File: divisionbase.go

package info (click to toggle)
golang-github-seancfoley-ipaddress-go 1.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental, forky, sid, trixie
  • size: 3,700 kB
  • sloc: makefile: 3
file content (323 lines) | stat: -rw-r--r-- 10,366 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

package ipaddr

import (
	"math/big"
	"strings"

	"github.com/seancfoley/ipaddress-go/ipaddr/addrstr"
)

// divisionValuesBase provides an interface for divisions of any bit-size.
// It is shared by standard and large divisions.
// All the methods can be called for any division.
type divisionValuesBase interface {
	getBitCount() BitCount

	getByteCount() int

	// getDivisionPrefixLength provides the prefix length
	// if is aligned is true and the prefix is non-nil, any divisions that follow in the same grouping have a zero-length prefix
	getDivisionPrefixLength() PrefixLen

	// getValue gets the lower value as a BigDivInt
	getValue() *BigDivInt

	// getValue gets the upper value as a BigDivInt
	getUpperValue() *BigDivInt

	includesZero() bool

	includesMax() bool

	isMultiple() bool

	getCount() *big.Int

	// convert lower and upper values to byte arrays
	calcBytesInternal() (bytes, upperBytes []byte)

	bytesInternal(upper bool) (bytes []byte)

	// getCache returns a divCache for those divisions which cache their values, or nil otherwise
	getCache() *divCache

	getAddrType() addrType
}

// divisionValues provides methods to provide the values from divisions,
// and to create new divisions from values.
// Values may be truncated if the stored values in the interface implementation
// have larger bit-size than the return values.
// Similarly, values may be truncated if the supplied values have greater bit-size
// than the returned types.
type divisionValues interface {
	divisionValuesBase

	divIntVals

	divderiver

	segderiver

	segmentValues
}

type divCache struct {
	cachedString, cachedWildcardString, cached0xHexString, cachedHexString, cachedNormalizedString *string

	isSinglePrefBlock *bool
}

// addressDivisionBase is a division of any bit-size.
// It is shared by standard and large divisions types.
// Large divisions must not use the methods of divisionValues and use only the methods in divisionValuesBase.
type addressDivisionBase struct {
	// I've looked into making this divisionValuesBase.
	// If you do that, then to get access to the methods in divisionValues, you can either do type assertions like divisionValuesBase.(divisionValiues),
	// or you can add a method getDivisionValues to divisionValuesBase.
	// But in the end, either way you are assuming you know that divisionValuesBase is a divisionValues.  So no point.
	// Instead, each division type like IPAddressSegment and LargeDivision will know which value methods apply to that type.
	divisionValues
	// The field could possibly be generic.  However, since we aggregate implementations of divisionValues, what we have may be better
}

func (div *addressDivisionBase) getDivisionPrefixLength() PrefixLen {
	vals := div.divisionValues
	if vals == nil {
		return nil
	}
	return vals.getDivisionPrefixLength()
}

// GetBitCount returns the number of bits in each value comprising this address item.
func (div *addressDivisionBase) GetBitCount() BitCount {
	vals := div.divisionValues
	if vals == nil {
		return 0
	}
	return vals.getBitCount()
}

// GetByteCount returns the number of bytes required for each value comprising this address item,
// rounding up if the bit count is not a multiple of 8.
func (div *addressDivisionBase) GetByteCount() int {
	vals := div.divisionValues
	if vals == nil {
		return 0
	}
	return vals.getByteCount()
}

// GetValue returns the lowest value in the address division range as a big integer.
func (div *addressDivisionBase) GetValue() *BigDivInt {
	vals := div.divisionValues
	if vals == nil {
		return bigZero()
	}
	return vals.getValue()
}

// GetUpperValue returns the highest value in the address division range as a big integer.
func (div *addressDivisionBase) GetUpperValue() *BigDivInt {
	vals := div.divisionValues
	if vals == nil {
		return bigZero()
	}
	return vals.getUpperValue()
}

// Bytes returns the lowest value in the address division range as a byte slice.
func (div *addressDivisionBase) Bytes() []byte {
	if div.divisionValues == nil {
		return emptyBytes
	}
	return div.getBytes()
}

// UpperBytes returns the highest value in the address division range as a byte slice.
func (div *addressDivisionBase) UpperBytes() []byte {
	if div.divisionValues == nil {
		return emptyBytes
	}
	return div.getUpperBytes()
}

// CopyBytes copies the lowest value in the address division range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (div *addressDivisionBase) CopyBytes(bytes []byte) []byte {
	if div.divisionValues == nil {
		if bytes != nil {
			return bytes
		}
		return emptyBytes
	}
	cached := div.getBytes()
	return getBytesCopy(bytes, cached)
}

// CopyUpperBytes copies the highest value in the address division range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (div *addressDivisionBase) CopyUpperBytes(bytes []byte) []byte {
	if div.divisionValues == nil {
		if bytes != nil {
			return bytes
		}
		return emptyBytes
	}
	cached := div.getUpperBytes()
	return getBytesCopy(bytes, cached)
}

func (div *addressDivisionBase) getBytes() (bytes []byte) {
	return div.bytesInternal(false)
}

func (div *addressDivisionBase) getUpperBytes() (bytes []byte) {
	return div.bytesInternal(true)
}

func (div *addressDivisionBase) getCount() *big.Int {
	if !div.isMultiple() {
		return bigOne()
	}
	return div.divisionValues.getCount()
}

func (div *addressDivisionBase) isMultiple() bool {
	vals := div.divisionValues
	if vals == nil {
		return false
	}
	return vals.isMultiple()
}

// GetPrefixCountLen returns the count of the number of distinct values within the prefix part of the address item, the bits that appear within the prefix length.
func (div *addressDivisionBase) GetPrefixCountLen(prefixLength BitCount) *big.Int {
	if prefixLength < 0 {
		return bigOne()
	}
	bitCount := div.GetBitCount()
	if prefixLength >= bitCount {
		return div.getCount()
	}
	ushiftAdjustment := uint(bitCount - prefixLength)
	lower := div.GetValue()
	upper := div.GetUpperValue()
	upper.Rsh(upper, ushiftAdjustment)
	lower.Rsh(lower, ushiftAdjustment)
	upper.Sub(upper, lower).Add(upper, bigOneConst())
	return upper
}

// IsZero returns whether this division matches exactly the value of zero.
func (div *addressDivisionBase) IsZero() bool {
	return !div.isMultiple() && div.IncludesZero()
}

// IncludesZero returns whether this item includes the value of zero within its range.
func (div *addressDivisionBase) IncludesZero() bool {
	vals := div.divisionValues
	if vals == nil {
		return true
	}
	return vals.includesZero()
}

// IsMax returns whether this address matches exactly the maximum possible value, the value whose bits are all ones.
func (div *addressDivisionBase) IsMax() bool {
	return !div.isMultiple() && div.includesMax()
}

// IncludesMax returns whether this division includes the max value, the value whose bits are all ones, within its range.
func (div *addressDivisionBase) IncludesMax() bool {
	vals := div.divisionValues
	if vals == nil {
		return false
	}
	return vals.includesMax()
}

// IsFullRange returns whether the division range includes all possible values for its bit length.
//
// This is true if and only if both IncludesZero and IncludesMax return true.
func (div *addressDivisionBase) IsFullRange() bool {
	return div.includesZero() && div.includesMax()
}

func (div *addressDivisionBase) getAddrType() addrType {
	vals := div.divisionValues
	if vals == nil {
		return zeroType
	}
	return vals.getAddrType()
}

func (div *addressDivisionBase) matchesStructure(other DivisionType) (res bool, addrType addrType) {
	addrType = div.getAddrType()
	if addrType != other.getAddrType() || (addrType.isZeroSegments() && (div.GetBitCount() != other.GetBitCount())) {
		return
	}
	res = true
	return
}

// toString produces a string that is useful when a division string is provided with no context.
// It uses a string prefix for octal or hex ("0" or "0x"), and does not use the wildcard '*', because division size is variable, so '*' is ambiguous.
// GetWildcardString() is more appropriate in context with other segments or divisions.  It does not use a string prefix and uses '*' for full-range segments.
// GetString() is more appropriate in context with prefix lengths, it uses zeros instead of wildcards for prefix block ranges.
func toString(div DivisionType) string { // this can be moved to addressDivisionBase when we have ContainsPrefixBlock and similar methods implemented for big.Int in the base.
	radix := div.getDefaultTextualRadix()
	var opts addrstr.IPStringOptions
	switch radix {
	case 16:
		opts = hexParamsDiv
	case 10:
		opts = decimalParamsDiv
	case 8:
		opts = octalParamsDiv
	default:
		opts = new(addrstr.IPStringOptionsBuilder).SetRadix(radix).SetWildcards(rangeWildcard).ToOptions()
	}
	return toStringOpts(opts, div)
}

func toStringOpts(opts addrstr.StringOptions, div DivisionType) string {
	builder := strings.Builder{}
	params := toParams(opts)
	builder.Grow(params.getDivisionStringLength(div))
	params.appendDivision(&builder, div)
	return builder.String()
}

func bigDivsSame(onePref, twoPref PrefixLen, oneVal, twoVal, oneUpperVal, twoUpperVal *BigDivInt) bool {
	return onePref.Equal(twoPref) &&
		oneVal.CmpAbs(twoVal) == 0 && oneUpperVal.CmpAbs(twoUpperVal) == 0
}

func bigDivValsSame(oneVal, twoVal, oneUpperVal, twoUpperVal *BigDivInt) bool {
	return oneVal.CmpAbs(twoVal) == 0 && oneUpperVal.CmpAbs(twoUpperVal) == 0
}

func bigDivValSame(oneVal, twoVal *big.Int) bool {
	return oneVal.CmpAbs(twoVal) == 0
}