1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ipaddr
import (
"fmt"
"github.com/seancfoley/bintree/tree"
"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
"unsafe"
)
// TrieKeyConstraint is the generic type constraint used for tree keys, which are individual addresses and prefix block subnets.
type TrieKeyConstraint[T any] interface {
comparable
BitItem
fmt.Stringer
PrefixedConstraint[T]
IsOneBit(index BitCount) bool // AddressComponent
ToAddressBase() *Address // AddressType - used by MatchBits
toMaxLower() T
toMinUpper() T
trieCompare(other *Address) int
getTrailingBitCount(ones bool) BitCount
toSinglePrefixBlockOrAddress() (T, addrerr.IncompatibleAddressError)
}
type trieKey[T TrieKeyConstraint[T]] struct {
address T
}
func (a trieKey[T]) GetBitCount() tree.BitCount {
return a.address.GetBitCount()
}
func (a trieKey[T]) String() string {
return a.address.String()
}
func (a trieKey[T]) IsOneBit(bitIndex tree.BitCount) bool {
return a.address.IsOneBit(bitIndex)
}
func (a trieKey[T]) GetTrailingBitCount(ones bool) tree.BitCount {
return a.address.getTrailingBitCount(ones)
}
func (a trieKey[T]) GetPrefixLen() tree.PrefixLen {
return tree.PrefixLen(a.address.GetPrefixLen())
}
// ToPrefixBlockLen returns the address key associated with the prefix length provided,
// the address key whose prefix of that length matches the prefix of this address key, and the remaining bits span all values.
//
// The returned address key will represent all addresses with the same prefix as this one, the prefix "block".
func (a trieKey[T]) ToPrefixBlockLen(bitCount BitCount) trieKey[T] {
return trieKey[T]{a.address.ToPrefixBlockLen(bitCount)}
}
// Compare compares to provide the same ordering used by the trie,
// an ordering that works with prefix block subnets and individual addresses.
// The comparator is consistent with the equality of address instances
// and can be used in other contexts. However, it only works with prefix blocks and individual addresses,
// not with addresses like 1-2.3.4.5-6 which cannot be differentiated using this comparator from 1.3.4.5
// and is thus not consistent with equality for subnets that are not CIDR prefix blocks.
//
// The comparator first compares the prefix of addresses, with the full address value considered the prefix when
// there is no prefix length, ie when it is a single address. It takes the minimum m of the two prefix lengths and
// compares those m prefix bits in both addresses. The ordering is determined by which of those two values is smaller or larger.
//
// If both prefix lengths match then both addresses are equal.
// Otherwise it looks at bit m in the address with larger prefix. If 1 it is larger and if 0 it is smaller than the other.
//
// When comparing an address with a prefix p and an address without, the first p bits in both are compared, and if equal,
// the bit at index p in the non-prefixed address determines the ordering, if 1 it is larger and if 0 it is smaller than the other.
//
// When comparing an address with prefix length matching the bit count to an address with no prefix, they are considered equal if the bits match.
// For instance, 1.2.3.4/32 is equal to 1.2.3.4, and thus the trie does not allow 1.2.3.4/32 in the trie since it is indistinguishable from 1.2.3.4,
// instead 1.2.3.4/32 is converted to 1.2.3.4 when inserted into the trie.
//
// When comparing 0.0.0.0/0, which has no prefix, to other addresses, the first bit in the other address determines the ordering.
// If 1 it is larger and if 0 it is smaller than 0.0.0.0/0.
func (a trieKey[T]) Compare(other trieKey[T]) int {
return a.address.trieCompare(other.address.ToAddressBase())
}
// MatchBits returns false if we need to keep going and try to match sub-nodes.
// MatchBits returns true if the bits do not match, or the bits match to the very end.
func (a trieKey[T]) MatchBits(key trieKey[T], bitIndex int, handleMatch tree.KeyCompareResult) bool {
existingAddr := key.address.ToAddressBase()
bitsPerSegment := existingAddr.GetBitsPerSegment()
bytesPerSegment := existingAddr.GetBytesPerSegment()
newAddr := a.address.ToAddressBase()
segmentIndex := getHostSegmentIndex(bitIndex, bytesPerSegment, bitsPerSegment)
segmentCount := existingAddr.GetSegmentCount()
// the caller already checks total bits, so we only need to check either bitsPerSegment or segmentCount, but not both
if /* newAddr.GetSegmentCount() != segmentCount || */ bitsPerSegment != newAddr.GetBitsPerSegment() {
panic("mismatched bit length between address trie keys")
}
existingPref := existingAddr.GetPrefixLen()
newPrefLen := newAddr.GetPrefixLen()
// this block handles cases like matching ::ffff:102:304 to ::ffff:102:304/127,
// and we found a subnode to match, but we know the final bit is a match due to the subnode being lower or upper,
// so there is actually not more bits to match
if segmentIndex >= segmentCount {
// all the bits match
handleMatch.BitsMatch()
return true
}
bitsMatchedSoFar := segmentIndex * bitsPerSegment
for {
existingSegment := existingAddr.getSegment(segmentIndex)
newSegment := newAddr.getSegment(segmentIndex)
segmentPref := getSegmentPrefLen(existingAddr, existingPref, bitsPerSegment, bitsMatchedSoFar, existingSegment)
newSegmentPref := getSegmentPrefLen(newAddr, newPrefLen, bitsPerSegment, bitsMatchedSoFar, newSegment)
if segmentPref != nil {
segmentPrefLen := segmentPref.Len()
newPrefixLen := newSegmentPref.Len()
if newSegmentPref != nil && newPrefixLen <= segmentPrefLen {
matchingBits := getMatchingBits(existingSegment, newSegment, newPrefixLen, bitsPerSegment)
if matchingBits >= newPrefixLen {
handleMatch.BitsMatch()
} else {
// no match - the bits don't match
// matchingBits < newPrefLen < segmentPrefLen
handleMatch.BitsDoNotMatch(bitsMatchedSoFar + matchingBits)
}
} else {
matchingBits := getMatchingBits(existingSegment, newSegment, segmentPrefLen, bitsPerSegment)
if matchingBits >= segmentPrefLen { // match - the current subnet/address is a match so far, and we must go further to check smaller subnets
return false
}
// matchingBits < segmentPrefLen - no match - the bits in current prefix do not match the prefix of the existing address
handleMatch.BitsDoNotMatch(bitsMatchedSoFar + matchingBits)
}
return true
} else if newSegmentPref != nil {
newPrefixLen := newSegmentPref.Len()
matchingBits := getMatchingBits(existingSegment, newSegment, newPrefixLen, bitsPerSegment)
if matchingBits >= newPrefixLen { // the current bits match the current prefix, but the existing has no prefix
handleMatch.BitsMatch()
} else {
// no match - the current subnet does not match the existing address
handleMatch.BitsDoNotMatch(bitsMatchedSoFar + matchingBits)
}
return true
} else {
matchingBits := getMatchingBits(existingSegment, newSegment, bitsPerSegment, bitsPerSegment)
if matchingBits < bitsPerSegment { // no match - the current subnet/address is not here
handleMatch.BitsDoNotMatch(bitsMatchedSoFar + matchingBits)
return true
} else {
segmentIndex++
if segmentIndex == segmentCount { // match - the current subnet/address is a match
// note that "added" is already true here, we can only be here if explicitly inserted already since it is a non-prefixed full address
handleMatch.BitsMatch()
return true
}
}
bitsMatchedSoFar += bitsPerSegment
}
}
}
// ToMaxLower changes this key to a new key with a 0 at the first bit beyond the prefix, followed by all ones, and with no prefix length.
func (a trieKey[T]) ToMaxLower() trieKey[T] {
return trieKey[T]{a.address.toMaxLower()}
}
// ToMinUpper changes this key to a new key with a 1 at the first bit beyond the prefix, followed by all zeros, and with no prefix length.
func (a trieKey[T]) ToMinUpper() trieKey[T] {
return trieKey[T]{a.address.toMinUpper()}
}
var (
_ tree.BinTrieNode[trieKey[*Address], any]
_ tree.BinTrieNode[trieKey[*IPAddress], any]
_ tree.BinTrieNode[trieKey[*IPv4Address], any]
_ tree.BinTrieNode[trieKey[*IPv6Address], any]
_ tree.BinTrieNode[trieKey[*MACAddress], any]
)
//
//
//
//
type trieNode[T TrieKeyConstraint[T], V any] struct {
binNode tree.BinTrieNode[trieKey[T], V]
}
// getKey gets the key used for placing the node in the trie.
func (node *trieNode[T, V]) getKey() (t T) {
return node.toBinTrieNode().GetKey().address
}
func (node *trieNode[T, V]) get(addr T) (V, bool) {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().Get(trieKey[T]{addr})
}
func (node *trieNode[T, V]) lowerAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().LowerAddedNode(trieKey[T]{addr})
}
func (node *trieNode[T, V]) floorAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().FloorAddedNode(trieKey[T]{addr})
}
func (node *trieNode[T, V]) higherAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().HigherAddedNode(trieKey[T]{addr})
}
func (node *trieNode[T, V]) ceilingAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().CeilingAddedNode(trieKey[T]{addr})
}
// iterator returns an iterator that iterates through the elements of the sub-trie with this node as the root.
// The iteration is in sorted element order.
func (node *trieNode[T, V]) iterator() Iterator[T] {
return addressKeyIterator[T]{node.toBinTrieNode().Iterator()}
}
// descendingIterator returns an iterator that iterates through the elements of the subtrie with this node as the root.
// The iteration is in reverse sorted element order.
func (node *trieNode[T, V]) descendingIterator() Iterator[T] {
return addressKeyIterator[T]{node.toBinTrieNode().DescendingIterator()}
}
// nodeIterator iterates through the added nodes of the sub-trie with this node as the root, in forward or reverse tree order.
func (node *trieNode[T, V]) nodeIterator(forward bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return node.toBinTrieNode().NodeIterator(forward)
}
// allNodeIterator iterates through all the nodes of the sub-trie with this node as the root, in forward or reverse tree order.
func (node *trieNode[T, V]) allNodeIterator(forward bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return node.toBinTrieNode().AllNodeIterator(forward)
}
// blockSizeNodeIterator iterates the added nodes, ordered by keys from the largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order is taken.
func (node *trieNode[T, V]) blockSizeNodeIterator(lowerSubNodeFirst bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return node.toBinTrieNode().BlockSizeNodeIterator(lowerSubNodeFirst)
}
// blockSizeAllNodeIterator iterates all the nodes, ordered by keys from the largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order
func (node *trieNode[T, V]) blockSizeAllNodeIterator(lowerSubNodeFirst bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return node.toBinTrieNode().BlockSizeAllNodeIterator(lowerSubNodeFirst)
}
// blockSizeCachingAllNodeIterator iterates all nodes, ordered by keys from the largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
func (node *trieNode[T, V]) blockSizeCachingAllNodeIterator() tree.CachingTrieNodeIterator[trieKey[T], V] {
return node.toBinTrieNode().BlockSizeCachingAllNodeIterator()
}
func (node *trieNode[T, V]) containingFirstIterator(forwardSubNodeOrder bool) tree.CachingTrieNodeIterator[trieKey[T], V] {
return node.toBinTrieNode().ContainingFirstIterator(forwardSubNodeOrder)
}
func (node *trieNode[T, V]) containingFirstAllNodeIterator(forwardSubNodeOrder bool) tree.CachingTrieNodeIterator[trieKey[T], V] {
return node.toBinTrieNode().ContainingFirstAllNodeIterator(forwardSubNodeOrder)
}
func (node *trieNode[T, V]) containedFirstIterator(forwardSubNodeOrder bool) tree.TrieNodeIteratorRem[trieKey[T], V] {
return node.toBinTrieNode().ContainedFirstIterator(forwardSubNodeOrder)
}
func (node *trieNode[T, V]) containedFirstAllNodeIterator(forwardSubNodeOrder bool) tree.TrieNodeIterator[trieKey[T], V] {
return node.toBinTrieNode().ContainedFirstAllNodeIterator(forwardSubNodeOrder)
}
func (node *trieNode[T, V]) contains(addr T) bool {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().Contains(trieKey[T]{addr})
}
func (node *trieNode[T, V]) removeNode(addr T) bool {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().RemoveNode(trieKey[T]{addr})
}
func (node *trieNode[T, V]) removeElementsContainedBy(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().RemoveElementsContainedBy(trieKey[T]{addr})
}
func (node *trieNode[T, V]) elementsContainedBy(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().ElementsContainedBy(trieKey[T]{addr})
}
func (node *trieNode[T, V]) elementsContaining(addr T) *containmentPath[T, V] {
addr = mustBeBlockOrAddress(addr)
return toContainmentPath[T, V](node.toBinTrieNode().ElementsContaining(trieKey[T]{addr}))
}
func (node *trieNode[T, V]) longestPrefixMatch(addr T) (t T) {
addr = mustBeBlockOrAddress(addr)
key, _ := node.toBinTrieNode().LongestPrefixMatch(trieKey[T]{addr})
return key.address
}
func (node *trieNode[T, V]) longestPrefixMatchNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().LongestPrefixMatchNode(trieKey[T]{addr})
}
func (node *trieNode[T, V]) elementContains(addr T) bool {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().ElementContains(trieKey[T]{addr})
}
func (node *trieNode[T, V]) getNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().GetNode(trieKey[T]{addr})
}
func (node *trieNode[T, V]) getAddedNode(addr T) *tree.BinTrieNode[trieKey[T], V] {
addr = mustBeBlockOrAddress(addr)
return node.toBinTrieNode().GetAddedNode(trieKey[T]{addr})
}
func (node *trieNode[T, V]) toBinTrieNode() *tree.BinTrieNode[trieKey[T], V] {
return (*tree.BinTrieNode[trieKey[T], V])(unsafe.Pointer(node))
}
func toAddressTrieNode[T TrieKeyConstraint[T], V any](node *tree.BinTrieNode[trieKey[T], V]) *TrieNode[T] {
return (*TrieNode[T])(unsafe.Pointer(node))
}
func toAssociativeTrieNode[T TrieKeyConstraint[T], V any](node *tree.BinTrieNode[trieKey[T], V]) *AssociativeTrieNode[T, V] {
return (*AssociativeTrieNode[T, V])(unsafe.Pointer(node))
}
//
//
//
//
//
//
//
//
//
//
//
// using EmptyValueType alters how values are printed in strings
type emptyValue = tree.EmptyValueType
// TrieNode is a node in a compact binary prefix trie whose elements (keys) are prefix block subnets or addresses.
type TrieNode[T TrieKeyConstraint[T]] struct {
trieNode[T, emptyValue]
}
func (node *TrieNode[T]) toBinTrieNode() *tree.BinTrieNode[trieKey[T], emptyValue] {
return (*tree.BinTrieNode[trieKey[T], emptyValue])(unsafe.Pointer(node))
}
// tobase is used to convert the pointer rather than doing a field dereference, so that nil pointer handling can be done in *addressTrieNode
func (node *TrieNode[T]) tobase() *trieNode[T, emptyValue] {
return (*trieNode[T, emptyValue])(unsafe.Pointer(node))
}
// GetKey gets the key used to place the node in the trie.
func (node *TrieNode[T]) GetKey() T {
return node.tobase().getKey()
}
// IsRoot returns whether this node is the root of the trie.
func (node *TrieNode[T]) IsRoot() bool {
return node.toBinTrieNode().IsRoot()
}
// IsAdded returns whether the node was "added".
// Some binary trie nodes are considered "added" and others are not.
// Those nodes created for key elements added to the trie are "added" nodes.
// Those that are not added are those nodes created to serve as junctions for the added nodes.
// Only added elements contribute to the size of a trie.
// When removing nodes, non-added nodes are removed automatically whenever they are no longer needed,
// which is when an added node has less than two added sub-nodes.
func (node *TrieNode[T]) IsAdded() bool {
return node.toBinTrieNode().IsAdded()
}
// SetAdded makes this node an added node, which is equivalent to adding the corresponding key to the trie.
// If the node is already an added node, this method has no effect.
// You cannot set an added node to non-added, for that you should Remove the node from the trie by calling Remove.
// A non-added node will only remain in the trie if it needs to be in the trie.
func (node *TrieNode[T]) SetAdded() {
node.toBinTrieNode().SetAdded()
}
// Clear removes this node and all sub-nodes from the trie, after which isEmpty will return true.
func (node *TrieNode[T]) Clear() {
node.toBinTrieNode().Clear()
}
// IsLeaf returns whether this node is in the trie (a node for which IsAdded is true)
// and there are no elements in the sub-trie with this node as the root.
func (node *TrieNode[T]) IsLeaf() bool {
return node.toBinTrieNode().IsLeaf()
}
// GetUpperSubNode gets the direct child node whose key is largest in value.
func (node *TrieNode[T]) GetUpperSubNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().GetUpperSubNode())
}
// GetLowerSubNode gets the direct child node whose key is smallest in value.
func (node *TrieNode[T]) GetLowerSubNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().GetLowerSubNode())
}
// GetParent gets the node from which this node is a direct child node, or nil if this is the root.
func (node *TrieNode[T]) GetParent() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().GetParent())
}
// PreviousAddedNode returns the previous node in the trie that is an added node, following the trie order in reverse,
// or nil if there is no such node.
func (node *TrieNode[T]) PreviousAddedNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().PreviousAddedNode())
}
// NextAddedNode returns the next node in the trie that is an added node, following the trie order,
// or nil if there is no such node.
func (node *TrieNode[T]) NextAddedNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().NextAddedNode())
}
// NextNode returns the node that follows this node following the trie order.
func (node *TrieNode[T]) NextNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().NextNode())
}
// PreviousNode eturns the node that precedes this node following the trie order.
func (node *TrieNode[T]) PreviousNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().PreviousNode())
}
// FirstNode returns the first (the lowest valued) node in the sub-trie originating from this node.
func (node *TrieNode[T]) FirstNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().FirstNode())
}
// FirstAddedNode returns the first (the lowest valued) added node in the sub-trie originating from this node,
// or nil if there are no added entries in this trie or sub-trie.
func (node *TrieNode[T]) FirstAddedNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().FirstAddedNode())
}
// LastNode returns the last (the highest valued) node in the sub-trie originating from this node.
func (node *TrieNode[T]) LastNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().LastNode())
}
// LastAddedNode returns the last (the highest valued) added node in the sub-trie originating from this node,
// or nil if there are no added entries in this trie or sub-trie.
func (node *TrieNode[T]) LastAddedNode() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().LastAddedNode())
}
// LowerAddedNode returns the added node, in this sub-trie with this node as the root, whose address is the highest address strictly less than the given address.
func (node *TrieNode[T]) LowerAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](node.tobase().lowerAddedNode(addr))
}
// FloorAddedNode returns the added node, in this sub-trie with this node as the root, whose address is the highest address less than or equal to the given address.
func (node *TrieNode[T]) FloorAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](node.tobase().floorAddedNode(addr))
}
// HigherAddedNode returns the added node, in this sub-trie with this node as the root, whose address is the lowest address strictly greater than the given address.
func (node *TrieNode[T]) HigherAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](node.tobase().higherAddedNode(addr))
}
// CeilingAddedNode returns the added node, in this sub-trie with this node as the root, whose address is the lowest address greater than or equal to the given address.
func (node *TrieNode[T]) CeilingAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](node.tobase().ceilingAddedNode(addr))
}
// Iterator returns an iterator that iterates through the elements of the sub-trie with this node as the root.
// The iteration is in sorted element order.
func (node *TrieNode[T]) Iterator() Iterator[T] {
return node.tobase().iterator()
}
// DescendingIterator returns an iterator that iterates through the elements of the subtrie with this node as the root.
// The iteration is in reverse sorted element order.
func (node *TrieNode[T]) DescendingIterator() Iterator[T] {
return node.tobase().descendingIterator()
}
// NodeIterator returns an iterator that iterates through the added nodes of the sub-trie with this node as the root, in forward or reverse trie order.
func (node *TrieNode[T]) NodeIterator(forward bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{node.tobase().nodeIterator(forward)}
}
// AllNodeIterator returns an iterator that iterates through all the nodes of the sub-trie with this node as the root, in forward or reverse trie order.
func (node *TrieNode[T]) AllNodeIterator(forward bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{node.tobase().allNodeIterator(forward)}
}
// BlockSizeNodeIterator returns an iterator that iterates the added nodes, ordered by keys from largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order is taken.
func (node *TrieNode[T]) BlockSizeNodeIterator(lowerSubNodeFirst bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{node.tobase().blockSizeNodeIterator(lowerSubNodeFirst)}
}
// BlockSizeAllNodeIterator returns an iterator that iterates all the nodes, ordered by keys from largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order.
func (node *TrieNode[T]) BlockSizeAllNodeIterator(lowerSubNodeFirst bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{node.tobase().blockSizeAllNodeIterator(lowerSubNodeFirst)}
}
// BlockSizeCachingAllNodeIterator returns an iterator that iterates all nodes, ordered by keys from largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
func (node *TrieNode[T]) BlockSizeCachingAllNodeIterator() CachingTrieIterator[*TrieNode[T]] {
return cachingAddressTrieNodeIterator[T, emptyValue]{node.tobase().blockSizeCachingAllNodeIterator()}
}
// ContainingFirstIterator returns an iterator that does a pre-order binary trie traversal of the added nodes
// of the sub-trie with this node as the root.
//
// All added nodes will be visited before their added sub-nodes.
// For an address trie this means added containing subnet blocks will be visited before their added contained addresses and subnet blocks.
//
// Once a given node is visited, the iterator allows you to cache an object corresponding to the
// lower or upper sub-node that can be retrieved when you later visit that sub-node.
//
// Objects are cached only with nodes to be visited.
// So for this iterator that means an object will be cached with the first added lower or upper sub-node,
// the next lower or upper sub-node to be visited,
// which is not necessarily the direct lower or upper sub-node of a given node.
//
// The caching allows you to provide iteration context from a parent to its sub-nodes when iterating.
// The caching and retrieval is done in constant-time.
func (node *TrieNode[T]) ContainingFirstIterator(forwardSubNodeOrder bool) CachingTrieIterator[*TrieNode[T]] {
return cachingAddressTrieNodeIterator[T, emptyValue]{node.tobase().containingFirstIterator(forwardSubNodeOrder)}
}
// ContainingFirstAllNodeIterator returns an iterator that does a pre-order binary trie traversal of all the nodes
// of the sub-trie with this node as the root.
//
// All nodes will be visited before their sub-nodes.
// For an address trie this means containing subnet blocks will be visited before their contained addresses and subnet blocks.
//
// Once a given node is visited, the iterator allows you to cache an object corresponding to the
// lower or upper sub-node that can be retrieved when you later visit that sub-node.
// That allows you to provide iteration context from a parent to its sub-nodes when iterating.
// The caching and retrieval is done in constant-time.
func (node *TrieNode[T]) ContainingFirstAllNodeIterator(forwardSubNodeOrder bool) CachingTrieIterator[*TrieNode[T]] {
return cachingAddressTrieNodeIterator[T, emptyValue]{node.tobase().containingFirstAllNodeIterator(forwardSubNodeOrder)}
}
// ContainedFirstIterator returns an iterator that does a post-order binary trie traversal of the added nodes
// of the sub-trie with this node as the root.
// All added sub-nodes will be visited before their parent nodes.
// For an address trie this means contained addresses and subnets will be visited before their containing subnet blocks.
func (node *TrieNode[T]) ContainedFirstIterator(forwardSubNodeOrder bool) IteratorWithRemove[*TrieNode[T]] {
return addrTrieNodeIteratorRem[T, emptyValue]{node.tobase().containedFirstIterator(forwardSubNodeOrder)}
}
// ContainedFirstAllNodeIterator returns an iterator that does a post-order binary trie traversal of all the nodes
// of the sub-trie with this node as the root.
// All sub-nodes will be visited before their parent nodes.
// For an address trie this means contained addresses and subnets will be visited before their containing subnet blocks.
func (node *TrieNode[T]) ContainedFirstAllNodeIterator(forwardSubNodeOrder bool) Iterator[*TrieNode[T]] {
return addrTrieNodeIterator[T, emptyValue]{node.tobase().containedFirstAllNodeIterator(forwardSubNodeOrder)}
}
// Clone clones the node.
// Keys remain the same, but the parent node and the lower and upper sub-nodes are all set to nil.
func (node *TrieNode[T]) Clone() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().Clone())
}
// CloneTree clones the sub-trie starting with this node as the root.
// The nodes are cloned, but their keys and values are not cloned.
func (node *TrieNode[T]) CloneTree() *TrieNode[T] {
return toAddressTrieNode[T](node.toBinTrieNode().CloneTree())
}
// AsNewTrie creates a new sub-trie, copying the nodes starting with this node as the root.
// The nodes are copies of the nodes in this sub-trie, but their keys and values are not copies.
func (node *TrieNode[T]) AsNewTrie() *Trie[T] {
return toAddressTrie[T](node.toBinTrieNode().AsNewTrie())
}
// Compare returns a negative integer, zero, or a positive integer if this node is less than, equal, or greater than the other, according to the key and the trie order.
func (node *TrieNode[T]) Compare(other *TrieNode[T]) int {
return node.toBinTrieNode().Compare(other.toBinTrieNode())
}
// Equal returns whether the address and and mapped value match those of the given node.
func (node *TrieNode[T]) Equal(other *TrieNode[T]) bool {
return node.toBinTrieNode().Equal(other.toBinTrieNode())
}
// TreeEqual returns whether the sub-tree represented by this node as the root node matches the given sub-trie.
func (node *TrieNode[T]) TreeEqual(other *TrieNode[T]) bool {
return node.toBinTrieNode().TreeEqual(other.toBinTrieNode())
}
// Remove removes this node from the collection of added nodes, and also from the trie if possible.
// If it has two sub-nodes, it cannot be removed from the trie, in which case it is marked as not "added",
// nor is it counted in the trie size.
// Only added nodes can be removed from the trie. If this node is not added, this method does nothing.
func (node *TrieNode[T]) Remove() {
node.toBinTrieNode().Remove()
}
// Contains returns whether the given address or prefix block subnet is in the sub-trie, as an added element, with this node as the root.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the prefix block or address address exists already in the trie, false otherwise.
//
// Use GetAddedNode to get the node for the address rather than just checking for its existence.
func (node *TrieNode[T]) Contains(addr T) bool {
return node.tobase().contains(addr)
}
// RemoveNode removes the given single address or prefix block subnet from the trie with this node as the root.
//
// Removing an element will not remove contained elements (nodes for contained blocks and addresses).
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the prefix block or address was removed, false if not already in the trie.
//
// You can also remove by calling GetAddedNode to get the node and then calling Remove on the node.
//
// When an address is removed, the corresponding node may remain in the trie if it remains a subnet block for two sub-nodes.
// If the corresponding node can be removed from the trie, it will be removed.
func (node *TrieNode[T]) RemoveNode(addr T) bool {
return node.tobase().removeNode(addr)
}
// RemoveElementsContainedBy removes any single address or prefix block subnet from the trie, with this node as the root, that is contained in the given individual address or prefix block subnet.
//
// Goes further than Remove, not requiring a match to an inserted node, and also removing all the sub-nodes of any removed node or sub-node.
//
// For example, after inserting 1.2.3.0 and 1.2.3.1, passing 1.2.3.0/31 to RemoveElementsContainedBy will remove them both,
// while the Remove method will remove nothing.
// After inserting 1.2.3.0/31, then Remove(Address) will remove 1.2.3.0/31, but will leave 1.2.3.0 and 1.2.3.1 in the trie.
//
// It cannot partially delete a node, such as deleting a single address from a prefix block represented by a node.
// It can only delete the whole node if the whole address or block represented by that node is contained in the given address or block.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
//Returns the root node of the subtrie that was removed from the trie, or nil if nothing was removed.
func (node *TrieNode[T]) RemoveElementsContainedBy(addr T) *TrieNode[T] {
return toAddressTrieNode[T](node.tobase().removeElementsContainedBy(addr))
}
// ElementsContainedBy checks if a part of this trie, with this node as the root, is contained by the given prefix block subnet or individual address.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns the root node of the contained subtrie, or nil if no subtrie is contained.
// The node returned need not be an "added" node, see IsAdded for more details on added nodes.
// The returned subtrie is backed by this trie, so changes in this trie are reflected in those nodes and vice-versa.
func (node *TrieNode[T]) ElementsContainedBy(addr T) *TrieNode[T] {
return toAddressTrieNode[T](node.tobase().elementsContainedBy(addr))
}
// ElementsContaining finds the trie nodes in the trie, with this sub-node as the root,
// containing the given key and returns them as a linked list.
// Only added nodes are added to the linked list
//
// If the argument is not a single address nor prefix block, this method will panic.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (node *TrieNode[T]) ElementsContaining(addr T) *ContainmentPath[T] {
return &ContainmentPath[T]{*node.tobase().elementsContaining(addr)}
}
// LongestPrefixMatch returns the address or subnet with the longest prefix of all the added subnets and addresses whose prefix matches the given address.
// This is equivalent to finding the containing subnet or address with the smallest subnet size.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// The second returned argument is false if no added subnet or address contains the given argument.
//
// Use ElementContains to check for the existence of a containing address.
// To get all the containing addresses (subnets with matching prefix), use ElementsContaining.
// To get the node corresponding to the result of this method, use LongestPrefixMatchNode.
func (node *TrieNode[T]) LongestPrefixMatch(addr T) T {
return node.tobase().longestPrefixMatch(addr)
}
// LongestPrefixMatchNode finds the containing subnet or address in the trie with the smallest subnet size,
// which is equivalent to finding the subnet or address with the longest matching prefix.
// Returns the node corresponding to that subnet.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns nil if no added subnet or address contains the given argument.
//
// Use ElementContains to check for the existence of a containing address.
// To get all the containing addresses, use ElementsContaining.
// Use LongestPrefixMatch to get only the address corresponding to the result of this method.
func (node *TrieNode[T]) LongestPrefixMatchNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](node.tobase().longestPrefixMatchNode(addr))
}
// ElementContains checks if a prefix block subnet or address in the trie, with this node as the root, contains the given subnet or address.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the subnet or address is contained by a trie element, false otherwise.
//
// To get all the containing addresses, use ElementsContaining.
func (node *TrieNode[T]) ElementContains(addr T) bool {
return node.tobase().elementContains(addr)
}
// GetNode gets the node in the trie, with this subnode as the root, corresponding to the given address,
// or returns nil if not such element exists.
//
// It returns any node, whether added or not,
// including any prefix block node that was not added.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (node *TrieNode[T]) GetNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](node.tobase().getNode(addr))
}
// GetAddedNode gets trie nodes representing added elements.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Use Contains to check for the existence of a given address in the trie,
// as well as GetNode to search for all nodes including those not-added but also auto-generated nodes for subnet blocks.
func (node *TrieNode[T]) GetAddedNode(addr T) *TrieNode[T] {
return toAddressTrieNode[T](node.tobase().getAddedNode(addr))
}
// NodeSize returns the number of nodes in the trie with this node as the root, which is more than the number of added addresses or blocks.
func (node *TrieNode[T]) NodeSize() int {
return node.toBinTrieNode().NodeSize()
}
// Size returns the number of elements in the sub-trie with this node as the root.
// Only nodes for which IsAdded returns true are counted.
// When zero is returned, IsEmpty returns true.
func (node *TrieNode[T]) Size() int {
return node.toBinTrieNode().Size()
}
// IsEmpty returns whether the size is zero.
func (node *TrieNode[T]) IsEmpty() bool {
return node.Size() == 0
}
// TreeString returns a visual representation of the sub-trie with this node as the root, with one node per line.
//
// - withNonAddedKeys: whether to show nodes that are not added nodes.
// - withSizes: whether to include the counts of added nodes in each sub-trie.
func (node *TrieNode[T]) TreeString(withNonAddedKeys, withSizes bool) string {
return node.toBinTrieNode().TreeString(withNonAddedKeys, withSizes)
}
// String returns a visual representation of this node including the key, with an open circle indicating this node is not an added node,
// a closed circle indicating this node is an added node.
func (node *TrieNode[T]) String() string {
return node.toBinTrieNode().String()
}
// For some reason Format must be here and not in addressTrieNode for nil node.
// It panics in fmt code either way, but if in here then it is handled by a recover() call in fmt properly in the debugger.
// Format implements the [fmt.Formatter] interface.
func (node TrieNode[T]) Format(state fmt.State, verb rune) {
node.toBinTrieNode().Format(state, verb)
}
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
// AssociativeTrieNode represents a node of an associative compact binary prefix trie.
// Each key is a prefix block subnet or address. Each node also has an associated value.
type AssociativeTrieNode[T TrieKeyConstraint[T], V any] struct {
trieNode[T, V]
}
func (node *AssociativeTrieNode[T, V]) toBinTrieNode() *tree.BinTrieNode[trieKey[T], V] {
return (*tree.BinTrieNode[trieKey[T], V])(unsafe.Pointer(node))
}
func (node *AssociativeTrieNode[T, V]) toBase() *trieNode[T, V] {
return (*trieNode[T, V])(unsafe.Pointer(node))
}
// GetKey gets the key used for placing the node in the trie.
func (node *AssociativeTrieNode[T, V]) GetKey() T {
return node.toBase().getKey()
}
// IsRoot returns whether this is the root of the backing trie.
func (node *AssociativeTrieNode[T, V]) IsRoot() bool {
return node.toBinTrieNode().IsRoot()
}
// IsAdded returns whether the node was "added".
// Some binary trie nodes are considered "added" and others are not.
// Those nodes created for key elements added to the trie are "added" nodes.
// Those that are not added are those nodes created to serve as junctions for the added nodes.
// Only added elements contribute to the size of a trie.
// When removing nodes, non-added nodes are removed automatically whenever they are no longer needed,
// which is when an added node has less than two added sub-nodes.
func (node *AssociativeTrieNode[T, V]) IsAdded() bool {
return node.toBinTrieNode().IsAdded()
}
// SetAdded makes this node an added node, which is equivalent to adding the corresponding key to the trie.
// If the node is already an added node, this method has no effect.
// You cannot set an added node to non-added, for that you should Remove the node from the trie by calling Remove.
// A non-added node will only remain in the trie if it needs to be in the trie.
func (node *AssociativeTrieNode[T, V]) SetAdded() {
node.toBinTrieNode().SetAdded()
}
// Clear removes this node and all sub-nodes from the tree, after which isEmpty will return true.
func (node *AssociativeTrieNode[T, V]) Clear() {
node.toBinTrieNode().Clear()
}
// IsLeaf returns whether this node is in the tree (a node for which IsAdded is true)
// and there are no elements in the sub-tree with this node as the root.
func (node *AssociativeTrieNode[T, V]) IsLeaf() bool {
return node.toBinTrieNode().IsLeaf()
}
// ClearValue makes the value associated with this node the zero-value of V.
func (node *AssociativeTrieNode[T, V]) ClearValue() {
node.toBinTrieNode().ClearValue()
}
// SetValue sets the value associated with this node.
func (node *AssociativeTrieNode[T, V]) SetValue(val V) {
node.toBinTrieNode().SetValue(val)
}
// GetValue returns whather there is a value associated with the node, and returns that value.
func (node *AssociativeTrieNode[T, V]) GetValue() V {
return node.toBinTrieNode().GetValue()
}
// GetUpperSubNode gets the direct child node whose key is largest in value.
func (node *AssociativeTrieNode[T, V]) GetUpperSubNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().GetUpperSubNode())
}
// GetLowerSubNode gets the direct child node whose key is smallest in value.
func (node *AssociativeTrieNode[T, V]) GetLowerSubNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().GetLowerSubNode())
}
// GetParent gets the node from which this node is a direct child node, or nil if this is the root.
func (node *AssociativeTrieNode[T, V]) GetParent() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().GetParent())
}
// PreviousAddedNode returns the first added node that precedes this node following the trie order.
func (node *AssociativeTrieNode[T, V]) PreviousAddedNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().PreviousAddedNode())
}
// NextAddedNode returns the first added node that follows this node following the trie order.
func (node *AssociativeTrieNode[T, V]) NextAddedNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().NextAddedNode())
}
// NextNode returns the node that follows this node following the trie order.
func (node *AssociativeTrieNode[T, V]) NextNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().NextNode())
}
// PreviousNode returns the node that precedes this node following the trie order.
func (node *AssociativeTrieNode[T, V]) PreviousNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().PreviousNode())
}
// FirstNode returns the first (the lowest valued) node in the sub-trie originating from this node.
func (node *AssociativeTrieNode[T, V]) FirstNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().FirstNode())
}
// FirstAddedNode returns the first (the lowest valued) added node in the sub-trie originating from this node,
// or nil if there are no added entries in this trie or sub-trie.
func (node *AssociativeTrieNode[T, V]) FirstAddedNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().FirstAddedNode())
}
// LastNode returns the last (the highest valued) node in the sub-trie originating from this node.
func (node *AssociativeTrieNode[T, V]) LastNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().LastNode())
}
// LastAddedNode returns the last (the highest valued) added node in the sub-trie originating from this node,
// or nil if there are no added entries in this trie or sub-trie.
func (node *AssociativeTrieNode[T, V]) LastAddedNode() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().LastAddedNode())
}
// LowerAddedNode returns the added node, in this sub-trie with this node as the root, whose address is the highest address strictly less than the given address.
func (node *AssociativeTrieNode[T, V]) LowerAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBase().lowerAddedNode(addr))
}
// FloorAddedNode returns the added node, in this sub-trie with this node as the root, whose address is the highest address less than or equal to the given address.
func (node *AssociativeTrieNode[T, V]) FloorAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBase().floorAddedNode(addr))
}
// HigherAddedNode returns the added node, in this sub-trie with this node as the root, whose address is the lowest address strictly greater than the given address.
func (node *AssociativeTrieNode[T, V]) HigherAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBase().higherAddedNode(addr))
}
// CeilingAddedNode returns the added node, in this sub-trie with this node as the root, whose address is the lowest address greater than or equal to the given address.
func (node *AssociativeTrieNode[T, V]) CeilingAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBase().ceilingAddedNode(addr))
}
// Iterator returns an iterator that iterates through the elements of the sub-trie with this node as the root.
// The iteration is in sorted element order.
func (node *AssociativeTrieNode[T, V]) Iterator() Iterator[T] {
return node.toBase().iterator()
}
// DescendingIterator returns an iterator that iterates through the elements of the subtrie with this node as the root.
// The iteration is in reverse sorted element order.
func (node *AssociativeTrieNode[T, V]) DescendingIterator() Iterator[T] {
return node.toBase().descendingIterator()
}
// NodeIterator returns an iterator that iterates through the added nodes of the sub-trie with this node as the root, in forward or reverse trie order.
func (node *AssociativeTrieNode[T, V]) NodeIterator(forward bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{node.toBase().nodeIterator(forward)}
}
// AllNodeIterator returns an iterator that iterates through all the nodes of the sub-trie with this node as the root, in forward or reverse trie order.
func (node *AssociativeTrieNode[T, V]) AllNodeIterator(forward bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{node.toBase().allNodeIterator(forward)}
}
// BlockSizeNodeIterator returns an iterator that iterates the added nodes, ordered by keys from largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order is taken.
func (node *AssociativeTrieNode[T, V]) BlockSizeNodeIterator(lowerSubNodeFirst bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{node.toBase().blockSizeNodeIterator(lowerSubNodeFirst)}
}
// BlockSizeAllNodeIterator returns an iterator that iterates all the nodes, ordered by keys from largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
//
// If lowerSubNodeFirst is true, for blocks of equal size the lower is first, otherwise the reverse order.
func (node *AssociativeTrieNode[T, V]) BlockSizeAllNodeIterator(lowerSubNodeFirst bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{node.toBase().blockSizeAllNodeIterator(lowerSubNodeFirst)}
}
// BlockSizeCachingAllNodeIterator returns an iterator that iterates all nodes, ordered by keys from largest prefix blocks to smallest and then to individual addresses,
// in the sub-trie with this node as the root.
func (node *AssociativeTrieNode[T, V]) BlockSizeCachingAllNodeIterator() CachingTrieIterator[*AssociativeTrieNode[T, V]] {
return cachingAssociativeAddressTrieNodeIteratorX[T, V]{node.toBase().blockSizeCachingAllNodeIterator()}
}
// ContainingFirstIterator returns an iterator that does a pre-order binary trie traversal of the added nodes
// of the sub-trie with this node as the root.
//
// All added nodes will be visited before their added sub-nodes.
// For an address trie this means added containing subnet blocks will be visited before their added contained addresses and subnet blocks.
//
// Once a given node is visited, the iterator allows you to cache an object corresponding to the
// lower or upper sub-node that can be retrieved when you later visit that sub-node.
//
// Objects are cached only with nodes to be visited.
// So for this iterator that means an object will be cached with the first added lower or upper sub-node,
// the next lower or upper sub-node to be visited,
// which is not necessarily the direct lower or upper sub-node of a given node.
//
// The caching allows you to provide iteration context from a parent to its sub-nodes when iterating.
// The caching and retrieval is done in constant-time.
func (node *AssociativeTrieNode[T, V]) ContainingFirstIterator(forwardSubNodeOrder bool) CachingTrieIterator[*AssociativeTrieNode[T, V]] {
return cachingAssociativeAddressTrieNodeIteratorX[T, V]{node.toBase().containingFirstIterator(forwardSubNodeOrder)}
}
// ContainingFirstAllNodeIterator returns an iterator that does a pre-order binary trie traversal of all the nodes
// of the sub-trie with this node as the root.
//
// All nodes will be visited before their sub-nodes.
// For an address trie this means containing subnet blocks will be visited before their contained addresses and subnet blocks.
//
// Once a given node is visited, the iterator allows you to cache an object corresponding to the
// lower or upper sub-node that can be retrieved when you later visit that sub-node.
// That allows you to provide iteration context from a parent to its sub-nodes when iterating.
// The caching and retrieval is done in constant-time.
func (node *AssociativeTrieNode[T, V]) ContainingFirstAllNodeIterator(forwardSubNodeOrder bool) CachingTrieIterator[*AssociativeTrieNode[T, V]] {
return cachingAssociativeAddressTrieNodeIteratorX[T, V]{node.toBase().containingFirstAllNodeIterator(forwardSubNodeOrder)}
}
// ContainedFirstIterator returns an iterator that does a post-order binary trie traversal of the added nodes
// of the sub-trie with this node as the root.
// All added sub-nodes will be visited before their parent nodes.
// For an address trie this means contained addresses and subnets will be visited before their containing subnet blocks.
func (node *AssociativeTrieNode[T, V]) ContainedFirstIterator(forwardSubNodeOrder bool) IteratorWithRemove[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIteratorRem[T, V]{node.toBase().containedFirstIterator(forwardSubNodeOrder)}
}
// ContainedFirstAllNodeIterator returns an iterator that does a post-order binary trie traversal of all the nodes
// of the sub-trie with this node as the root.
// All sub-nodes will be visited before their parent nodes.
// For an address trie this means contained addresses and subnets will be visited before their containing subnet blocks.
func (node *AssociativeTrieNode[T, V]) ContainedFirstAllNodeIterator(forwardSubNodeOrder bool) Iterator[*AssociativeTrieNode[T, V]] {
return associativeAddressTrieNodeIterator[T, V]{node.toBase().containedFirstAllNodeIterator(forwardSubNodeOrder)}
}
// Clone clones the node.
// Keys remain the same, but the parent node and the lower and upper sub-nodes are all set to nil.
func (node *AssociativeTrieNode[T, V]) Clone() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().Clone())
}
// CloneTree clones the sub-trie starting with this node as the root.
// The nodes are cloned, but their keys and values are not cloned.
func (node *AssociativeTrieNode[T, V]) CloneTree() *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBinTrieNode().CloneTree())
}
// AsNewTrie creates a new sub-trie, copying the nodes starting with this node as the root.
// The nodes are copies of the nodes in this sub-trie, but their keys and values are not copies.
func (node *AssociativeTrieNode[T, V]) AsNewTrie() *AssociativeTrie[T, V] {
return toAssociativeTrie[T, V](node.toBinTrieNode().AsNewTrie())
}
// Compare returns a negative integer, zero, or a positive integer if this node is less than, equal, or greater than the other, according to the key and the trie order.
func (node *AssociativeTrieNode[T, V]) Compare(other *AssociativeTrieNode[T, V]) int {
return node.toBinTrieNode().Compare(other.toBinTrieNode())
}
// Equal returns whether the key and mapped value match those of the given node.
func (node *AssociativeTrieNode[T, V]) Equal(other *AssociativeTrieNode[T, V]) bool {
return node.toBinTrieNode().Equal(other.toBinTrieNode())
}
// TreeEqual returns whether the sub-trie represented by this node as the root node matches the given sub-trie.
func (node *AssociativeTrieNode[T, V]) TreeEqual(other *AssociativeTrieNode[T, V]) bool {
return node.toBinTrieNode().TreeEqual(other.toBinTrieNode())
}
// DeepEqual returns whether the key is equal to that of the given node and the value is deep equal to that of the given node.
func (node *AssociativeTrieNode[T, V]) DeepEqual(other *AssociativeTrieNode[T, V]) bool {
return node.toBinTrieNode().DeepEqual(other.toBinTrieNode())
}
// TreeDeepEqual returns whether the sub-trie represented by this node as the root node matches the given sub-trie, matching with Compare on the keys and reflect.DeepEqual on the values.
func (node *AssociativeTrieNode[T, V]) TreeDeepEqual(other *AssociativeTrieNode[T, V]) bool {
return node.toBinTrieNode().TreeDeepEqual(other.toBinTrieNode())
}
/////////////////////////////////////////////////////////////////////////////
// Remove removes this node from the collection of added nodes, and also from the trie if possible.
// If it has two sub-nodes, it cannot be removed from the trie, in which case it is marked as not "added",
// nor is it counted in the trie size.
// Only added nodes can be removed from the trie. If this node is not added, this method does nothing.
func (node *AssociativeTrieNode[T, V]) Remove() {
node.toBinTrieNode().Remove()
}
// Contains returns whether the given address or prefix block subnet is in the sub-trie, as an added element, with this node as the root.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the prefix block or address address exists already in the trie, false otherwise.
//
// Use GetAddedNode to get the node for the address rather than just checking for its existence.
func (node *AssociativeTrieNode[T, V]) Contains(addr T) bool {
return node.toBase().contains(addr)
}
// RemoveNode removes the given single address or prefix block subnet from the trie with this node as the root.
//
// Removing an element will not remove contained elements (nodes for contained blocks and addresses).
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the prefix block or address was removed, false if not already in the trie.
//
// You can also remove by calling GetAddedNode to get the node and then calling Remove on the node.
//
// When an address is removed, the corresponding node may remain in the trie if it remains a subnet block for two sub-nodes.
// If the corresponding node can be removed from the trie, it will be removed.
func (node *AssociativeTrieNode[T, V]) RemoveNode(addr T) bool {
return node.toBase().removeNode(addr)
}
// RemoveElementsContainedBy removes any single address or prefix block subnet from the trie, with this node as the root, that is contained in the given individual address or prefix block subnet.
//
// Goes further than Remove, not requiring a match to an inserted node, and also removing all the sub-nodes of any removed node or sub-node.
//
// For example, after inserting 1.2.3.0 and 1.2.3.1, passing 1.2.3.0/31 to RemoveElementsContainedBy will remove them both,
// while the Remove method will remove nothing.
// After inserting 1.2.3.0/31, then Remove(Address) will remove 1.2.3.0/31, but will leave 1.2.3.0 and 1.2.3.1 in the trie.
//
// It cannot partially delete a node, such as deleting a single address from a prefix block represented by a node.
// It can only delete the whole node if the whole address or block represented by that node is contained in the given address or block.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
//Returns the root node of the subtrie that was removed from the trie, or nil if nothing was removed.
func (node *AssociativeTrieNode[T, V]) RemoveElementsContainedBy(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBase().removeElementsContainedBy(addr))
}
// ElementsContainedBy checks if a part of this trie, with this node as the root, is contained by the given prefix block subnet or individual address.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns the root node of the contained subtrie, or nil if no subtrie is contained.
// The node returned need not be an "added" node, see IsAdded for more details on added nodes.
// The returned subtrie is backed by this trie, so changes in this trie are reflected in those nodes and vice-versa.
func (node *AssociativeTrieNode[T, V]) ElementsContainedBy(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBase().elementsContainedBy(addr))
}
// ElementsContaining finds the trie nodes in the trie, with this sub-node as the root,
// containing the given key and returns them as a linked list.
// Only added nodes are added to the linked list.
//
// If the argument is not a single address nor prefix block, this method will panic.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (node *AssociativeTrieNode[T, V]) ElementsContaining(addr T) *ContainmentValuesPath[T, V] {
return &ContainmentValuesPath[T, V]{*node.toBase().elementsContaining(addr)}
}
// LongestPrefixMatch returns the address or subnet with the longest prefix of all the added subnets or the address whose prefix matches the given address.
// This is equivalent to finding the containing subnet or address with the smallest subnet size.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns nil if no added subnet or address contains the given argument.
//
// Use ElementContains to check for the existence of a containing address.
// To get all the containing addresses (subnets with matching prefix), use ElementsContaining.
// To get the node corresponding to the result of this method, use LongestPrefixMatchNode.
func (node *AssociativeTrieNode[T, V]) LongestPrefixMatch(addr T) T {
return node.toBase().longestPrefixMatch(addr)
}
// LongestPrefixMatchNode finds the containing subnet or address in the trie with the smallest subnet size,
// which is equivalent to finding the subnet or address with the longest matching prefix.
// Returns the node corresponding to that subnet.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns nil if no added subnet or address contains the given argument.
//
// Use ElementContains to check for the existence of a containing address.
// To get all the containing addresses, use ElementsContaining.
// Use LongestPrefixMatch to get only the address corresponding to the result of this method.
func (node *AssociativeTrieNode[T, V]) LongestPrefixMatchNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBase().longestPrefixMatchNode(addr))
}
// ElementContains checks if a prefix block subnet or address in the trie, with this node as the root, contains the given subnet or address.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns true if the subnet or address is contained by a trie element, false otherwise.
//
// To get all the containing addresses, use ElementsContaining.
func (node *AssociativeTrieNode[T, V]) ElementContains(addr T) bool {
return node.toBase().elementContains(addr)
}
// GetNode gets the node in the trie, with this subnode as the root, corresponding to the given address,
// or returns nil if not such element exists.
//
// It returns any node, whether added or not,
// including any prefix block node that was not added.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
func (node *AssociativeTrieNode[T, V]) GetNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBase().getNode(addr))
}
// GetAddedNode gets trie nodes representing added elements.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Use Contains to check for the existence of a given address in the trie,
// as well as GetNode to search for all nodes including those not-added but also auto-generated nodes for subnet blocks.
func (node *AssociativeTrieNode[T, V]) GetAddedNode(addr T) *AssociativeTrieNode[T, V] {
return toAssociativeTrieNode[T, V](node.toBase().getAddedNode(addr))
}
// Get gets the value for the specified key in this mapped trie or subtrie.
//
// If the argument is not a single address nor prefix block, this method will panic.
// The [Partition] type can be used to convert the argument to single addresses and prefix blocks before calling this method.
//
// Returns the value for the given key.
// Returns nil if the contains no mapping for that key or if the mapped value is nil.
func (node *AssociativeTrieNode[T, V]) Get(addr T) (V, bool) {
return node.toBase().get(addr)
}
// NodeSize returns the number of nodes in the trie with this node as the root, which is more than the number of added addresses or blocks.
func (node *AssociativeTrieNode[T, V]) NodeSize() int {
return node.toBinTrieNode().NodeSize()
}
// Size returns the number of elements in the trie.
// Only nodes for which IsAdded returns true are counted.
// When zero is returned, IsEmpty returns true.
func (node *AssociativeTrieNode[T, V]) Size() int {
return node.toBinTrieNode().Size()
}
// IsEmpty returns whether the size is zero.
func (node *AssociativeTrieNode[T, V]) IsEmpty() bool {
return node.Size() == 0
}
// TreeString returns a visual representation of the sub-trie with this node as the root, with one node per line.
//
// - withNonAddedKeys: whether to show nodes that are not added nodes
// - withSizes: whether to include the counts of added nodes in each sub-trie
func (node *AssociativeTrieNode[T, V]) TreeString(withNonAddedKeys, withSizes bool) string {
return node.toBinTrieNode().TreeString(withNonAddedKeys, withSizes)
}
// String returns a visual representation of this node including the key, with an open circle indicating this node is not an added node,
// a closed circle indicating this node is an added node.
func (node *AssociativeTrieNode[T, V]) String() string {
return node.toBinTrieNode().String()
}
// For some reason Format must be here and not in addressTrieNode for nil node.
// It panics in fmt code either way, but if in here then it is handled by a recover() call in fmt properly in the debugger.
// Format implements the [fmt.Formatter] interface.
func (node AssociativeTrieNode[T, V]) Format(state fmt.State, verb rune) {
node.toBase().binNode.Format(state, verb)
}
//
//
//
//
//
//
//
// ContainmentPath represents a path through the trie of containing subnets,
// each node in the path contained by the previous node,
// the first node corresponding to the shortest prefix match, the last element corresponding to the longest prefix match.
type containmentPath[T TrieKeyConstraint[T], V any] struct {
path tree.Path[trieKey[T], V]
}
// Count returns the count of containing subnets in the path of containing subnets, starting from this node and moving downwards to sub-nodes.
// This is a constant-time operation since the size is maintained in each node and adjusted with each add and Remove operation in the sub-tree.
func (path *containmentPath[T, V]) count() int {
if path == nil {
return 0
}
return path.path.Size()
}
// String returns a visual representation of the Path with one node per line.
func (path *containmentPath[T, V]) string() string {
if path == nil {
return nilString()
}
return path.path.String()
}
func toContainmentPath[T TrieKeyConstraint[T], V any](path *tree.Path[trieKey[T], V]) *containmentPath[T, V] {
return (*containmentPath[T, V])(unsafe.Pointer(path))
}
//
//
//
//
//
// ContainmentPath represents a path through the trie of containing subnets,
// each node in the path contained by the previous node,
// the first node corresponding to the shortest prefix match, the last element corresponding to the longest prefix match.
type ContainmentPath[T TrieKeyConstraint[T]] struct {
containmentPath[T, emptyValue]
}
// Count returns the count of containing subnets in the path of containing subnets, starting from this node and moving downwards to sub-nodes.
// This is a constant-time operation since the size is maintained in each node and adjusted with each add and Remove operation in the sub-tree.
func (path *ContainmentPath[T]) Count() int {
return path.count()
}
// String returns a visual representation of the Path with one node per line.
func (path *ContainmentPath[T]) String() string {
return path.string()
}
// ShortestPrefixMatch returns the beginning of the Path of containing subnets, which may or may not match the tree root of the originating tree.
// If there are no containing elements (prefix matches) this returns nil.
func (path *ContainmentPath[T]) ShortestPrefixMatch() *ContainmentPathNode[T] {
return toContainmentPathNode[T](path.path.GetRoot())
}
// LongestPrefixMatch returns the end of the Path of containing subnets, which may or may not match a leaf in the originating tree.
// If there are no containing elements (prefix matches) this returns nil.
func (path *ContainmentPath[T]) LongestPrefixMatch() *ContainmentPathNode[T] {
return toContainmentPathNode[T](path.path.GetLeaf())
}
//
//
//
//
//
//
//
//
//
// ContainmentValuesPath represents a path through the associative trie of containing subnets,
// each node in the path contained by the previous node,
// the first node corresponding to the shortest prefix match, the last element corresponding to the longest prefix match.
type ContainmentValuesPath[T TrieKeyConstraint[T], V any] struct {
containmentPath[T, V]
}
// Count returns the count of containing subnets in the path of containing subnets, starting from this node and moving downwards to sub-nodes.
// This is a constant-time operation since the size is maintained in each node and adjusted with each add and Remove operation in the sub-tree.
func (path *ContainmentValuesPath[T, V]) Count() int {
return path.count()
}
// String returns a visual representation of the Path with one node per line.
func (path *ContainmentValuesPath[T, V]) String() string {
return path.string()
}
// ShortestPrefixMatch returns the beginning of the Path of containing subnets, which may or may not match the tree root of the originating tree.
// If there are no containing elements (prefix matches) this returns nil.
func (path *ContainmentValuesPath[T, V]) ShortestPrefixMatch() *ContainmentValuesPathNode[T, V] {
return toContainmentValuesPathNode[T, V](path.path.GetRoot())
}
// LongestPrefixMatch returns the end of the Path of containing subnets, which may or may not match a leaf in the originating tree.
// If there are no containing elements (prefix matches) this returns nil.
func (path *ContainmentValuesPath[T, V]) LongestPrefixMatch() *ContainmentValuesPathNode[T, V] {
return toContainmentValuesPathNode[T, V](path.path.GetLeaf())
}
//
//
//
//
//
//
//
//
//
// ContainmentPathNode is a node in a ContainmentPath
type containmentPathNode[T TrieKeyConstraint[T], V any] struct {
pathNode tree.PathNode[trieKey[T], V]
}
// getKey gets the containing block or matching address corresponding to this node
func (node *containmentPathNode[T, V]) getKey() T {
return node.pathNode.GetKey().address
}
// Count returns the count of containing subnets in the path of containing subnets, starting from this node and moving downwards to sub-nodes.
// This is a constant-time operation since the size is maintained in each node and adjusted with each add and Remove operation in the sub-tree.
func (node *containmentPathNode[T, V]) count() int {
if node == nil {
return 0
}
return node.pathNode.Size()
}
// String returns a visual representation of this node including the address key
func (node *containmentPathNode[T, V]) string() string {
if node == nil {
return nilString()
}
return node.pathNode.String()
}
// ListString returns a visual representation of the containing subnets starting from this node and moving downwards to sub-nodes.
func (node *containmentPathNode[T, V]) listString() string {
return node.pathNode.ListString(true, true)
}
//
//
//
//
//
//
// ContainmentPathNode is a node in a ContainmentPath
type ContainmentPathNode[T TrieKeyConstraint[T]] struct {
containmentPathNode[T, emptyValue]
}
// GetKey gets the containing block or matching address corresponding to this node
func (node *ContainmentPathNode[T]) GetKey() T {
return node.getKey()
}
// Count returns the count of containing subnets in the path of containing subnets, starting from this node and moving downwards to sub-nodes.
// This is a constant-time operation since the size is maintained in each node and adjusted with each add and Remove operation in the sub-tree.
func (node *ContainmentPathNode[T]) Count() int {
return node.count()
}
// String returns a visual representation of this node including the address key
func (node *ContainmentPathNode[T]) String() string {
return node.string()
}
// ListString returns a visual representation of the containing subnets starting from this node and moving downwards to sub-nodes.
func (node *ContainmentPathNode[T]) ListString() string {
return node.listString()
}
// Next gets the node contained by this node
func (node *ContainmentPathNode[T]) Next() *ContainmentPathNode[T] {
return toContainmentPathNode[T](node.pathNode.Next())
}
// Previous gets the node containing this node
func (node *ContainmentPathNode[T]) Previous() *ContainmentPathNode[T] {
return toContainmentPathNode[T](node.pathNode.Previous())
}
func toContainmentPathNode[T TrieKeyConstraint[T]](node *tree.PathNode[trieKey[T], emptyValue]) *ContainmentPathNode[T] {
return (*ContainmentPathNode[T])(unsafe.Pointer(node))
}
//
//
//
//
//
//
// ContainmentValuesPathNode is a node in a ContainmentPath
type ContainmentValuesPathNode[T TrieKeyConstraint[T], V any] struct {
containmentPathNode[T, V]
}
// GetKey gets the containing block or matching address corresponding to this node
func (node *ContainmentValuesPathNode[T, V]) GetKey() T {
return node.getKey()
}
// Count returns the count of containing subnets in the path of containing subnets, starting from this node and moving downwards to sub-nodes.
// This is a constant-time operation since the size is maintained in each node and adjusted with each add and Remove operation in the sub-tree.
func (node *ContainmentValuesPathNode[T, V]) Count() int {
return node.count()
}
// String returns a visual representation of this node including the address key
func (node *ContainmentValuesPathNode[T, V]) String() string {
return node.string()
}
// ListString returns a visual representation of the containing subnets starting from this node and moving downwards to sub-nodes.
func (node *ContainmentValuesPathNode[T, V]) ListString() string {
return node.listString()
}
// Next gets the node contained by this node
func (node *ContainmentValuesPathNode[T, V]) Next() *ContainmentValuesPathNode[T, V] {
return toContainmentValuesPathNode[T, V](node.pathNode.Next())
}
// Previous gets the node containing this node
func (node *ContainmentValuesPathNode[T, V]) Previous() *ContainmentValuesPathNode[T, V] {
return toContainmentValuesPathNode[T, V](node.pathNode.Previous())
}
// GetValue returns the value assigned to the block or address, if the node was an associative node from an associative trie.
// Otherwise, it returns the zero value.
func (node *ContainmentValuesPathNode[T, V]) GetValue() V {
return node.pathNode.GetValue()
}
func toContainmentValuesPathNode[T TrieKeyConstraint[T], V any](node *tree.PathNode[trieKey[T], V]) *ContainmentValuesPathNode[T, V] {
return (*ContainmentValuesPathNode[T, V])(unsafe.Pointer(node))
}
|