.
func (node AddedTreeNode[T]) String() string {
return tree.NodeString[trieKey[T], emptyValue](printWrapper[T, emptyValue]{node.wrapped})
}
// TreeString returns a visual representation of the sub-tree originating from this node, with one node per line.
func (node AddedTreeNode[T]) TreeString() string {
return tree.AddedNodesTreeString[trieKey[T], emptyValue](node.wrapped)
}
type printWrapper[T TrieKeyConstraint[T], V any] struct {
*tree.BinTrieNode[trieKey[T], tree.AddedSubnodeMapping]
}
func (p printWrapper[T, V]) GetValue() V {
var nodeValue tree.AddedSubnodeMapping = p.BinTrieNode.GetValue()
if nodeValue == nil {
var v V
return v
}
return nodeValue.(tree.SubNodesMapping[trieKey[T], V]).Value
}
// AssociativeAddedTree is similar to AddedTree but originates from an AssociativeTrie.
// The nodes of this tree have the same values as the corresponding nodes in the original trie.
type AssociativeAddedTree[T TrieKeyConstraint[T], V any] struct {
wrapped AssociativeTrie[T, tree.AddedSubnodeMapping]
}
// GetRoot returns the root of this tree, which corresponds to the root of the originating trie.
func (atree AssociativeAddedTree[T, V]) GetRoot() AssociativeAddedTreeNode[T, V] {
return AssociativeAddedTreeNode[T, V]{atree.wrapped.getRoot()}
}
// String returns a string representation of the tree, which is the same as the string obtained from
// the AddedNodesTreeString method of the originating trie.
func (atree AssociativeAddedTree[T, V]) String() string {
return tree.AddedNodesTreeString[trieKey[T], V](atree.wrapped.trie.GetRoot())
}
// AssociativeAddedTreeNode represents a node in an AssociativeAddedTree.
type AssociativeAddedTreeNode[T TrieKeyConstraint[T], V any] struct { // T
wrapped *tree.BinTrieNode[trieKey[T], tree.AddedSubnodeMapping]
}
// GetSubNodes returns the sub-nodes of this node, which are not the same as the 0, 1 or 2 direct sub-nodes of the originating binary trie.
// Instead, these are all direct or indirect added sub-nodes of the node.
// If you can traverse from this node to another node in the originating trie, using a sequence of sub-nodes, without any intervening sub-node being an added node, then that other node will appear as a sub-node here.
func (node AssociativeAddedTreeNode[T, V]) GetSubNodes() []AssociativeAddedTreeNode[T, V] {
val := node.wrapped.GetValue()
if val == nil {
return nil
}
subnodeMapping := val.(tree.SubNodesMapping[trieKey[T], V])
var subNodes []*tree.BinTrieNode[trieKey[T], tree.AddedSubnodeMapping]
subNodes = subnodeMapping.SubNodes
if len(subNodes) == 0 {
return nil
}
res := make([]AssociativeAddedTreeNode[T, V], len(subNodes))
for i, subNode := range subNodes {
res[i] = AssociativeAddedTreeNode[T, V]{subNode}
}
return res
}
// IsAdded returns if the node was an added node in the original trie.
// This returns true for all nodes except possibly the root, since only added nodes are added to this tree, apart from the root.
func (node AssociativeAddedTreeNode[T, V]) IsAdded() bool {
return node.wrapped.IsAdded()
}
// GetKey returns the key of this node, which is the same as the key of the corresponding node in the originating trie.
func (node AssociativeAddedTreeNode[T, V]) GetKey() T {
return node.wrapped.GetKey().address
}
// GetValue returns the value of this node, which is the same as the value of the corresponding node in the originating trie.
func (node AssociativeAddedTreeNode[T, V]) GetValue() V {
val := node.wrapped.GetValue()
if val == nil {
var v V
return v
}
subnodeMapping := val.(tree.SubNodesMapping[trieKey[T], V])
return subnodeMapping.Value
}
// String returns a visual representation of this node including the key and the value.
// If this is the root, it will have an open circle if the root is not an added node.
// Otherwise, the node will have a closed circle.
func (node AssociativeAddedTreeNode[T, V]) String() string {
return tree.NodeString[trieKey[T], V](printWrapper[T, V]{node.wrapped})
}
// TreeString returns a visual representation of the sub-tree originating from this node, with one node per line.
func (node AssociativeAddedTreeNode[T, V]) TreeString() string {
return tree.AddedNodesTreeString[trieKey[T], V](node.wrapped)
}
|