File: compare.go

package info (click to toggle)
golang-github-seancfoley-ipaddress-go 1.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental, forky, sid, trixie
  • size: 3,700 kB
  • sloc: makefile: 3
file content (1177 lines) | stat: -rw-r--r-- 37,435 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

package ipaddr

import "math/big"

var (
	// CountComparator compares by count first, then by value.
	CountComparator = AddressComparator{countComparator{}}

	// HighValueComparator compares by high value first, then low, then count.
	HighValueComparator = AddressComparator{valueComparator{compareHighValue: true}}

	// LowValueComparator compares by low value first, then high, then count.
	LowValueComparator = AddressComparator{valueComparator{}}

	// With the reverse comparators, ordering with the secondary values (higher or lower) follow a reverse ordering than the primary values (lower or higher)

	// ReverseHighValueComparator is like HighValueComparator but when comparing the low value, reverses the comparison.
	ReverseHighValueComparator = AddressComparator{valueComparator{compareHighValue: true, flipSecond: true}}

	// ReverseLowValueComparator is like LowValueComparator but when comparing the high value, reverses the comparison.
	ReverseLowValueComparator = AddressComparator{valueComparator{flipSecond: true}}
)

type componentComparator interface {
	compareSectionParts(one, two *AddressSection) int

	compareParts(one, two AddressDivisionSeries) int

	compareSegValues(oneUpper, oneLower, twoUpper, twoLower SegInt) int

	compareValues(oneUpper, oneLower, twoUpper, twoLower uint64) int

	compareLargeValues(oneUpper, oneLower, twoUpper, twoLower *big.Int) int
}

type groupingType int

const (
	ipv6sectype          groupingType = 7
	ipv4sectype          groupingType = 6
	ipsectype            groupingType = 5
	macsectype           groupingType = 4
	sectype              groupingType = 3
	ipv6v4groupingtype   groupingType = 2
	largegroupingtype    groupingType = -2
	standardgroupingtype groupingType = -3
	adaptivezerotype     groupingType = -4
	unknowntype          groupingType = -5
)

type divType int

const (
	ipv6segtype     divType = 6
	ipv4segtype     divType = 5
	ipsegtype       divType = 4
	macsegtype      divType = 3
	segtype         divType = 1
	standarddivtype divType = 0
	largedivtype    divType = -2
	unknowndivtype  divType = -3
)

type rangeType int

const (
	ipv6rangetype    rangeType = 2
	ipv4rangetype    rangeType = 1
	iprangetype      rangeType = 0
	unknownrangetype rangeType = -1
)

func checkSegmentType(div AddressSegmentType) (isNil bool, divType divType) {
	if isNil = div == nil; isNil {
		divType = unknowndivtype
	} else {
		seg := div.ToSegmentBase()
		if isNil = seg == nil; !isNil {
			if seg.IsIPv6() {
				divType = ipv6segtype
			} else if seg.IsIPv4() {
				divType = ipv4segtype
			} else if seg.IsMAC() {
				divType = macsegtype
			} else if seg.IsIP() {
				divType = ipsegtype
			} else {
				divType = segtype
			}
		} else {
			divType = unknowndivtype
		}
	}
	return
}

func checkDivisionType(genericDiv DivisionType) (isNil, isStandard bool, divType divType, standardDiv StandardDivisionType) {
	// Note: https://go.dev/play/p/4cHtDqDxpjp shows the behaviour or type-checking
	if standardDiv, isStandard = genericDiv.(StandardDivisionType); isStandard {
		div := standardDiv.ToDiv()
		if isNil = div == nil; !isNil {
			if div.IsIPv6() {
				divType = ipv6segtype
			} else if div.IsIPv4() {
				divType = ipv4segtype
			} else if div.IsMAC() {
				divType = macsegtype
			} else if div.IsIP() {
				divType = ipsegtype
			} else if div.IsSegmentBase() {
				divType = segtype
			} else {
				divType = standarddivtype
			}
		} else {
			divType = unknowndivtype
		}
	} else if largeDiv, isLarge := genericDiv.(*IPAddressLargeDivision); isLarge {
		if isNil = largeDiv.isNil(); !isNil {
			divType = largedivtype
		}
	} else {
		isNil = genericDiv == nil
		// it could still have some external type, so not a nil interface but a nil value with that type, but we have no way to know
		divType = unknowndivtype
	}
	return
}

func checkSectionType(sect AddressSectionType) (isNil bool, groupingType groupingType) {
	if isNil = sect == nil; isNil {
		groupingType = unknowntype
	} else {
		section := sect.ToSectionBase()
		if isNil = section == nil; !isNil {
			if section.IsAdaptiveZero() {
				// The zero grouping can represent a zero-length section of any address type.
				// This is necessary because sections and groupings have no init() method to ensure zero-sections are always assigned an address type.
				// We would need the zero grouping to be less than everything else or more than everything else for comparison consistency.
				// Empty sections or groupings that have an address type are not considered equal.  They can represent only one address type.
				// This is similar to the fact that a MAC section and an IPv4 section can be structurally identical but not equal due to the type.
				//
				// See IsAdaptiveZero() method for more details.
				groupingType = adaptivezerotype
			} else if section.IsIPv6() {
				groupingType = ipv6sectype
			} else if section.IsIPv4() {
				groupingType = ipv4sectype
			} else if section.IsMAC() {
				groupingType = macsectype
			} else if section.IsIP() {
				groupingType = ipsectype
			} else {
				groupingType = sectype
			}
		} else {
			groupingType = unknowntype
		}
	}
	return
}

func checkGroupingType(series AddressDivisionSeries) (
	isNil bool, groupingType groupingType) {
	// Note: https://go.dev/play/p/4cHtDqDxpjp shows the behaviour or type-checking
	if sgrouping, isStandard := series.(StandardDivGroupingType); isStandard {
		group := sgrouping.ToDivGrouping()
		if isNil = group == nil; !isNil {
			if group.IsAdaptiveZero() {
				// The zero grouping can represent a zero-length section of any address type.
				// This is necessary because sections and groupings have no init() method to ensure zero-sections are always assigned an address type.
				// We would need the zero grouping to be less than everything else or more than everything else for comparison consistency.
				// Empty sections or groupings that have an address type are not considered equal.  They can represent only one address type.
				// This is similar to the fact that a MAC section and an IPv4 section can be structurally identical but not equal due to the type.
				//
				// See IsAdaptiveZero() method for more details.
				groupingType = adaptivezerotype
			} else if group.IsIPv6() {
				groupingType = ipv6sectype
			} else if group.IsMixedIPv6v4() {
				groupingType = ipv6v4groupingtype
			} else if group.IsIPv4() {
				groupingType = ipv4sectype
			} else if group.IsMAC() {
				groupingType = macsectype
			} else if group.IsIP() {
				// Currently the ipsectype result is impossible, because a zero IP section has type adaptivezerotype,
				// while a non-zero IP section can only be ipv6sectype or ipv4sectype
				groupingType = ipsectype
			} else if group.isAddressSection() {
				// Currently the sectype result is impossible, because a zero section has type adaptivezerotype,
				// while a non-zero IP section can only be ipv6sectype or ipv4sectype
				groupingType = sectype
			} else {
				groupingType = standardgroupingtype
			}
		} else {
			groupingType = unknowntype
		}
	} else if lgrouping, isLarge := series.(*IPAddressLargeDivisionGrouping); isLarge {
		if isNil = lgrouping.isNil(); !isNil {
			groupingType = largegroupingtype
		} else {
			groupingType = unknowntype
		}
	} else {
		isNil = series == nil
		// it could still have some external type, so not a nil interface but a nil value with that type, but we have no way to know
		groupingType = unknowntype
	}
	return
}

func checkRangeTypeX(r IPAddressSeqRangeType) (isNil bool, rngType rangeType, rng *SequentialRange[*IPAddress]) {
	if isNil = r == nil; isNil {
		rngType = unknownrangetype
	} else {
		rng = r.ToIP()
		if isNil = rng == nil; !isNil {
			version := r.GetIPVersion()
			if version.IsIPv4() {
				rngType = ipv4rangetype
			} else if version.IsIPv6() {
				rngType = ipv6rangetype
			} else {
				rngType = iprangetype
			}
		} else {
			rngType = unknownrangetype
		}
	}
	return
}

// AddressComparator has methods to compare addresses, or sections, or division series, or segments, or divisions, or sequential ranges.
// AddressComparator also allows you to compare any two instances of any such address items, using the Compare method.
// The zero value acts like CountComparator, the default comparator.
type AddressComparator struct {
	componentComparator componentComparator
}

// CompareAddresses compares any two addresses (including different versions or address types)
// It returns a negative integer, zero, or a positive integer if address item one is less than, equal, or greater than address item two.
func (comp AddressComparator) CompareAddresses(one, two AddressType) int {
	if one == nil || one.ToAddressBase() == nil {
		if two == nil || two.ToAddressBase() == nil {
			return 0
		}
		return -1
	} else if two == nil || two.ToAddressBase() == nil {
		return 1
	}
	oneAddr := one.ToAddressBase()
	twoAddr := two.ToAddressBase()
	result := comp.CompareAddressSections(oneAddr.GetSection(), twoAddr.GetSection())
	if result == 0 {
		if oneIPv6 := oneAddr.ToIPv6(); oneIPv6 != nil {
			twoIPv6 := twoAddr.ToIPv6()
			oneZone := oneIPv6.zone
			twoZone := twoIPv6.zone
			if oneZone == twoZone {
				return 0
			} else if oneZone < twoZone {
				return -1
			}
			return 1
		}
	}
	return result
}

// CompareAddressSections compares any two address sections (including from different versions or address types).
// It returns a negative integer, zero, or a positive integer if address item one is less than, equal, or greater than address item two.
func (comp AddressComparator) CompareAddressSections(one, two AddressSectionType) int {
	oneIsNil, oneGroupingType := checkSectionType(one)
	twoIsNil, twoGroupingType := checkSectionType(two)
	if oneIsNil {
		if twoIsNil {
			return 0
		}
		return -1
	} else if twoIsNil {
		return 1
	} else if result := oneGroupingType - twoGroupingType; result != 0 {
		return int(result)
	} else if result := int(one.GetBitCount() - two.GetBitCount()); result != 0 {
		return result
	}
	return comp.getCompComp().compareSectionParts(one.ToSectionBase(), two.ToSectionBase())
}

func (comp AddressComparator) getCompComp() componentComparator {
	compComp := comp.componentComparator
	if compComp == nil {
		return countComparator{}
	}
	return compComp
}

func unwrapWrapper(item AddressDivisionSeries) AddressDivisionSeries {
	if wrapper, ok := item.(ExtendedIPSegmentSeries); ok {
		return wrapper.Unwrap()
	}
	return item
}

// CompareSeries compares any two address division series (including from different versions or address types).
// It returns a negative integer, zero, or a positive integer if address item one is less than, equal, or greater than address item two.
func (comp AddressComparator) CompareSeries(one, two AddressDivisionSeries) int {
	one = unwrapWrapper(one)
	two = unwrapWrapper(two)
	if addrSeries1, ok := one.(AddressType); ok {
		if addrSeries2, ok := two.(AddressType); ok {
			return comp.CompareAddresses(addrSeries1, addrSeries2)
		}
		return 1
	} else if _, ok := two.(AddressType); ok {
		return -1
	}
	// at this point they must be both groupings if not nil
	if addrSection1, ok := one.(AddressSectionType); ok {
		if addrSection2, ok := two.(AddressSectionType); ok {
			return comp.CompareAddressSections(addrSection1, addrSection2)
		}
	}
	oneIsNil, oneGroupingType := checkGroupingType(one)
	twoIsNil, twoGroupingType := checkGroupingType(two)

	// All nils are equivalent.  We decided that a nil interface should be equivalent to an interface with a nil value (standard or large)
	// But if nil interface == nil standard, and nil interface == nil large, then nil standard == nil large, by transitive condition.
	// And in fact, if you attempted to categorize the 3 nil types, it would get quite confusing perhaps.
	if oneIsNil {
		if twoIsNil {
			return 0
		}
		return -1
	} else if twoIsNil {
		return 1
	} else if result := oneGroupingType - twoGroupingType; result != 0 {
		return int(result)
	} else if result := int(one.GetBitCount() - two.GetBitCount()); result != 0 {
		return result
	}
	return comp.getCompComp().compareParts(one, two)
}

// CompareSegments compares any two address segments (including from different versions or address types).
// It returns a negative integer, zero, or a positive integer if address item one is less than, equal, or greater than address item two.
func (comp AddressComparator) CompareSegments(one, two AddressSegmentType) int {
	oneIsNil, oneDivType := checkSegmentType(one)
	twoIsNil, twoDivType := checkSegmentType(two)
	// All nils are equivalent.  We decided that a nil interface should be equivalent to an interface with a nil value (standard or large)
	// But if nil interface == nil standard, and nil interface == nil large, then nil standard == nil large, by transitive condition.
	// And in fact, if you attempted to categorize the 3 nil types, it would get quite confusing perhaps.
	if oneIsNil {
		if twoIsNil {
			return 0
		}
		return -1
	} else if twoIsNil {
		return 1
	} else if result := oneDivType - twoDivType; result != 0 {
		return int(result)
	} else if result := int(one.GetBitCount() - two.GetBitCount()); result != 0 {
		return result
	}
	oneSeg := one.ToSegmentBase()
	twoSeg := two.ToSegmentBase()
	return comp.getCompComp().compareSegValues(oneSeg.GetUpperSegmentValue(), oneSeg.GetSegmentValue(),
		twoSeg.GetUpperSegmentValue(), twoSeg.GetSegmentValue())
}

// CompareDivisions compares any two address divisions (including from different versions or address types).
// It returns a negative integer, zero, or a positive integer if address item one is less than, equal, or greater than address item two.
func (comp AddressComparator) CompareDivisions(one, two DivisionType) int {
	if addrSeg1, ok := one.(AddressSegmentType); ok {
		if addrSeg2, ok := two.(AddressSegmentType); ok {
			return comp.CompareSegments(addrSeg1, addrSeg2)
		}
	}
	oneIsNil, oneIsStandard, oneDivType, oneStandardDiv := checkDivisionType(one)
	twoIsNil, twoIsStandard, twoDivType, twoStandardDiv := checkDivisionType(two)
	// All nils are equivalent.  We decided that a nil interface should be equivalent to an interface with a nil value (standard or large)
	// But if nil interface == nil standard, and nil interface == nil large, then nil standard == nil large, by transitive condition.
	// And in fact, if you attempted to categorize the 3 nil types, it would get quite confusing perhaps.
	if oneIsNil {
		if twoIsNil {
			return 0
		}
		return -1
	} else if twoIsNil {
		return 1
	} else if result := oneDivType - twoDivType; result != 0 {
		return int(result)
	} else if result := int(one.GetBitCount() - two.GetBitCount()); result != 0 {
		return result
	}
	compComp := comp.getCompComp()
	if oneIsStandard {
		if twoIsStandard {
			div1, div2 := oneStandardDiv.ToDiv(), twoStandardDiv.ToDiv()
			return compComp.compareValues(div1.GetUpperDivisionValue(), div1.GetDivisionValue(), div2.GetUpperDivisionValue(), div2.GetDivisionValue())
		}
	}
	return compComp.compareLargeValues(one.GetUpperValue(), one.GetValue(), two.GetUpperValue(), two.GetValue())
}

// CompareRanges compares any two IP address sequential ranges (including from different IP versions).
// It returns a negative integer, zero, or a positive integer if address item one is less than, equal, or greater than address item two.
func (comp AddressComparator) CompareRanges(one, two IPAddressSeqRangeType) int {
	oneIsNil, r1Type, r1 := checkRangeTypeX(one)
	twoIsNil, r2Type, r2 := checkRangeTypeX(two)
	if oneIsNil {
		if twoIsNil {
			return 0
		}
		return -1
	} else if twoIsNil {
		return 1
	}
	result := r1Type - r2Type
	if result != 0 {
		return int(result)
	}
	compComp := comp.getCompComp()
	if r1Type == ipv4rangetype { // avoid using the large values
		r1ipv4 := r1.ToIPv4()
		r2ipv4 := r2.ToIPv4()
		return compComp.compareValues(uint64(r1ipv4.GetUpper().Uint32Value()), uint64(r1ipv4.GetLower().Uint32Value()), uint64(r2ipv4.GetUpper().Uint32Value()), uint64(r2ipv4.GetLower().Uint32Value()))
	}
	return compComp.compareLargeValues(one.GetUpperValue(), one.GetValue(), two.GetUpperValue(), two.GetValue())
}

// Compare returns a negative integer, zero, or a positive integer if address item one is less than, equal, or greater than address item two.
// Any address item is comparable to any other.
func (comp AddressComparator) Compare(one, two AddressItem) int {
	if one == nil {
		if two == nil {
			return 0
		}
		return -1
	} else if two == nil {
		return 1
	}

	if divSeries1, ok := one.(AddressDivisionSeries); ok {
		if divSeries2, ok := two.(AddressDivisionSeries); ok {
			return comp.CompareSeries(divSeries1, divSeries2)
		} else {
			return 1
		}
	} else if div1, ok := one.(DivisionType); ok {
		if div2, ok := two.(DivisionType); ok {
			return comp.CompareDivisions(div1, div2)
		} else {
			return -1
		}
	} else if rng1, ok := one.(IPAddressSeqRangeType); ok {
		if rng2, ok := two.(IPAddressSeqRangeType); ok {
			return comp.CompareRanges(rng1, rng2)
		} else if _, ok := two.(AddressDivisionSeries); ok {
			return -1
		}
		return 1
	}
	// we've covered all known address items for 'one', so check 'two'
	if _, ok := two.(AddressDivisionSeries); ok {
		return -1
	} else if _, ok := two.(DivisionType); ok {
		return 1
		//} else if _, ok := two.(IPAddressSeqRangeType); ok {
		//	return -1
	} else if _, ok := two.(IPAddressSeqRangeType); ok {
		return -1
	}
	// neither are a known AddressItem type
	res := int(one.GetBitCount() - two.GetBitCount())
	if res == 0 {
		return res
	}
	return comp.getCompComp().compareLargeValues(one.GetUpperValue(), one.GetValue(), two.GetUpperValue(), two.GetValue())
}

type valueComparator struct {
	compareHighValue, flipSecond bool
}

func (comp valueComparator) compareSectionParts(one, two *AddressSection) int {
	compareHigh := comp.compareHighValue
	for {
		segCount := one.GetSegmentCount()
		for i := 0; i < segCount; i++ {
			segOne := one.GetSegment(i)
			segTwo := two.GetSegment(i)
			var s1, s2 SegInt
			if compareHigh {
				s1 = segOne.GetUpperSegmentValue()
				s2 = segTwo.GetUpperSegmentValue()
			} else {
				s1 = segOne.GetSegmentValue()
				s2 = segTwo.GetSegmentValue()
			}
			if s1 != s2 {
				var result int
				if s1 > s2 {
					result = 1
				} else {
					result = -1
				}
				if comp.flipSecond && compareHigh != comp.compareHighValue {
					result = -result
				}
				return result
			}
		}
		compareHigh = !compareHigh
		if compareHigh == comp.compareHighValue {
			break
		}
	}
	return 0
}

func (comp valueComparator) compareParts(oneSeries, twoSeries AddressDivisionSeries) int {
	sizeResult := int(oneSeries.GetBitCount() - twoSeries.GetBitCount())
	if sizeResult != 0 {
		return sizeResult
	}
	result := compareDivBitCounts(oneSeries, twoSeries)
	if result != 0 {
		return result
	}
	compareHigh := comp.compareHighValue
	var one, two *AddressDivisionGrouping
	if o, ok := oneSeries.(StandardDivGroupingType); ok {
		if t, ok := twoSeries.(StandardDivGroupingType); ok {
			one = o.ToDivGrouping()
			two = t.ToDivGrouping()
		}
	}
	oneSeriesByteCount := oneSeries.GetByteCount()
	twoSeriesByteCount := twoSeries.GetByteCount()
	oneBytes := make([]byte, oneSeriesByteCount)
	twoBytes := make([]byte, twoSeriesByteCount)
	for {
		var oneByteCount, twoByteCount, oneByteIndex, twoByteIndex, oneIndex, twoIndex int
		var oneBitCount, twoBitCount, oneTotalBitCount, twoTotalBitCount BitCount
		var oneValue, twoValue uint64
		for oneIndex < oneSeries.GetDivisionCount() || twoIndex < twoSeries.GetDivisionCount() {
			if one != nil {
				if oneBitCount == 0 {
					oneCombo := one.GetDivision(oneIndex)
					oneIndex++
					oneBitCount = oneCombo.GetBitCount()
					if compareHigh {
						oneValue = oneCombo.GetUpperDivisionValue()
					} else {
						oneValue = oneCombo.GetDivisionValue()
					}
				}
				if twoBitCount == 0 {
					twoCombo := two.GetDivision(twoIndex)
					twoIndex++
					twoBitCount = twoCombo.GetBitCount()
					if compareHigh {
						twoValue = twoCombo.GetUpperDivisionValue()
					} else {
						twoValue = twoCombo.GetDivisionValue()
					}
				}
			} else {
				if oneBitCount == 0 {
					if oneByteCount == 0 {
						oneCombo := oneSeries.GetGenericDivision(oneIndex)
						oneIndex++
						if compareHigh {
							oneBytes = oneCombo.CopyUpperBytes(oneBytes)
						} else {
							oneBytes = oneCombo.CopyBytes(oneBytes)
						}
						oneTotalBitCount = oneCombo.GetBitCount()
						oneByteCount = oneCombo.GetByteCount()
						oneByteIndex = 0
					}
					//put some or all of the bytes into a long
					count := 8
					oneValue = 0
					if count < oneByteCount {
						oneBitCount = BitCount(count) << 3
						oneTotalBitCount -= oneBitCount
						oneByteCount -= count
						for count > 0 {
							count--

							oneValue = (oneValue << 8) | uint64(oneBytes[oneByteIndex])
							oneByteIndex++
						}
					} else {
						shortCount := oneByteCount - 1
						lastBitsCount := oneTotalBitCount - (BitCount(shortCount) << 3)
						for shortCount > 0 {
							shortCount--
							oneValue = (oneValue << 8) | uint64(oneBytes[oneByteIndex])
							oneByteIndex++
						}
						oneValue = (oneValue << uint64(lastBitsCount)) | uint64(oneBytes[oneByteIndex]>>uint64(8-lastBitsCount))
						oneByteIndex++
						oneBitCount = oneTotalBitCount
						oneTotalBitCount = 0
						oneByteCount = 0
					}
				}
				if twoBitCount == 0 {
					if twoByteCount == 0 {
						twoCombo := twoSeries.GetGenericDivision(twoIndex)
						twoIndex++
						if compareHigh {
							twoBytes = twoCombo.CopyUpperBytes(twoBytes)
						} else {
							twoBytes = twoCombo.CopyBytes(twoBytes)
						}
						twoTotalBitCount = twoCombo.GetBitCount()
						twoByteCount = twoCombo.GetByteCount()
						twoByteIndex = 0
					}
					//put some or all of the bytes into a long
					count := 8
					twoValue = 0
					if count < twoByteCount {
						twoBitCount = BitCount(count) << 3
						twoTotalBitCount -= twoBitCount
						twoByteCount -= count
						for count > 0 {
							count--

							twoValue = (twoValue << 8) | uint64(twoBytes[twoByteIndex])
							twoByteIndex++
						}
					} else {
						shortCount := twoByteCount - 1
						lastBitsCount := twoTotalBitCount - (BitCount(shortCount) << 3)
						for shortCount > 0 {
							shortCount--

							twoValue = (twoValue << 8) | uint64(twoBytes[twoByteIndex])
							twoByteIndex++
						}
						twoValue = (twoValue << uint(lastBitsCount)) | uint64(twoBytes[twoByteIndex]>>uint(8-lastBitsCount))
						twoByteIndex++
						twoBitCount = twoTotalBitCount
						twoTotalBitCount = 0
						twoByteCount = 0
					}
				}
			}
			oneResultValue := oneValue
			twoResultValue := twoValue
			if twoBitCount == oneBitCount {
				//no adjustment required, compare the values straight up
				oneBitCount = 0
				twoBitCount = 0
			} else {
				diffBits := twoBitCount - oneBitCount
				if diffBits > 0 {
					twoResultValue >>= uint(diffBits)
					twoValue &= ^(^uint64(0) << uint(diffBits))
					twoBitCount = diffBits
					oneBitCount = 0
				} else {
					diffBits = -diffBits
					oneResultValue >>= uint(diffBits)
					oneValue &= ^(^uint64(0) << uint(diffBits))
					oneBitCount = diffBits
					twoBitCount = 0
				}
			}
			if oneResultValue != twoResultValue {
				if comp.flipSecond && compareHigh != comp.compareHighValue {
					if oneResultValue > twoResultValue {
						return -1
					}
					return 1
				}
				if oneResultValue > twoResultValue {
					return 1
				}
				return -1
			}
		}
		compareHigh = !compareHigh
		if compareHigh == comp.compareHighValue {
			break
		}
	}
	return 0
}

func (comp valueComparator) compareSegValues(oneUpper, oneLower, twoUpper, twoLower SegInt) int {
	if comp.compareHighValue {
		if oneUpper == twoUpper {
			if oneLower == twoLower {
				return 0
			} else if oneLower > twoLower {
				if !comp.flipSecond {
					return 1
				}
			}
		} else if oneUpper > twoUpper {
			return 1
		}
	} else {
		if oneLower == twoLower {
			if oneUpper == twoUpper {
				return 0
			} else if oneUpper > twoUpper {
				if !comp.flipSecond {
					return 1
				}
			}
		} else if oneLower > twoLower {
			return 1
		}
	}
	return -1
}

func (comp valueComparator) compareValues(oneUpper, oneLower, twoUpper, twoLower uint64) int {
	if comp.compareHighValue {
		if oneUpper == twoUpper {
			if oneLower == twoLower {
				return 0
			} else if oneLower > twoLower {
				if !comp.flipSecond {
					return 1
				}
			}
		} else if oneUpper > twoUpper {
			return 1
		}
	} else {
		if oneLower == twoLower {
			if oneUpper == twoUpper {
				return 0
			} else if oneUpper > twoUpper {
				if !comp.flipSecond {
					return 1
				}
			}
		} else if oneLower > twoLower {
			return 1
		}
	}
	return -1
}

func (comp valueComparator) compareLargeValues(oneUpper, oneLower, twoUpper, twoLower *big.Int) int {
	var result int
	if comp.compareHighValue {
		result = oneUpper.CmpAbs(twoUpper)
		if result == 0 {
			result = oneLower.CmpAbs(twoLower)
			if comp.flipSecond {
				result = -result
			}
		}
	} else {
		result = oneLower.CmpAbs(twoLower)
		if result == 0 {
			result = oneUpper.CmpAbs(twoUpper)
			if comp.flipSecond {
				result = -result
			}
		}
	}
	return result
}

type countComparator struct{}

func (comp countComparator) compareSectionParts(one, two *AddressSection) int {
	//result := int(one.GetBitCount() - two.GetBitCount())
	//if result == 0 {
	//result := compareSectionCount(one, two)
	result := compareCount(one, two)
	if result == 0 {
		result = comp.compareEqualSizedSections(one, two)
	}
	//}
	return result
}

func (comp countComparator) compareEqualSizedSections(one, two *AddressSection) int {
	segCount := one.GetSegmentCount()
	for i := 0; i < segCount; i++ {
		segOne := one.GetSegment(i)
		segTwo := two.GetSegment(i)
		oneUpper := segOne.GetUpperSegmentValue()
		twoUpper := segTwo.GetUpperSegmentValue()
		oneLower := segOne.GetSegmentValue()
		twoLower := segTwo.GetSegmentValue()
		result := comp.compareSegValues(oneUpper, oneLower, twoUpper, twoLower)
		if result != 0 {
			return result
		}
	}
	return 0
}

func (comp countComparator) compareParts(one, two AddressDivisionSeries) int {
	result := int(one.GetBitCount() - two.GetBitCount())
	if result == 0 {
		result = compareCount(one, two)
		if result == 0 {
			result = comp.compareDivisionGroupings(one, two)
		}
	}
	return result
}

func (comp countComparator) compareDivisionGroupings(oneSeries, twoSeries AddressDivisionSeries) int {
	var one, two *AddressDivisionGrouping
	if o, ok := oneSeries.(StandardDivGroupingType); ok {
		if t, ok := twoSeries.(StandardDivGroupingType); ok {
			one = o.ToDivGrouping()
			two = t.ToDivGrouping()
		}
	}
	result := compareDivBitCounts(oneSeries, twoSeries)
	if result != 0 {
		return result
	}

	oneSeriesByteCount := oneSeries.GetByteCount()
	twoSeriesByteCount := twoSeries.GetByteCount()

	oneUpperBytes := make([]byte, oneSeriesByteCount)
	oneLowerBytes := make([]byte, oneSeriesByteCount)
	twoUpperBytes := make([]byte, twoSeriesByteCount)
	twoLowerBytes := make([]byte, twoSeriesByteCount)

	var oneByteCount, twoByteCount, oneByteIndex, twoByteIndex, oneIndex, twoIndex int
	var oneBitCount, twoBitCount, oneTotalBitCount, twoTotalBitCount BitCount
	var oneUpper, oneLower, twoUpper, twoLower uint64
	for oneIndex < oneSeries.GetDivisionCount() || twoIndex < twoSeries.GetDivisionCount() {
		if one != nil {
			if oneBitCount == 0 {
				oneCombo := one.getDivision(oneIndex)
				oneIndex++
				oneBitCount = oneCombo.GetBitCount()
				oneUpper = oneCombo.GetUpperDivisionValue()
				oneLower = oneCombo.GetDivisionValue()
			}
			if twoBitCount == 0 {
				twoCombo := two.getDivision(twoIndex)
				twoIndex++
				twoBitCount = twoCombo.GetBitCount()
				twoUpper = twoCombo.GetUpperDivisionValue()
				twoLower = twoCombo.GetDivisionValue()
			}
		} else {
			if oneBitCount == 0 {
				if oneByteCount == 0 {
					oneCombo := oneSeries.GetGenericDivision(oneIndex)
					oneIndex++
					oneUpperBytes = oneCombo.CopyUpperBytes(oneUpperBytes)
					oneLowerBytes = oneCombo.CopyBytes(oneLowerBytes)
					oneTotalBitCount = oneCombo.GetBitCount()
					oneByteCount = oneCombo.GetByteCount()
					oneByteIndex = 0
				}
				//put some or all of the bytes into a uint64
				count := 8
				oneUpper = 0
				oneLower = 0
				if count < oneByteCount {
					oneBitCount = BitCount(count << 3)
					oneTotalBitCount -= oneBitCount
					oneByteCount -= count
					for count > 0 {
						count--
						upperByte := oneUpperBytes[oneByteIndex]
						lowerByte := oneLowerBytes[oneByteIndex]
						oneByteIndex++
						oneUpper = (oneUpper << 8) | uint64(upperByte)
						oneLower = (oneLower << 8) | uint64(lowerByte)
					}
				} else {
					shortCount := oneByteCount - 1
					lastBitsCount := oneTotalBitCount - (BitCount(shortCount) << 3)
					for shortCount > 0 {
						shortCount--
						upperByte := oneUpperBytes[oneByteIndex]
						lowerByte := oneLowerBytes[oneByteIndex]
						oneByteIndex++
						oneUpper = (oneUpper << 8) | uint64(upperByte)
						oneLower = (oneLower << 8) | uint64(lowerByte)
					}
					upperByte := oneUpperBytes[oneByteIndex]
					lowerByte := oneLowerBytes[oneByteIndex]
					oneByteIndex++
					oneUpper = (oneUpper << uint(lastBitsCount)) | uint64(upperByte>>uint(8-lastBitsCount))
					oneLower = (oneLower << uint(lastBitsCount)) | uint64(lowerByte>>uint(8-lastBitsCount))
					oneBitCount = oneTotalBitCount
					oneTotalBitCount = 0
					oneByteCount = 0
				}
			}
			if twoBitCount == 0 {
				if twoByteCount == 0 {
					twoCombo := twoSeries.GetGenericDivision(twoIndex)
					twoIndex++
					twoUpperBytes = twoCombo.CopyUpperBytes(twoUpperBytes)
					twoLowerBytes = twoCombo.CopyBytes(twoLowerBytes)
					twoTotalBitCount = twoCombo.GetBitCount()
					twoByteCount = twoCombo.GetByteCount()
					twoByteIndex = 0
				}
				//put some or all of the bytes into a long
				count := 8
				twoUpper = 0
				twoLower = 0
				if count < twoByteCount {
					twoBitCount = BitCount(count << 3)
					twoTotalBitCount -= twoBitCount
					twoByteCount -= count
					for count > 0 {
						count--
						upperByte := twoUpperBytes[twoByteIndex]
						lowerByte := twoLowerBytes[twoByteIndex]
						twoByteIndex++
						twoUpper = (twoUpper << 8) | uint64(upperByte)
						twoLower = (twoLower << 8) | uint64(lowerByte)
					}
				} else {
					shortCount := twoByteCount - 1
					lastBitsCount := twoTotalBitCount - (BitCount(shortCount) << 3)
					for shortCount > 0 {
						shortCount--
						upperByte := twoUpperBytes[twoByteIndex]
						lowerByte := twoLowerBytes[twoByteIndex]
						twoByteIndex++
						twoUpper = (twoUpper << 8) | uint64(upperByte)
						twoLower = (twoLower << 8) | uint64(lowerByte)
					}
					upperByte := twoUpperBytes[twoByteIndex]
					lowerByte := twoLowerBytes[twoByteIndex]
					twoByteIndex++
					twoUpper = (twoUpper << uint(lastBitsCount)) | uint64(upperByte>>uint(8-lastBitsCount))
					twoLower = (twoLower << uint(lastBitsCount)) | uint64(lowerByte>>uint(8-lastBitsCount))
					twoBitCount = twoTotalBitCount
					twoTotalBitCount = 0
					twoByteCount = 0
				}
			}
		}
		oneResultUpper := oneUpper
		oneResultLower := oneLower
		twoResultUpper := twoUpper
		twoResultLower := twoLower
		if twoBitCount == oneBitCount {
			//no adjustment required, compare the values straight up
			oneBitCount = 0
			twoBitCount = 0
		} else {
			diffBits := twoBitCount - oneBitCount
			if diffBits > 0 {
				twoResultUpper >>= uint(diffBits) //look at the high bits only (we are comparing left to right, high to low)
				twoResultLower >>= uint(diffBits)
				mask := ^(^uint64(0) << uint(diffBits))
				twoUpper &= mask
				twoLower &= mask
				twoBitCount = diffBits
				oneBitCount = 0
			} else {
				diffBits = -diffBits
				oneResultUpper >>= uint(diffBits)
				oneResultLower >>= uint(diffBits)
				mask := ^(^uint64(0) << uint(diffBits))
				oneUpper &= mask
				oneLower &= mask
				oneBitCount = diffBits
				twoBitCount = 0
			}
		}
		result := comp.compareValues(oneResultUpper, oneResultLower, twoResultUpper, twoResultLower)
		if result != 0 {
			return result
		}
	}
	return 0
}

func (countComparator) compareSegValues(oneUpper, oneLower, twoUpper, twoLower SegInt) int {
	size1 := oneUpper - oneLower
	size2 := twoUpper - twoLower
	if size1 == size2 {
		//the size of the range is the same, so just compare either upper or lower values
		if oneLower == twoLower {
			return 0
		} else if oneLower > twoLower {
			return 1
		}
	} else if size1 > size2 {
		return 1
	}
	return -1
}

func (countComparator) compareValues(oneUpper, oneLower, twoUpper, twoLower uint64) int {
	size1 := oneUpper - oneLower
	size2 := twoUpper - twoLower
	if size1 == size2 {
		//the size of the range is the same, so just compare either upper or lower values
		if oneLower == twoLower {
			return 0
		} else if oneLower > twoLower {
			return 1
		}
	} else if size1 > size2 {
		return 1
	}
	return -1
}

func (countComparator) compareLargeValues(oneUpper, oneLower, twoUpper, twoLower *big.Int) (result int) {
	oneUpper.Sub(oneUpper, oneLower)
	twoUpper.Sub(twoUpper, twoLower)
	result = oneUpper.CmpAbs(twoUpper)
	if result == 0 {
		//the size of the range is the same, so just compare either upper or lower values
		result = oneLower.CmpAbs(twoLower)
	}
	return
}

func compareDivBitCounts(oneSeries, twoSeries AddressDivisionSeries) int {
	//when this is called we know the two series have the same bit-size, we want to check that the divisions
	//also have the same bit size (which of course also implies that there are the same number of divisions)
	count := oneSeries.GetDivisionCount()
	result := count - twoSeries.GetDivisionCount()
	if result == 0 {
		for i := 0; i < count; i++ {
			result = int(oneSeries.GetGenericDivision(i).GetBitCount() - twoSeries.GetGenericDivision(i).GetBitCount())
			if result != 0 {
				break
			}
		}
	}
	return result
}

func isNilItem(item AddressItem) bool {
	if divSeries, ok := item.(AddressDivisionSeries); ok {
		if addr, ok := divSeries.(AddressType); ok {
			return addr.ToAddressBase() == nil
		} else if grouping, ok := divSeries.(StandardDivGroupingType); ok {
			return grouping.ToDivGrouping() == nil
		} else if largeGrouping, ok := divSeries.(*IPAddressLargeDivisionGrouping); ok {
			return largeGrouping.isNil()
		} // else a type external to this library, which we cannot test for nil
		//} else if rng, ok := item.(IPAddressSeqRangeType); ok {
		//	return rng.ToIP() == nil
	} else if rng, ok := item.(IPAddressSeqRangeType); ok {
		return rng.ToIP() == nil
	} else if div, ok := item.(DivisionType); ok {
		if sdiv, ok := div.(StandardDivisionType); ok {
			return sdiv.ToDiv() == nil
		} else if ldiv, ok := div.(*IPAddressLargeDivision); ok {
			return ldiv.isNil()
		} // else a type external to this library, which we cannot test for nil
	}
	return item == nil
}

// Note: never called with an address instance, never called with an instance of AddressType
func compareCount(one, two AddressItem) int {
	if !one.IsMultiple() {
		if two.IsMultiple() {
			return -1
		}
		return 0
	} else if !two.IsMultiple() {
		return 1
	}
	b1, u1 := getCount(one)
	b2, u2 := getCount(two)
	if b1 == nil {
		if b2 != nil {
			if b2.IsUint64() {
				u2 = b2.Uint64()
			} else {
				return -1
			}
		}
		if u1 < u2 {
			return -1
		} else if u1 == u2 {
			return 0
		}
		return 1
	} else if b2 == nil {
		if b1.IsUint64() {
			u1 = b1.Uint64()
			if u1 < u2 {
				return -1
			} else if u1 == u2 {
				return 0
			}
		}
		return 1
	}
	return b1.CmpAbs(b2)
}

// Note: never called with an address instance, never called with an instance of AddressType
func getCount(item AddressItem) (b *big.Int, u uint64) {
	if sect, ok := item.(StandardDivGroupingType); ok {
		grouping := sect.ToDivGrouping()
		if grouping != nil {
			b = grouping.getCachedCount()
		}
		//} else if rng, ok := item.(IPAddressSeqRangeType); ok {
		//	//ipRange := rng.ToIP()
		//	//if ipRange != nil {
		//	b = rng.GetCount()
		//	//b = rng.getCachedCount(false)
		//	//}
	} else if rng, ok := item.(IPAddressSeqRangeType); ok {
		//ipRange := rng.ToIP()
		//if ipRange != nil {
		b = rng.GetCount()
		//b = rng.getCachedCount(false)
		//}
	} else if div, ok := item.(StandardDivisionType); ok {
		base := div.ToDiv()
		if base != nil {
			if segBase := base.ToSegmentBase(); segBase != nil {
				u = uint64((segBase.getUpperSegmentValue() - base.getSegmentValue()) + 1)
			} else {
				r := base.getUpperDivisionValue() - base.getDivisionValue()
				if r == 0xffffffffffffffff {
					b = bigZero().SetUint64(0xffffffffffffffff)
					b.Add(b, bigOneConst())
					return
				}
				u = r + 1
			}
		}
	} else if lgrouping, ok := item.(*IPAddressLargeDivisionGrouping); ok {
		if lgrouping != nil {
			b = lgrouping.getCachedCount()
		}
	} else if ldiv, ok := item.(*IPAddressLargeDivision); ok {
		if ldiv != nil {
			b = ldiv.getCount()
		}
	} else {
		b = item.GetCount()
	}
	return
}