File: ipaddr.go

package info (click to toggle)
golang-github-seancfoley-ipaddress-go 1.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental, forky, sid, trixie
  • size: 3,700 kB
  • sloc: makefile: 3
file content (2860 lines) | stat: -rw-r--r-- 122,117 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

package ipaddr

import (
	"fmt"
	"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
	"github.com/seancfoley/ipaddress-go/ipaddr/addrstr"
	"math/big"
	"net"
	"net/netip"
	"strings"
	"unsafe"
)

const (
	PrefixLenSeparator    = '/'
	PrefixLenSeparatorStr = "/"
)

// IPVersion is the version type used by IP address types.
type IPVersion string

const (
	// IndeterminateIPVersion represents an unspecified IP address version
	IndeterminateIPVersion IPVersion = ""

	// IPv4 represents Internet Protocol version 4
	IPv4 IPVersion = "IPv4"

	// IPv6 represents Internet Protocol version 6
	IPv6 IPVersion = "IPv6"
)

// IsIPv6 returns true if this represents version 6
func (version IPVersion) IsIPv6() bool {
	return len(version) == 4 && strings.EqualFold(string(version), string(IPv6))
}

// IsIPv4 returns true if this represents version 4
func (version IPVersion) IsIPv4() bool {
	return len(version) == 4 && strings.EqualFold(string(version), string(IPv4))
}

// IsIndeterminate returns true if this represents an unspecified IP address version
func (version IPVersion) IsIndeterminate() bool {
	if len(version) == 4 {
		// we allow mixed case in the event code is converted a string to IPVersion
		dig := version[3]
		if dig != '4' && dig != '6' {
			return true
		}
		dig = version[0]
		if dig != 'I' && dig != 'i' {
			return true
		}
		dig = version[1]
		if dig != 'P' && dig != 'p' {
			return true
		}
		dig = version[2]
		if dig != 'v' && dig != 'V' {
			return true
		}
		return false
	}
	return true
}

// index returns an index starting from 0 with IndeterminateIPVersion being the highest
func (version IPVersion) index() int {
	if version.IsIPv4() {
		return 0
	} else if version.IsIPv6() {
		return 1
	}
	return 2
}

// Equal returns whether the given version matches this version.  Two indeterminate versions always match, even if their associated strings do not.
func (version IPVersion) Equal(other IPVersion) bool {
	return strings.EqualFold(string(version), string(other)) || (version.IsIndeterminate() && other.IsIndeterminate())
}

// String returns "IPv4", "IPv6", or the zero-value "" representing an indeterminate version
func (version IPVersion) String() string {
	return string(version)
}

func (version IPVersion) GetNetwork() (network IPAddressNetwork) {
	if version.IsIPv6() {
		network = ipv6Network
	} else if version.IsIPv4() {
		network = ipv4Network
	}
	return
}

func (version IPVersion) toType() (t addrType) {
	if version.IsIPv6() {
		t = ipv6Type
	} else if version.IsIPv4() {
		t = ipv4Type
	}
	return
}

// GetMaxSegmentValue returns the maximum possible segment value for this IP version, determined by the number of bits per segment.
func (version IPVersion) GetMaxSegmentValue() SegInt {
	if version.IsIPv4() {
		return IPv4MaxValuePerSegment
	} else if version.IsIPv6() {
		return IPv6MaxValuePerSegment
	}
	return 0
}

// GetBytesPerSegment returns the number of bytes comprising each segment in this address or subnet.  Segments in the same address are equal length.
func (version IPVersion) GetBytesPerSegment() int {
	if version.IsIPv4() {
		return IPv4BytesPerSegment
	} else if version.IsIPv6() {
		return IPv6BytesPerSegment
	}
	return 0
}

// GetBitsPerSegment returns the number of bits comprising each segment for this address version, either 8 or 16 for IPv4 and IPv6 respectively.  Segments in the same address are equal length.
func (version IPVersion) GetBitsPerSegment() BitCount {
	if version.IsIPv4() {
		return IPv4BitsPerSegment
	} else if version.IsIPv6() {
		return IPv6BitsPerSegment
	}
	return 0
}

// GetByteCount returns the number of bytes comprising an address of this IP Version.
func (version IPVersion) GetByteCount() int {
	if version.IsIPv4() {
		return IPv4ByteCount
	} else if version.IsIPv6() {
		return IPv6ByteCount
	}
	return 0
}

// GetSegmentCount returns the number of segments comprising an address of this IP Version: 4 for IPv4 and 8 for IPv6.
func (version IPVersion) GetSegmentCount() int {
	if version.IsIPv4() {
		return IPv4SegmentCount
	} else if version.IsIPv6() {
		return IPv6SegmentCount
	}
	return 0
}

// GetBitCount returns the number of bits comprising an address of this IP Version.
func (version IPVersion) GetBitCount() BitCount {
	if version.IsIPv4() {
		return IPv4BitCount
	} else if version.IsIPv6() {
		return IPv6BitCount
	}
	return 0
}

func createIPAddress(section *AddressSection, zone Zone) *IPAddress {
	return &IPAddress{
		ipAddressInternal{
			addressInternal{
				section: section,
				zone:    zone,
				cache:   &addressCache{},
			},
		},
	}
}

func newIPAddressZoned(section *IPAddressSection, zone Zone) *IPAddress {
	result := createIPAddress(section.ToSectionBase(), zone)
	if zone != NoZone { // will need to cache its own strings
		result.cache.stringCache = &stringCache{}
	}
	return result
}

// necessary to avoid direct access to IPAddress
type ipAddressInternal struct {
	addressInternal
}

func (addr *ipAddressInternal) toIPAddress() *IPAddress {
	return (*IPAddress)(unsafe.Pointer(addr))
}

func (addr *ipAddressInternal) getIPVersion() IPVersion {
	if addr.isIPv4() {
		return IPv4
	} else if addr.isIPv6() {
		return IPv6
	}
	return IndeterminateIPVersion
}

func (addr *ipAddressInternal) getNetworkPrefixLen() PrefixLen {
	section := addr.section
	if section == nil {
		return nil
	}
	return section.ToIP().getNetworkPrefixLen()
}

// GetNetworkPrefixLen returns the prefix length, or nil if there is no prefix length.
// GetNetworkPrefixLen is equivalent to the method GetPrefixLen.
func (addr *ipAddressInternal) GetNetworkPrefixLen() PrefixLen {
	return addr.getNetworkPrefixLen().copy()
}

func (addr *ipAddressInternal) getNetNetIPAddr() netip.Addr {
	netAddr, _ := netip.AddrFromSlice(addr.getBytes())
	return netAddr
}

func (addr *ipAddressInternal) getUpperNetNetIPAddr() netip.Addr {
	netAddr, _ := netip.AddrFromSlice(addr.getUpperBytes())
	return netAddr
}

// IncludesZeroHost returns whether the subnet contains an individual address with a host of zero.  If the subnet has no prefix length it returns false.
// If the prefix length matches the bit count, then it returns true.
//
// Otherwise, it checks whether it contains an individual address for which all bits past the prefix are zero.
func (addr *ipAddressInternal) IncludesZeroHost() bool {
	section := addr.section
	if section == nil {
		return false
	}
	return section.ToIP().IncludesZeroHost()
}

func (addr *ipAddressInternal) includesZeroHostLen(networkPrefixLength BitCount) bool {
	return addr.getSection().IncludesZeroHostLen(networkPrefixLength)
}

// IncludesMaxHost returns whether the subnet contains an individual address with a host of all one-bits.  If the subnet has no prefix length it returns false.
// If the prefix length matches the bit count, then it returns true.
//
// Otherwise, it checks whether it contains an individual address for which all bits past the prefix are one.
func (addr *ipAddressInternal) IncludesMaxHost() bool {
	section := addr.section
	if section == nil {
		return false
	}
	return section.ToIP().IncludesMaxHost()
}

func (addr *ipAddressInternal) includesMaxHostLen(networkPrefixLength BitCount) bool {
	return addr.getSection().IncludesMaxHostLen(networkPrefixLength)
}

// IsSingleNetwork returns whether the network section of the address, the prefix, consists of a single value.
//
// If it has no prefix length, it returns true if not multiple, if it contains only a single individual address.
func (addr *ipAddressInternal) IsSingleNetwork() bool {
	section := addr.section
	return section == nil || section.ToIP().IsSingleNetwork()
}

// IsMaxHost returns whether this section has a prefix length and if so,
// whether the host section is always all one-bits, the max value, for all individual addresses in this subnet.
//
// If the host section is zero length (there are zero host bits), IsMaxHost returns true.
func (addr *ipAddressInternal) IsMaxHost() bool {
	section := addr.section
	return section != nil && section.ToIP().IsMaxHost()
}

// IsMaxHostLen returns whether the host section is always one-bits, the max value, for all individual addresses in this subnet,
// for the given prefix length.
//
// If the host section is zero length (there are zero host bits), IsMaxHostLen returns true.
func (addr *ipAddressInternal) isMaxHostLen(prefLen BitCount) bool {
	return addr.getSection().IsMaxHostLen(prefLen)
}

// IsZeroHost returns whether this subnet has a prefix length and if so,
// whether the host section is always zero for all individual addresses in this subnet.
//
// If the host section is zero length (there are zero host bits), IsZeroHost returns true.
func (addr *ipAddressInternal) IsZeroHost() bool {
	section := addr.section
	return section != nil && section.ToIP().IsZeroHost()
}

// IsZeroHostLen returns whether the host section is always zero for all individual sections in this address section,
// for the given prefix length.
//
// If the host section is zero length (there are zero host bits), IsZeroHostLen returns true.
func (addr *ipAddressInternal) isZeroHostLen(prefLen BitCount) bool {
	return addr.getSection().IsZeroHostLen(prefLen)
}

// when boundariesOnly is true, there will be no error
func (addr *ipAddressInternal) toZeroHost(boundariesOnly bool) (res *IPAddress, err addrerr.IncompatibleAddressError) {
	section, err := addr.section.toIPAddressSection().toZeroHost(boundariesOnly)
	if err == nil {
		res = addr.checkIdentity(section)
	}
	return
}

func (addr *ipAddressInternal) toZeroHostLen(prefixLength BitCount) (res *IPAddress, err addrerr.IncompatibleAddressError) {
	section, err := addr.getSection().toZeroHostLen(prefixLength)
	if err == nil {
		res = addr.checkIdentity(section)
	}
	return
}

func (addr *ipAddressInternal) toZeroNetwork() *IPAddress {
	return addr.checkIdentity(addr.getSection().toZeroNetwork())
}

func (addr *ipAddressInternal) toMaxHost() (res *IPAddress, err addrerr.IncompatibleAddressError) {
	section, err := addr.section.toIPAddressSection().toMaxHost()
	if err == nil {
		res = addr.checkIdentity(section)
	}
	return
}

func (addr *ipAddressInternal) toMaxHostLen(prefixLength BitCount) (res *IPAddress, err addrerr.IncompatibleAddressError) {
	section, err := addr.getSection().toMaxHostLen(prefixLength)
	if err == nil {
		res = addr.checkIdentity(section)
	}
	return
}

func (addr *ipAddressInternal) checkIdentity(section *IPAddressSection) *IPAddress {
	if section == nil {
		return nil
	}
	sect := section.ToSectionBase()
	if sect == addr.section {
		return addr.toIPAddress()
	}
	return createIPAddress(sect, addr.zone)
}

func (addr *ipAddressInternal) getSection() *IPAddressSection {
	return addr.section.ToIP()
}

func (addr *ipAddressInternal) adjustPrefixLen(prefixLen BitCount) *IPAddress {
	return addr.checkIdentity(addr.getSection().adjustPrefixLen(prefixLen))
}

func (addr *ipAddressInternal) adjustPrefixLenZeroed(prefixLen BitCount) (res *IPAddress, err addrerr.IncompatibleAddressError) {
	section, err := addr.getSection().adjustPrefixLenZeroed(prefixLen)
	if err == nil {
		res = addr.checkIdentity(section)
	}
	return
}

// GetBlockMaskPrefixLen returns the prefix length if this address is equivalent to the mask for a CIDR prefix block.
// Otherwise, it returns nil.
// A CIDR network mask is an address with all ones in the network section and then all zeros in the host section.
// A CIDR host mask is an address with all zeros in the network section and then all ones in the host section.
// The prefix length is the bit-length of the network section.
//
// Also, keep in mind that the prefix length returned by this method is not equivalent to the prefix length of this instance,
// indicating the network and host section of this address.
// The prefix length returned here indicates the whether the value of this address can be used as a mask for the network and host
// section of any other address.  Therefore, the two values can be different values, or one can be nil while the other is not.
//
// This method applies only to the lower value of the range if this address represents multiple values.
func (addr *ipAddressInternal) GetBlockMaskPrefixLen(network bool) PrefixLen {
	section := addr.section
	if section == nil {
		return nil
	}
	return section.ToIP().GetBlockMaskPrefixLen(network)
}

func (addr *ipAddressInternal) spanWithPrefixBlocks() []ExtendedIPSegmentSeries {
	wrapped := addr.toIPAddress().Wrap()
	if addr.IsSequential() {
		if addr.IsSinglePrefixBlock() {
			return []ExtendedIPSegmentSeries{wrapped}
		}
		return getSpanningPrefixBlocks(wrapped, wrapped)
	}
	return spanWithPrefixBlocks(wrapped)
}

func (addr *ipAddressInternal) spanWithSequentialBlocks() []ExtendedIPSegmentSeries {
	wrapped := addr.toIPAddress().Wrap()
	if addr.IsSequential() {
		return []ExtendedIPSegmentSeries{wrapped}
	}
	return spanWithSequentialBlocks(wrapped)
}

func (addr *ipAddressInternal) coverSeriesWithPrefixBlock() ExtendedIPSegmentSeries {
	// call from wrapper
	if addr.IsSinglePrefixBlock() {
		return addr.toIPAddress().Wrap()
	}
	return coverWithPrefixBlock(
		addr.getLower().ToIP().Wrap(),
		addr.getUpper().ToIP().Wrap(),
	)
}

func (addr *ipAddressInternal) coverWithPrefixBlock() *IPAddress {
	// call from ip ipv4 ipv6
	if addr.IsSinglePrefixBlock() {
		return addr.toIPAddress()
	}
	res := coverWithPrefixBlock(
		addr.getLower().ToIP().Wrap(),
		addr.getUpper().ToIP().Wrap(),
	)
	return res.(WrappedIPAddress).IPAddress
}

func (addr *ipAddressInternal) coverWithPrefixBlockTo(other *IPAddress) *IPAddress {
	res := getCoveringPrefixBlock(
		addr.toIPAddress().Wrap(),
		other.Wrap(),
	)
	return res.(WrappedIPAddress).IPAddress
}

func (addr *ipAddressInternal) getNetworkMask(network IPAddressNetwork) *IPAddress {
	var prefLen BitCount
	if addr.isPrefixed() {
		prefLen = addr.getNetworkPrefixLen().bitCount()
	} else {
		prefLen = addr.GetBitCount()
	}
	return network.GetNetworkMask(prefLen)
}

func (addr *ipAddressInternal) getHostMask(network IPAddressNetwork) *IPAddress {
	var prefLen BitCount
	if addr.isPrefixed() {
		prefLen = addr.getNetworkPrefixLen().bitCount()
	}
	return network.GetHostMask(prefLen)
}

func (addr *ipAddressInternal) toCanonicalWildcardString() string {
	if addr.hasZone() {
		cache := addr.getStringCache()
		if cache == nil {
			return addr.section.ToIPv6().toCanonicalWildcardStringZoned(addr.zone)
		}
		return cacheStr(&cache.canonicalWildcardString,
			func() string {
				return addr.section.ToIPv6().toCanonicalWildcardStringZoned(addr.zone)
			})
	}
	return addr.getSection().ToCanonicalWildcardString()
}

func (addr *ipAddressInternal) toNormalizedWildcardString() string {
	if addr.hasZone() {
		cache := addr.getStringCache()
		if cache == nil {
			return addr.section.ToIPv6().toNormalizedWildcardStringZoned(addr.zone)
		}
		return cacheStr(&cache.normalizedWildcardString,
			func() string {
				return addr.section.ToIPv6().toNormalizedWildcardStringZoned(addr.zone)
			})
	}
	return addr.getSection().ToNormalizedWildcardString()
}

func (addr *ipAddressInternal) toSegmentedBinaryString() string {
	if addr.hasZone() {
		cache := addr.getStringCache()
		if cache == nil {
			return addr.section.ToIPv6().toSegmentedBinaryStringZoned(addr.zone)
		}
		return cacheStr(&cache.segmentedBinaryString,
			func() string {
				return addr.section.ToIPv6().toSegmentedBinaryStringZoned(addr.zone)
			})
	}
	return addr.getSection().ToSegmentedBinaryString()
}

func (addr *ipAddressInternal) toSQLWildcardString() string {
	if addr.hasZone() {
		cache := addr.getStringCache()
		if cache == nil {
			return addr.section.ToIPv6().toSQLWildcardStringZoned(addr.zone)
		}
		return cacheStr(&cache.sqlWildcardString,
			func() string {
				return addr.section.ToIPv6().toSQLWildcardStringZoned(addr.zone)
			})
	}
	return addr.getSection().ToSQLWildcardString()
}

func (addr *ipAddressInternal) toFullString() string {
	if addr.hasZone() {
		cache := addr.getStringCache()
		if cache == nil {
			return addr.section.ToIPv6().toFullStringZoned(addr.zone)
		}
		return cacheStr(&cache.fullString,
			func() string {
				return addr.section.ToIPv6().toFullStringZoned(addr.zone)
			})
	}
	return addr.getSection().ToFullString()
}

func (addr *ipAddressInternal) toReverseDNSString() (string, addrerr.IncompatibleAddressError) {
	return addr.getSection().ToReverseDNSString()
}

func (addr *ipAddressInternal) toPrefixLenString() string {
	if addr.hasZone() {
		cache := addr.getStringCache()
		if cache == nil {
			return addr.section.ToIPv6().toPrefixLenStringZoned(addr.zone)
		}
		return cacheStr(&cache.networkPrefixLengthString,
			func() string {
				return addr.section.ToIPv6().toPrefixLenStringZoned(addr.zone)
			})
	}
	return addr.getSection().ToPrefixLenString()
}

func (addr *ipAddressInternal) toSubnetString() string {
	if addr.hasZone() {
		return addr.toPrefixLenString()
	}
	return addr.getSection().ToSubnetString()
}

func (addr *ipAddressInternal) toCompressedWildcardString() string {
	if addr.hasZone() {
		cache := addr.getStringCache()
		if cache == nil {
			return addr.section.ToIPv6().toCompressedWildcardStringZoned(addr.zone)
		}
		return cacheStr(&cache.compressedWildcardString,
			func() string {
				return addr.section.ToIPv6().toCompressedWildcardStringZoned(addr.zone)
			})
	}
	return addr.getSection().ToCompressedWildcardString()
}

func (addr *ipAddressInternal) getNetwork() IPAddressNetwork {
	return addr.getSection().getNetwork()
}

//// only needed for godoc / pkgsite

// GetPrefixCount returns the count of prefixes in this address or subnet.
//
// The prefix length is given by GetPrefixLen.
//
// If this has a non-nil prefix length, returns the count of the range of values in the prefix.
//
// If this has a nil prefix length, returns the same value as GetCount.
func (addr *ipAddressInternal) GetPrefixCount() *big.Int {
	return addr.addressInternal.GetPrefixCount()
}

// GetPrefixCountLen returns the count of prefixes in this address or subnet for the given prefix length.
//
// If not a subnet of multiple addresses, or a subnet with just single prefix of the given length, returns 1.
func (addr *ipAddressInternal) GetPrefixCountLen(prefixLen BitCount) *big.Int {
	return addr.addressInternal.GetPrefixCountLen(prefixLen)
}

// GetBlockCount returns the count of distinct values in the given number of initial (more significant) segments.
func (addr *ipAddressInternal) GetBlockCount(segments int) *big.Int {
	return addr.addressInternal.GetBlockCount(segments)
}

// GetPrefixLen returns the prefix length, or nil if there is no prefix length.
//
// A prefix length indicates the number of bits in the initial part of the address that comprise the prefix.
//
// A prefix is a part of the address that is not specific to that address but common amongst a group of addresses, such as a CIDR prefix block subnet.
//
// For IP addresses, the prefix is explicitly defined when the address is created. For example, "1.2.0.0/16" has a prefix length of 16, while "1.2.*.*" has no prefix length,
// even though they both represent the same set of addresses and are considered equal.  Prefixes can be considered variable for a given IP address and can depend on routing.
//
// The methods GetMinPrefixLenForBlock and GetPrefixLenForSingleBlock can help you to obtain or define a prefix length if one does not exist already.
// The method ToPrefixBlockLen allows you to create the subnet consisting of the block of addresses for any given prefix length.
func (addr *ipAddressInternal) GetPrefixLen() PrefixLen {
	return addr.addressInternal.GetPrefixLen()
}

// IsSinglePrefixBlock returns whether the address range matches the block of values for a single prefix identified by the prefix length of this address.
// This is similar to IsPrefixBlock except that it returns false when the subnet has multiple prefixes.
//
// What distinguishes this method from ContainsSinglePrefixBlock is that this method returns
// false if the series does not have a prefix length assigned to it,
// or a prefix length that differs from the prefix length for which ContainsSinglePrefixBlock returns true.
//
// It is similar to IsPrefixBlock but returns false when there are multiple prefixes.
//
// For instance, "1.*.*.* /16" returns false from this method and returns true from IsPrefixBlock.
func (addr *ipAddressInternal) IsSinglePrefixBlock() bool {
	return addr.addressInternal.IsSinglePrefixBlock()
}

// IsPrefixBlock returns whether the address has a prefix length and the address range includes the block of values for that prefix length.
// If the prefix length matches the bit count, this returns true.
//
// To create a prefix block from any address, use ToPrefixBlock.
//
// This is different from ContainsPrefixBlock in that this method returns
// false if the series has no prefix length, or a prefix length that differs from a prefix length for which ContainsPrefixBlock returns true.
func (addr *ipAddressInternal) IsPrefixBlock() bool {
	return addr.addressInternal.IsPrefixBlock()
}

// ContainsPrefixBlock returns whether the range of this address or subnet contains the block of addresses for the given prefix length.
//
// Unlike ContainsSinglePrefixBlock, whether there are multiple prefix values in this item for the given prefix length makes no difference.
//
// Use GetMinPrefixLenForBlock to determine the smallest prefix length for which this method returns true.
func (addr *ipAddressInternal) ContainsPrefixBlock(prefixLen BitCount) bool {
	return addr.addressInternal.ContainsPrefixBlock(prefixLen)
}

// ContainsSinglePrefixBlock returns whether this address contains a single prefix block for the given prefix length.
//
// This means there is only one prefix value for the given prefix length, and it also contains the full prefix block for that prefix, all addresses with that prefix.
//
// Use GetPrefixLenForSingleBlock to determine whether there is a prefix length for which this method returns true.
func (addr *ipAddressInternal) ContainsSinglePrefixBlock(prefixLen BitCount) bool {
	return addr.addressInternal.ContainsSinglePrefixBlock(prefixLen)
}

// GetMinPrefixLenForBlock returns the smallest prefix length such that this includes the block of addresses for that prefix length.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use GetPrefixLenForSingleBlock to avoid the case of multiple prefix values.
//
// If this represents just a single address, returns the bit length of this address.
//
// See AssignMinPrefixForBlock for some examples.
func (addr *ipAddressInternal) GetMinPrefixLenForBlock() BitCount {
	return addr.addressInternal.GetMinPrefixLenForBlock()
}

// GetPrefixLenForSingleBlock returns a prefix length for which the range of this address subnet matches exactly the block of addresses for that prefix.
//
// If the range can be described this way, then this method returns the same value as GetMinPrefixLenForBlock.
//
// If no such prefix exists, returns nil.
//
// If this segment grouping represents a single value, returns the bit length of this address division series.
//
// IP address examples:
//  - 1.2.3.4 returns 32
//  - 1.2.3.4/16 returns 32
//  - 1.2.*.* returns 16
//  - 1.2.*.0/24 returns 16
//  - 1.2.0.0/16 returns 16
//  - 1.2.*.4 returns nil
//  - 1.2.252-255.* returns 22
func (addr *ipAddressInternal) GetPrefixLenForSingleBlock() PrefixLen {
	return addr.addressInternal.GetPrefixLenForSingleBlock()
}

func (addr *ipAddressInternal) rangeIterator(
	//creator parsedAddressCreator, /* nil for zero sections */
	upper *IPAddress,
	valsAreMultiple bool,
	prefixLen PrefixLen,
	segProducer func(addr *IPAddress, index int) *IPAddressSegment,
	segmentIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
	segValueComparator func(seg1, seg2 *IPAddress, index int) bool,
	networkSegmentIndex,
	hostSegmentIndex int,
	prefixedSegIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
) Iterator[*Address] {
	//lower := rng.lower
	//upper := rng.upper
	lower := addr.toIPAddress()
	divCount := lower.GetSegmentCount()

	// at any given point in time, this list provides an iterator for the segment at each index
	segIteratorProducerList := make([]func() Iterator[*IPAddressSegment], divCount)

	// at any given point in time, finalValue[i] is true if and only if we have reached the very last value for segment i - 1
	// when that happens, the next iterator for the segment at index i will be the last
	finalValue := make([]bool, divCount+1)

	// here is how the segment iterators will work:
	// the low and high values of the range at each segment are low, high
	// the maximum possible values for any segment are min, max
	// we first find the first k >= 0 such that low != high for the segment at index k

	//	the initial set of iterators at each index are as follows:
	//    for i < k finalValue[i] is set to true right away.
	//		we create an iterator from seg = new Seg(low)
	//    for i == k we create a wrapped iterator from Seg(low, high), wrapper will set finalValue[i] once we reach the final value of the iterator
	//    for i > k we create an iterator from Seg(low, max)
	//
	// after the initial iterator has been supplied, any further iterator supplied for the same segment is as follows:
	//    for i <= k, there was only one iterator, there will be no further iterator
	//    for i > k,
	//	  	if i == 0 or of if flagged[i - 1] is true, we create a wrapped iterator from Seg(low, high), wrapper will set finalValue[i] once we reach the final value of the iterator
	//      otherwise we create an iterator from Seg(min, max)
	//
	// By following these rules, we iterate through all possible addresses

	notDiffering := true
	finalValue[0] = true
	var allSegShared *IPAddressSegment
	for i := 0; i < divCount; i++ {
		var segIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment]
		if prefixedSegIteratorProducer != nil && i >= networkSegmentIndex {
			segIteratorProducer = prefixedSegIteratorProducer
		} else {
			segIteratorProducer = segmentIteratorProducer
		}
		lowerSeg := segProducer(lower, i)
		indexi := i
		if notDiffering {
			notDiffering = segValueComparator(lower, upper, i)
			if notDiffering {
				// there is only one iterator and it produces only one value
				finalValue[i+1] = true
				iterator := segIteratorProducer(lowerSeg, i)
				segIteratorProducerList[i] = func() Iterator[*IPAddressSegment] { return iterator }
			} else {
				// in the first differing segment the only iterator will go from segment value of lower address to segment value of upper address
				iterator := segIteratorProducer(
					createAddressDivision(lowerSeg.deriveNewMultiSeg(lowerSeg.getSegmentValue(), upper.GetGenericSegment(i).GetSegmentValue(), nil)).ToIP(),
					i)
				wrappedFinalIterator := &wrappedIterator{
					iterator:   iterator,
					finalValue: finalValue,
					indexi:     indexi,
				}
				segIteratorProducerList[i] = func() Iterator[*IPAddressSegment] { return wrappedFinalIterator }
			}
		} else {
			// in the second and all following differing segments, rather than go from segment value of lower address to segment value of upper address
			// we go from segment value of lower address to the max seg value the first time through
			// then we go from the min value of the seg to the max seg value each time until the final time,
			// the final time we go from the min value to the segment value of upper address
			// we know it is the final time through when the previous iterator has reached its final value, which we track

			// the first iterator goes from the segment value of lower address to the max value of the segment
			firstIterator := segIteratorProducer(
				createAddressDivision(lowerSeg.deriveNewMultiSeg(lowerSeg.getSegmentValue(), lower.GetMaxSegmentValue(), nil)).ToIP(),
				i)

			// the final iterator goes from 0 to the segment value of our upper address
			finalIterator := segIteratorProducer(
				createAddressDivision(lowerSeg.deriveNewMultiSeg(0, upper.GetGenericSegment(i).GetSegmentValue(), nil)).ToIP(),
				i)

			// the wrapper iterator detects when the final iterator has reached its final value
			wrappedFinalIterator := &wrappedIterator{
				iterator:   finalIterator,
				finalValue: finalValue,
				indexi:     indexi,
			}
			if allSegShared == nil {
				allSegShared = createAddressDivision(lowerSeg.deriveNewMultiSeg(0, lower.GetMaxSegmentValue(), nil)).ToIP()
			}
			// all iterators after the first iterator and before the final iterator go from 0 the max segment value,
			// and there will be many such iterators
			finalIteratorProducer := func() Iterator[*IPAddressSegment] {
				if finalValue[indexi] {
					return wrappedFinalIterator
				}
				return segIteratorProducer(allSegShared, indexi)
			}
			segIteratorProducerList[i] = func() Iterator[*IPAddressSegment] {
				//the first time through, we replace the iterator producer so the first iterator used only once (ie we remove this function from the list)
				segIteratorProducerList[indexi] = finalIteratorProducer
				return firstIterator
			}
		}
	}
	iteratorProducer := func(iteratorIndex int) Iterator[*AddressSegment] {
		iter := segIteratorProducerList[iteratorIndex]()
		return wrappedSegmentIterator[*IPAddressSegment]{iter}
	}
	return rangeAddrIterator(
		false,
		lower.ToAddressBase(),
		prefixLen,
		valsAreMultiple,
		rangeSegmentsIterator(
			divCount,
			iteratorProducer,
			networkSegmentIndex,
			hostSegmentIndex,
			iteratorProducer,
		),
	)
}

//// end needed for godoc / pkgsite

var zeroIPAddr = createIPAddress(zeroSection, NoZone)

// IPAddress represents an IP address or subnet, either IPv4 or IPv6 (except for the zero-valued IPAddress which is neither).
// An IP address is composed of range-valued segments and can optionally have an associated prefix length.
// The zero value IPAddress has no segments, neither IPv4 nor IPv6, which is not compatible with zero value for IPv4 or IPv6, those being 0.0.0.0 and :: respectively.
// The zero value is also known as the adaptive zero.
//
// To construct one from a string, use NewIPAddressString,
// then use the ToAddress or GetAddress method of [IPAddressString].
type IPAddress struct {
	ipAddressInternal
}

func (addr *IPAddress) init() *IPAddress {
	if addr.section == nil {
		return zeroIPAddr // this has a zero section
	}
	return addr
}

func (addr *IPAddress) getProvider() ipAddressProvider {
	if addr.IsPrefixed() {
		if !addr.IsPrefixBlock() {
			return getProviderFor(addr, addr.WithoutPrefixLen())
		}
		zeroedAddr, _ := addr.toZeroHost(true)
		return getProviderFor(addr, zeroedAddr.WithoutPrefixLen())
	}
	return getProviderFor(addr, addr)

}

// GetCount returns the count of addresses that this address or subnet represents.
//
// If just a single address, not a subnet of multiple addresses, returns 1.
//
// For instance, the IP address subnet "2001:db8::/64" has the count of 2 to the power of 64.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (addr *IPAddress) GetCount() *big.Int {
	if addr == nil {
		return bigZero()
	}
	return addr.getCount()
}

// IsMultiple returns true if this represents more than a single individual address, whether it is a subnet of multiple addresses.
func (addr *IPAddress) IsMultiple() bool {
	return addr != nil && addr.isMultiple()
}

// Format implements [fmt.Formatter] interface. It accepts the formats
//  - 'v' for the default address and section format (either the normalized or canonical string),
//  - 's' (string) for the same,
//  - 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
//  - 'd' (decimal), 'x' (lowercase hexadecimal), and
//  - 'X' (uppercase hexadecimal).
// Also supported are some of fmt's format flags for integral types.
// Sign control is not supported since addresses and sections are never negative.
// '#' for an alternate format is supported, which adds a leading zero for octal, and for hexadecimal it adds
// a leading "0x" or "0X" for "%#x" and "%#X" respectively.
// Also supported is specification of minimum digits precision, output field width,
// space or zero padding, and '-' for left or right justification.
func (addr IPAddress) Format(state fmt.State, verb rune) {
	addr.init().format(state, verb)
}

// String implements the [fmt.Stringer] interface, returning the canonical string provided by ToCanonicalString, or "<nil>" if the receiver is a nil pointer.
func (addr *IPAddress) String() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().ipAddressInternal.toString()
}

// GetSection returns the backing section for this address or subnet, comprising all segments.
func (addr *IPAddress) GetSection() *IPAddressSection {
	return addr.init().section.ToIP()
}

// GetTrailingSection gets the subsection from the series starting from the given index.
// The first segment is at index 0.
func (addr *IPAddress) GetTrailingSection(index int) *IPAddressSection {
	return addr.GetSection().GetTrailingSection(index)
}

// GetSubSection gets the subsection from the series starting from the given index and ending just before the give endIndex.
// The first segment is at index 0.
func (addr *IPAddress) GetSubSection(index, endIndex int) *IPAddressSection {
	return addr.GetSection().GetSubSection(index, endIndex)
}

// GetNetworkSection returns an address section containing the segments with the network of the address or subnet, the prefix bits.
// The returned section will have only as many segments as needed as determined by the existing CIDR network prefix length.
//
// If this series has no CIDR prefix length, the returned network section will
// be the entire series as a prefixed section with prefix length matching the address bit length.
func (addr *IPAddress) GetNetworkSection() *IPAddressSection {
	return addr.GetSection().GetNetworkSection()
}

// GetNetworkSectionLen returns a section containing the segments with the network of the address or subnet, the prefix bits according to the given prefix length.
// The returned section will have only as many segments as needed to contain the network.
//
// The new section will be assigned the given prefix length,
// unless the existing prefix length is smaller, in which case the existing prefix length will be retained.
func (addr *IPAddress) GetNetworkSectionLen(prefLen BitCount) *IPAddressSection {
	return addr.GetSection().GetNetworkSectionLen(prefLen)
}

// GetHostSection returns a section containing the segments with the host of the address or subnet, the bits beyond the CIDR network prefix length.
// The returned section will have only as many segments as needed to contain the host.
//
// If this series has no prefix length, the returned host section will be the full section.
func (addr *IPAddress) GetHostSection() *IPAddressSection {
	return addr.GetSection().GetHostSection()
}

// GetHostSectionLen returns a section containing the segments with the host of the address or subnet, the bits beyond the given CIDR network prefix length.
// The returned section will have only as many segments as needed to contain the host.
func (addr *IPAddress) GetHostSectionLen(prefLen BitCount) *IPAddressSection {
	return addr.GetSection().GetHostSectionLen(prefLen)
}

// GetNetworkMask returns the network mask associated with the CIDR network prefix length of this address or subnet.
// If this address or subnet has no prefix length, then the all-ones mask is returned.
func (addr *IPAddress) GetNetworkMask() *IPAddress {
	return addr.getNetworkMask(addr.getNetwork())
}

// GetHostMask returns the host mask associated with the CIDR network prefix length of this address or subnet.
// If this address or subnet has no prefix length, then the all-ones mask is returned.
func (addr *IPAddress) GetHostMask() *IPAddress {
	return addr.getHostMask(addr.getNetwork())
}

// CopySubSegments copies the existing segments from the given start index until but not including the segment at the given end index,
// into the given slice, as much as can be fit into the slice, returning the number of segments copied.
func (addr *IPAddress) CopySubSegments(start, end int, segs []*IPAddressSegment) (count int) {
	return addr.GetSection().CopySubSegments(start, end, segs)
}

// CopySegments copies the existing segments into the given slice,
// as much as can be fit into the slice, returning the number of segments copied.
func (addr *IPAddress) CopySegments(segs []*IPAddressSegment) (count int) {
	return addr.GetSection().CopySegments(segs)
}

// GetSegments returns a slice with the address segments.  The returned slice is not backed by the same array as this section.
func (addr *IPAddress) GetSegments() []*IPAddressSegment {
	return addr.GetSection().GetSegments()
}

// GetSegment returns the segment at the given index.
// The first segment is at index 0.
// GetSegment will panic given a negative index or an index matching or larger than the segment count.
func (addr *IPAddress) GetSegment(index int) *IPAddressSegment {
	return addr.getSegment(index).ToIP()
}

// GetSegmentCount returns the segment count, the number of segments in this address.
func (addr *IPAddress) GetSegmentCount() int {
	return addr.getDivisionCount()
}

// ForEachSegment visits each segment in order from most-significant to least, the most significant with index 0, calling the given function for each, terminating early if the function returns true.
// Returns the number of visited segments.
func (addr *IPAddress) ForEachSegment(consumer func(segmentIndex int, segment *IPAddressSegment) (stop bool)) int {
	return addr.GetSection().ForEachSegment(consumer)
}

// GetGenericDivision returns the segment at the given index as a DivisionType.
func (addr *IPAddress) GetGenericDivision(index int) DivisionType {
	return addr.getDivision(index)
}

// GetGenericSegment returns the segment at the given index as an AddressSegmentType.
// The first segment is at index 0.
// GetGenericSegment will panic given a negative index or an index matching or larger than the segment count.
func (addr *IPAddress) GetGenericSegment(index int) AddressSegmentType {
	return addr.getSegment(index)
}

// GetDivisionCount returns the segment count.
func (addr *IPAddress) GetDivisionCount() int {
	return addr.getDivisionCount()
}

// GetBitCount returns the number of bits comprising this address,
// or each address in the range if a subnet, which is 32 for IPv4 and 128 for IPv6.
func (addr *IPAddress) GetBitCount() BitCount {
	if address := addr.ToIPv4(); address != nil {
		return address.GetBitCount()
	} else if address := addr.ToIPv6(); address != nil {
		return address.GetBitCount()
	}
	return addr.addressInternal.GetBitCount()
}

// GetByteCount returns the number of bytes required for this address,
// or each address in the range if a subnet, which is 4 for IPv4 and 16 for IPv6.
func (addr *IPAddress) GetByteCount() int {
	if address := addr.ToIPv4(); address != nil {
		return address.GetByteCount()
	} else if address := addr.ToIPv6(); address != nil {
		return address.GetByteCount()
	}
	return addr.addressInternal.GetByteCount()
}

// GetLowerIPAddress returns the address in the subnet or address collection with the lowest numeric value,
// which will be the receiver if it represents a single address.
// For example, for "1.2-3.4.5-6", the series "1.2.4.5" is returned.
// GetLowerIPAddress implements the IPAddressRange interface, and is equivalent to GetLower.
func (addr *IPAddress) GetLowerIPAddress() *IPAddress {
	return addr.GetLower()
}

// GetUpperIPAddress returns the address in the subnet or address collection with the highest numeric value,
// which will be the receiver if it represents a single address.
// For example, for the subnet "1.2-3.4.5-6", the address "1.3.4.6" is returned.
// GetUpperIPAddress implements the IPAddressRange interface, and is equivalent to GetUpper.
func (addr *IPAddress) GetUpperIPAddress() *IPAddress {
	return addr.GetUpper()
}

// GetLower returns the lowest address in the subnet range,
// which will be the receiver if it represents a single address.
// For example, for the subnet "1.2-3.4.5-6", the address "1.2.4.5" is returned.
func (addr *IPAddress) GetLower() *IPAddress {
	return addr.init().getLower().ToIP()
}

// GetUpper returns the highest address in the subnet range,
// which will be the receiver if it represents a single address.
// For example, for "1.2-3.4.5-6", the series "1.3.4.6" is returned.
func (addr *IPAddress) GetUpper() *IPAddress {
	return addr.init().getUpper().ToIP()
}

// IsZeroHostLen returns whether the host section is always zero for all individual addresses in this subnet,
// for the given prefix length.
//
// If the host section is zero length (there are zero host bits), IsZeroHostLen returns true.
func (addr *IPAddress) IsZeroHostLen(prefLen BitCount) bool {
	return addr.init().isZeroHostLen(prefLen)
}

// ToZeroHost converts the address or subnet to one in which all individual addresses have a host of zero,
// the host being the bits following the prefix length.
// If the address or subnet has no prefix length, then it returns an all-zero address.
//
// The returned address or subnet will have the same prefix and prefix length.
//
// For instance, the zero host of "1.2.3.4/16" is the individual address "1.2.0.0/16".
//
// This returns an error if the subnet is a range of addresses which cannot be converted to a range in which all addresses have zero hosts,
// because the conversion results in a subnet segment that is not a sequential range of values.
func (addr *IPAddress) ToZeroHost() (*IPAddress, addrerr.IncompatibleAddressError) {
	return addr.init().toZeroHost(false)
}

// ToZeroHostLen converts the address or subnet to one in which all individual addresses have a host of zero,
// the host being the bits following the given prefix length.
// If this address or subnet has the same prefix length, then the returned one will too, otherwise the returned series will have no prefix length.
//
// For instance, the zero host of "1.2.3.4" for the prefix length of 16 is the address "1.2.0.0".
//
// This returns an error if the subnet is a range of addresses which cannot be converted to a range in which all addresses have zero hosts,
// because the conversion results in a subnet segment that is not a sequential range of values.
func (addr *IPAddress) ToZeroHostLen(prefixLength BitCount) (*IPAddress, addrerr.IncompatibleAddressError) {
	return addr.init().toZeroHostLen(prefixLength)
}

// ToZeroNetwork converts the address or subnet to one in which all individual addresses have a network of zero,
// the network being the bits within the prefix length.
// If the address or subnet has no prefix length, then it returns an all-zero address.
//
// The returned address or subnet will have the same prefix length.
func (addr *IPAddress) ToZeroNetwork() *IPAddress {
	return addr.init().toZeroNetwork()
}

// IsMaxHostLen returns whether the host is all one-bits, the max value, for all individual addresses in this subnet,
// for the given prefix length, the host being the bits following the prefix.
//
// If the host section is zero length (there are zero host bits), IsMaxHostLen returns true.
func (addr *IPAddress) IsMaxHostLen(prefLen BitCount) bool {
	return addr.init().isMaxHostLen(prefLen)
}

// ToMaxHost converts the address or subnet to one in which all individual addresses have a host of all one-bits, the max value,
// the host being the bits following the prefix length.
// If the address or subnet has no prefix length, then it returns an all-ones address, the max address.
//
// The returned address or subnet will have the same prefix and prefix length.
//
// For instance, the max host of "1.2.3.4/16" gives the broadcast address "1.2.255.255/16".
//
// This returns an error if the subnet is a range of addresses which cannot be converted to a range in which all addresses have max hosts,
// because the conversion results in a subnet segment that is not a sequential range of values.
func (addr *IPAddress) ToMaxHost() (*IPAddress, addrerr.IncompatibleAddressError) {
	return addr.init().toMaxHost()
}

// ToMaxHostLen converts the address or subnet to one in which all individual addresses have a host of all one-bits, the max host,
// the host being the bits following the given prefix length.
// If this address or subnet has the same prefix length, then the resulting one will too, otherwise the resulting address or subnet will have no prefix length.
//
// For instance, the zero host of "1.2.3.4" for the prefix length of 16 is the address "1.2.255.255".
//
// This returns an error if the subnet is a range of addresses which cannot be converted to a range in which all addresses have max hosts,
// because the conversion results in a subnet segment that is not a sequential range of values.
func (addr *IPAddress) ToMaxHostLen(prefixLength BitCount) (*IPAddress, addrerr.IncompatibleAddressError) {
	return addr.init().toMaxHostLen(prefixLength)
}

// ToPrefixBlock returns the subnet associated with the prefix length of this address.
// If this address has no prefix length, this address is returned.
//
// The subnet will include all addresses with the same prefix as this one, the prefix "block".
// The network prefix will match the prefix of this address or subnet, and the host values will span all values.
//
// For example, if the address is "1.2.3.4/16" it returns the subnet "1.2.0.0/16", which can also be written as "1.2.*.*/16".
func (addr *IPAddress) ToPrefixBlock() *IPAddress {
	return addr.init().toPrefixBlock().ToIP()
}

// ToPrefixBlockLen returns the subnet associated with the given prefix length.
//
// The subnet will include all addresses with the same prefix as this one, the prefix "block" for that prefix length.
// The network prefix will match the prefix of this address or subnet, and the host values will span all values.
//
// For example, if the address is "1.2.3.4" and the prefix length provided is 16, it returns the subnet "1.2.0.0/16", which can also be written as "1.2.*.*/16".
func (addr *IPAddress) ToPrefixBlockLen(prefLen BitCount) *IPAddress {
	return addr.init().toPrefixBlockLen(prefLen).ToIP()
}

// ToBlock creates a new block of addresses by changing the segment at the given index to have the given lower and upper value,
// and changing the following segments to be full-range.
func (addr *IPAddress) ToBlock(segmentIndex int, lower, upper SegInt) *IPAddress {
	return addr.init().toBlock(segmentIndex, lower, upper).ToIP()
}

// IsPrefixed returns whether this address has an associated prefix length.
func (addr *IPAddress) IsPrefixed() bool {
	return addr != nil && addr.isPrefixed()
}

// WithoutPrefixLen provides the same address but with no prefix length.  The values remain unchanged.
func (addr *IPAddress) WithoutPrefixLen() *IPAddress {
	if !addr.IsPrefixed() {
		return addr
	}
	return addr.withoutPrefixLen().ToIP()
}

// SetPrefixLen sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address.
// The provided prefix length will be adjusted to these boundaries if necessary.
func (addr *IPAddress) SetPrefixLen(prefixLen BitCount) *IPAddress {
	return addr.init().setPrefixLen(prefixLen).ToIP()
}

// SetPrefixLenZeroed sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address.
// The provided prefix length will be adjusted to these boundaries if necessary.
//
// If this address has a prefix length, and the prefix length is increased when setting the new prefix length, the bits moved within the prefix become zero.
// If this address has a prefix length, and the prefix length is decreased when setting the new prefix length, the bits moved outside the prefix become zero.
//
// In other words, bits that move from one side of the prefix length to the other (bits moved into the prefix or outside the prefix) are zeroed.
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (addr *IPAddress) SetPrefixLenZeroed(prefixLen BitCount) (*IPAddress, addrerr.IncompatibleAddressError) {
	res, err := addr.init().setPrefixLenZeroed(prefixLen)
	return res.ToIP(), err
}

// AdjustPrefixLen increases or decreases the prefix length by the given increment.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address.
//
// If this address has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
func (addr *IPAddress) AdjustPrefixLen(prefixLen BitCount) *IPAddress {
	return addr.init().adjustPrefixLen(prefixLen).ToIP()
}

// AdjustPrefixLenZeroed increases or decreases the prefix length by the given increment while zeroing out the bits that have moved into or outside the prefix.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address.
//
// If this address has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
//
// When prefix length is increased, the bits moved within the prefix become zero.
// When a prefix length is decreased, the bits moved outside the prefix become zero.
//
// For example, "1.2.0.0/16" adjusted by -8 becomes "1.0.0.0/8".
// "1.2.0.0/16" adjusted by 8 becomes "1.2.0.0/24".
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (addr *IPAddress) AdjustPrefixLenZeroed(prefixLen BitCount) (*IPAddress, addrerr.IncompatibleAddressError) {
	res, err := addr.init().adjustPrefixLenZeroed(prefixLen)
	return res.ToIP(), err
}

// AssignPrefixForSingleBlock returns the equivalent prefix block that matches exactly the range of values in this address.
// The returned block will have an assigned prefix length indicating the prefix length for the block.
//
// There may be no such address - it is required that the range of values match the range of a prefix block.
// If there is no such address, then nil is returned.
//
// Examples:
//  - 1.2.3.4 returns 1.2.3.4/32
//  - 1.2.*.* returns 1.2.0.0/16
//  - 1.2.*.0/24 returns 1.2.0.0/16
//  - 1.2.*.4 returns nil
//  - 1.2.0-1.* returns 1.2.0.0/23
//  - 1.2.1-2.* returns nil
//  - 1.2.252-255.* returns 1.2.252.0/22
//  - 1.2.3.4/16 returns 1.2.3.4/32
func (addr *IPAddress) AssignPrefixForSingleBlock() *IPAddress {
	return addr.init().assignPrefixForSingleBlock().ToIP()
}

// AssignMinPrefixForBlock returns an equivalent subnet, assigned the smallest prefix length possible,
// such that the prefix block for that prefix length is in this subnet.
//
// In other words, this method assigns a prefix length to this subnet matching the largest prefix block in this subnet.
//
// Examples:
//  - 1.2.3.4 returns 1.2.3.4/32
//  - 1.2.*.* returns 1.2.0.0/16
//  - 1.2.*.0/24 returns 1.2.0.0/16
//  - 1.2.*.4 returns 1.2.*.4/32
//  - 1.2.0-1.* returns 1.2.0.0/23
//  - 1.2.1-2.* returns 1.2.1-2.0/24
//  - 1.2.252-255.* returns 1.2.252.0/22
//  - 1.2.3.4/16 returns 1.2.3.4/32
func (addr *IPAddress) AssignMinPrefixForBlock() *IPAddress {
	return addr.init().assignMinPrefixForBlock().ToIP()
}

// ToSinglePrefixBlockOrAddress converts to a single prefix block or address.
// If the given address is a single prefix block, it is returned.
// If it can be converted to a single prefix block by assigning a prefix length, the converted block is returned.
// If it is a single address, any prefix length is removed and the address is returned.
// Otherwise, nil is returned.
// This method provides the address formats used by tries.
// ToSinglePrefixBlockOrAddress is quite similar to AssignPrefixForSingleBlock, which always returns prefixed addresses, while this does not.
func (addr *IPAddress) ToSinglePrefixBlockOrAddress() *IPAddress {
	return addr.init().toSinglePrefixBlockOrAddr().ToIP()
}

func (addr *IPAddress) toSinglePrefixBlockOrAddress() (*IPAddress, addrerr.IncompatibleAddressError) {
	if addr == nil {
		return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.address.not.block"}}
	}
	res := addr.ToSinglePrefixBlockOrAddress()
	if res == nil {
		return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.address.not.block"}}
	}
	return res, nil
}

// GetValue returns the lowest address in this subnet or address as an integer value.
func (addr *IPAddress) GetValue() *big.Int {
	return addr.init().section.GetValue()
}

// GetUpperValue returns the highest address in this subnet or address as an integer value.
func (addr *IPAddress) GetUpperValue() *big.Int {
	return addr.init().section.GetUpperValue()
}

// GetNetIPAddr returns the lowest address in this subnet or address as a net.IPAddr.
func (addr *IPAddress) GetNetIPAddr() *net.IPAddr {
	return &net.IPAddr{
		IP:   addr.GetNetIP(),
		Zone: string(addr.zone),
	}
}

// GetUpperNetIPAddr returns the highest address in this subnet or address as a net.IPAddr.
func (addr *IPAddress) GetUpperNetIPAddr() *net.IPAddr {
	return &net.IPAddr{
		IP:   addr.GetUpperNetIP(),
		Zone: string(addr.zone),
	}
}

// GetNetIP returns the lowest address in this subnet or address as a net.IP.
func (addr *IPAddress) GetNetIP() net.IP {
	return addr.Bytes()
}

// GetUpperNetIP returns the highest address in this subnet or address as a net.IP.
func (addr *IPAddress) GetUpperNetIP() net.IP {
	return addr.UpperBytes()
}

// GetNetNetIPAddr returns the lowest address in this subnet or address range as a netip.Addr.
func (addr *IPAddress) GetNetNetIPAddr() netip.Addr {
	res := addr.init().getNetNetIPAddr()
	if addr.hasZone() {
		res = res.WithZone(string(addr.zone))
	}
	return res
}

// GetUpperNetNetIPAddr returns the highest address in this subnet or address range as a netip.Addr.
func (addr *IPAddress) GetUpperNetNetIPAddr() netip.Addr {
	return addr.init().getUpperNetNetIPAddr()
}

// CopyNetIP copies the value of the lowest individual address in the subnet into a net.IP.
//
// If the value can fit in the given net.IP slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *IPAddress) CopyNetIP(ip net.IP) net.IP {
	if ipv4Addr := addr.ToIPv4(); ipv4Addr != nil {
		return ipv4Addr.CopyNetIP(ip) // this shrinks the arg to 4 bytes if it was 16, we need only 4
	}
	return addr.CopyBytes(ip)
}

// CopyUpperNetIP copies the value of the highest individual address in the subnet into a net.IP.
//
// If the value can fit in the given net.IP slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *IPAddress) CopyUpperNetIP(ip net.IP) net.IP {
	if ipv4Addr := addr.ToIPv4(); ipv4Addr != nil {
		return ipv4Addr.CopyUpperNetIP(ip) // this shrinks the arg to 4 bytes if it was 16, we need only 4
	}
	return addr.CopyUpperBytes(ip)
}

// Bytes returns the lowest address in this subnet or address as a byte slice.
func (addr *IPAddress) Bytes() []byte {
	return addr.init().section.Bytes()
}

// UpperBytes returns the highest address in this subnet or address as a byte slice.
func (addr *IPAddress) UpperBytes() []byte {
	return addr.init().section.UpperBytes()
}

// CopyBytes copies the value of the lowest individual address in the subnet into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *IPAddress) CopyBytes(bytes []byte) []byte {
	return addr.init().section.CopyBytes(bytes)
}

// CopyUpperBytes copies the value of the highest individual address in the subnet into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *IPAddress) CopyUpperBytes(bytes []byte) []byte {
	return addr.init().section.CopyUpperBytes(bytes)
}

// IsMax returns whether this address matches exactly the maximum possible value, the address whose bits are all ones.
func (addr *IPAddress) IsMax() bool {
	return addr.init().section.IsMax()
}

// IncludesMax returns whether this address includes the max address, the address whose bits are all ones, within its range.
func (addr *IPAddress) IncludesMax() bool {
	return addr.init().section.IncludesMax()
}

// TestBit returns true if the bit in the lower value of this address at the given index is 1, where index 0 refers to the least significant bit.
// In other words, it computes (bits & (1 << n)) != 0), using the lower value of this address.
// TestBit will panic if n < 0, or if it matches or exceeds the bit count of this item.
func (addr *IPAddress) TestBit(n BitCount) bool {
	return addr.init().testBit(n)
}

// IsOneBit returns true if the bit in the lower value of this address at the given index is 1, where index 0 refers to the most significant bit.
// IsOneBit will panic if bitIndex is less than zero, or if it is larger than the bit count of this item.
func (addr *IPAddress) IsOneBit(bitIndex BitCount) bool {
	return addr.init().isOneBit(bitIndex)
}

// PrefixEqual determines if the given address matches this address up to the prefix length of this address.
// It returns whether the two addresses share the same range of prefix values.
func (addr *IPAddress) PrefixEqual(other AddressType) bool {
	return addr.init().prefixEquals(other)
}

// PrefixContains returns whether the prefix values in the given address or subnet
// are prefix values in this address or subnet, using the prefix length of this address or subnet.
// If this address has no prefix length, the entire address is compared.
//
// It returns whether the prefix of this address contains all values of the same prefix length in the given address.
func (addr *IPAddress) PrefixContains(other AddressType) bool {
	return addr.init().prefixContains(other)
}

// Contains returns whether this is the same type and version as the given address or subnet and whether it contains all addresses in the given address or subnet.
func (addr *IPAddress) Contains(other AddressType) bool {
	if addr == nil {
		return other == nil || other.ToAddressBase() == nil
	}
	return addr.init().contains(other)
}

// Compare returns a negative integer, zero, or a positive integer if this address or subnet is less than, equal, or greater than the given item.
// Any address item is comparable to any other.  All address items use CountComparator to compare.
func (addr *IPAddress) Compare(item AddressItem) int {
	return CountComparator.Compare(addr, item)
}

// Equal returns whether the given address or subnet is equal to this address or subnet.
// Two address instances are equal if they represent the same set of addresses.
func (addr *IPAddress) Equal(other AddressType) bool {
	if addr == nil {
		return other == nil || other.ToAddressBase() == nil
	}
	return addr.init().equals(other)
}

// CompareSize compares the counts of two subnets or addresses or other items, the number of individual items within.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether one subnet represents more individual addresses than another.
//
// CompareSize returns a positive integer if this address or subnet has a larger count than the one given, zero if they are the same, or a negative integer if the other has a larger count.
func (addr *IPAddress) CompareSize(other AddressItem) int { // this is here to take advantage of the CompareSize in IPAddressSection
	if addr == nil {
		if isNilItem(other) {
			return 0
		}
		// we have size 0, other has size >= 1
		return -1
	}
	return addr.init().compareSize(other)
}

// TrieCompare compares two addresses according to address trie ordering.
// It returns a number less than zero, zero, or a number greater than zero if the first address argument is less than, equal to, or greater than the second.
//
// The comparison is intended for individual addresses and CIDR prefix blocks.
// If an address is neither an individual address nor a prefix block, it is treated like one:
//   - ranges that occur inside the prefix length are ignored, only the lower value is used.
//   - ranges beyond the prefix length are assumed to be the full range across all hosts for that prefix length.
func (addr *IPAddress) TrieCompare(other *IPAddress) (int, addrerr.IncompatibleAddressError) {
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		if oth := other.ToIPv4(); oth != nil {
			return thisAddr.TrieCompare(oth), nil
		}
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		if oth := other.ToIPv6(); oth != nil {
			return thisAddr.TrieCompare(oth), nil
		}
	}
	return 0, &incompatibleAddressError{addressError{key: "ipaddress.error.mismatched.bit.size"}}
}

// TrieIncrement returns the next address or block according to address trie ordering
//
// If an address is neither an individual address nor a prefix block, it is treated like one:
//   - ranges that occur inside the prefix length are ignored, only the lower value is used.
//   - ranges beyond the prefix length are assumed to be the full range across all hosts for that prefix length.
func (addr *IPAddress) TrieIncrement() *IPAddress {
	if res, ok := trieIncrement(addr); ok {
		return res
	}
	return nil
}

// TrieDecrement returns the previous address or block according to address trie ordering
//
// If an address is neither an individual address nor a prefix block, it is treated like one:
//   - ranges that occur inside the prefix length are ignored, only the lower value is used.
//   - ranges beyond the prefix length are assumed to be the full range across all hosts for that prefix length.
func (addr *IPAddress) TrieDecrement() *IPAddress {
	if res, ok := trieDecrement(addr); ok {
		return res
	}
	return nil
}

// MatchesWithMask applies the mask to this address and then compares the result with the given address,
// returning true if they match, false otherwise.
func (addr *IPAddress) MatchesWithMask(other *IPAddress, mask *IPAddress) bool {
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		if oth := other.ToIPv4(); oth != nil {
			if msk := mask.ToIPv4(); mask != nil {
				return thisAddr.MatchesWithMask(oth, msk)
			}
		}
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		if oth := other.ToIPv6(); oth != nil {
			if msk := mask.ToIPv6(); mask != nil {
				return thisAddr.MatchesWithMask(oth, msk)
			}
		}
	}
	return false
}

// IsIPv4 returns true if this address or subnet originated as an IPv4 address or subnet.  If so, use ToIPv4 to convert back to the IPv4-specific type.
func (addr *IPAddress) IsIPv4() bool {
	return addr != nil && addr.isIPv4()
}

// IsIPv6 returns true if this address or subnet originated as an IPv6 address or subnet.  If so, use ToIPv6 to convert back to the IPv6-specific type.
func (addr *IPAddress) IsIPv6() bool {
	return addr != nil && addr.isIPv6()
}

// GetIPVersion returns the IP version of this IP address.
func (addr *IPAddress) GetIPVersion() IPVersion {
	if addr == nil {
		return IndeterminateIPVersion
	}
	return addr.getIPVersion()
}

// ToAddressBase converts to an Address, a polymorphic type usable with all addresses and subnets.
// Afterwards, you can convert back with ToIP.
//
// ToAddressBase can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *IPAddress) ToAddressBase() *Address {
	if addr != nil {
		addr = addr.init()
	}
	return (*Address)(unsafe.Pointer(addr))
}

// ToIP is an identity method.
//
// ToIP can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *IPAddress) ToIP() *IPAddress {
	return addr
}

// ToIPv6 converts to an IPv6Address if this address or subnet originated as an IPv6 address or subnet.
// If not, ToIPv6 returns nil.
//
// ToIPv6 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *IPAddress) ToIPv6() *IPv6Address {
	if addr.IsIPv6() {
		return (*IPv6Address)(addr)
	}
	return nil
}

// ToIPv4 converts to an IPv4Address if this address or subnet originated as an IPv4 address or subnet.
// If not, ToIPv4 returns nil.
//
// ToIPv4 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *IPAddress) ToIPv4() *IPv4Address {
	if addr.IsIPv4() {
		return (*IPv4Address)(addr)
	}
	return nil
}

// Wrap wraps this IP address, returning a WrappedIPAddress, an implementation of ExtendedIPSegmentSeries,
// which can be used to write code that works with both IP addresses and IP address sections.
// Wrap can be called with a nil receiver, wrapping a nil address.
func (addr *IPAddress) Wrap() WrappedIPAddress {
	return wrapIPAddress(addr)
}

// WrapAddress wraps this IP address, returning a WrappedAddress, an implementation of ExtendedSegmentSeries,
// which can be used to write code that works with both addresses and address sections.
// WrapAddress can be called with a nil receiver, wrapping a nil address.
func (addr *IPAddress) WrapAddress() WrappedAddress {
	return wrapAddress(addr.ToAddressBase())
}

// GetMaxSegmentValue returns the maximum possible segment value for this type of address.
//
// Note this is not the maximum of the range of segment values in this specific address,
// this is the maximum value of any segment for this address type and version, determined by the number of bits per segment.
func (addr *IPAddress) GetMaxSegmentValue() SegInt {
	return addr.init().getMaxSegmentValue()
}

// Iterator provides an iterator to iterate through the individual addresses of this address or subnet.
//
// When iterating, the prefix length is preserved.  Remove it using WithoutPrefixLen prior to iterating if you wish to drop it from all individual addresses.
//
// Call IsMultiple to determine if this instance represents multiple addresses, or GetCount for the count.
func (addr *IPAddress) Iterator() Iterator[*IPAddress] {
	if addr == nil {
		return ipAddrIterator{nilAddrIterator()}
	}
	return ipAddrIterator{addr.init().addrIterator(nil)}
}

// PrefixIterator provides an iterator to iterate through the individual prefixes of this subnet,
// each iterated element spanning the range of values for its prefix.
//
// It is similar to the prefix block iterator, except for possibly the first and last iterated elements, which might not be prefix blocks,
// instead constraining themselves to values from this subnet.
//
// If the subnet has no prefix length, then this is equivalent to Iterator.
func (addr *IPAddress) PrefixIterator() Iterator[*IPAddress] {
	return ipAddrIterator{addr.init().prefixIterator(false)}
}

// PrefixBlockIterator provides an iterator to iterate through the individual prefix blocks, one for each prefix of this address or subnet.
// Each iterated address or subnet will be a prefix block with the same prefix length as this address or subnet.
//
// If this address has no prefix length, then this is equivalent to Iterator.
func (addr *IPAddress) PrefixBlockIterator() Iterator[*IPAddress] {
	return ipAddrIterator{addr.init().prefixIterator(true)}
}

// BlockIterator iterates through the addresses that can be obtained by iterating through all the upper segments up to the given segment count.
// The segments following remain the same in all iterated addresses.
//
// For instance, given the IPv4 subnet "1-2.3-4.5-6.7" and the count argument 2,
// BlockIterator will iterate through "1.3.5-6.7", "1.4.5-6.7", "2.3.5-6.7" and "2.4.5-6.7".
func (addr *IPAddress) BlockIterator(segmentCount int) Iterator[*IPAddress] {
	return ipAddrIterator{addr.init().blockIterator(segmentCount)}
}

// SequentialBlockIterator iterates through the sequential subnets or addresses that make up this address or subnet.
//
// Practically, this means finding the count of segments for which the segments that follow are not full range, and then using BlockIterator with that segment count.
//
// For instance, given the IPv4 subnet "1-2.3-4.5-6.7-8", it will iterate through "1.3.5.7-8", "1.3.6.7-8", "1.4.5.7-8", "1.4.6.7-8", "2.3.5.7-8", "2.3.6.7-8", "2.4.6.7-8" and "2.4.6.7-8".
//
// Use GetSequentialBlockCount to get the number of iterated elements.
func (addr *IPAddress) SequentialBlockIterator() Iterator[*IPAddress] {
	return ipAddrIterator{addr.init().sequentialBlockIterator()}
}

// GetSequentialBlockIndex gets the minimal segment index for which all following segments are full-range blocks.
//
// The segment at this index is not a full-range block itself, unless all segments are full-range.
// The segment at this index and all following segments form a sequential range.
// For the full subnet to be sequential, the preceding segments must be single-valued.
func (addr *IPAddress) GetSequentialBlockIndex() int {
	return addr.getSequentialBlockIndex()
}

// GetSequentialBlockCount provides the count of elements from the sequential block iterator, the minimal number of sequential subnets that comprise this subnet.
func (addr *IPAddress) GetSequentialBlockCount() *big.Int {
	return addr.getSequentialBlockCount()
}

func (addr *IPAddress) rangeIterator(
	upper *IPAddress,
	valsAreMultiple bool,
	prefixLen PrefixLen,
	segProducer func(addr *IPAddress, index int) *IPAddressSegment,
	segmentIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
	segValueComparator func(seg1, seg2 *IPAddress, index int) bool,
	networkSegmentIndex,
	hostSegmentIndex int,
	prefixedSegIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
) Iterator[*IPAddress] {
	return ipAddrIterator{addr.ipAddressInternal.rangeIterator(upper.ToIP(), valsAreMultiple, prefixLen, segProducer, segmentIteratorProducer, segValueComparator, networkSegmentIndex, hostSegmentIndex, prefixedSegIteratorProducer)}
}

// ToSequentialRange creates a sequential range instance from the lowest and highest addresses in this subnet.
//
// The two will represent the same set of individual addresses if and only if IsSequential is true.
// To get a series of ranges that represent the same set of individual addresses use the SequentialBlockIterator (or PrefixIterator),
// and apply this method to each iterated subnet.
//
// If this represents just a single address then the returned instance covers just that single address as well.
func (addr *IPAddress) ToSequentialRange() *SequentialRange[*IPAddress] {
	if addr != nil {
		addr = addr.init().WithoutPrefixLen()
		return newSequRangeUnchecked(
			addr.GetLower(),
			addr.GetUpper(),
			addr.isMultiple())
	}
	return nil
}

func (addr *IPAddress) getLowestHighestAddrs() (lower, upper *IPAddress) {
	l, u := addr.ipAddressInternal.getLowestHighestAddrs()
	return l.ToIP(), u.ToIP()
}

// IncrementBoundary returns the address that is the given increment from the range boundaries of this subnet.
//
// If the given increment is positive, adds the value to the upper address (GetUpper) in the subnet range to produce a new address.
// If the given increment is negative, adds the value to the lower address (GetLower) in the subnet range to produce a new address.
// If the increment is zero, returns this address.
//
// If this is a single address value, that address is simply incremented by the given increment value, positive or negative.
//
// On address overflow or underflow, IncrementBoundary returns nil.
func (addr *IPAddress) IncrementBoundary(increment int64) *IPAddress {
	return addr.init().incrementBoundary(increment).ToIP()
}

// Increment returns the address from the subnet that is the given increment upwards into the subnet range,
// with the increment of 0 returning the first address in the range.
//
// If the increment i matches or exceeds the subnet size count c, then i - c + 1
// is added to the upper address of the range.
// An increment matching the subnet count gives you the address just above the highest address in the subnet.
//
// If the increment is negative, it is added to the lower address of the range.
// To get the address just below the lowest address of the subnet, use the increment -1.
//
// If this is just a single address value, the address is simply incremented by the given increment, positive or negative.
//
// If this is a subnet with multiple values, a positive increment i is equivalent i + 1 values from the subnet iterator and beyond.
// For instance, a increment of 0 is the first value from the iterator, an increment of 1 is the second value from the iterator, and so on.
// An increment of a negative value added to the subnet count is equivalent to the same number of iterator values preceding the upper bound of the iterator.
// For instance, an increment of count - 1 is the last value from the iterator, an increment of count - 2 is the second last value, and so on.
//
// On address overflow or underflow, Increment returns nil.
func (addr *IPAddress) Increment(increment int64) *IPAddress {
	return addr.init().increment(increment).ToIP()
}

// SpanWithRange returns an IPAddressSeqRange instance that spans this subnet to the given subnet.
// If the other address is a different version than this, then the other is ignored, and the result is equivalent to calling ToSequentialRange.
func (addr *IPAddress) SpanWithRange(other *IPAddress) *SequentialRange[*IPAddress] {
	return NewSequentialRange(addr.init(), other)
}

// Mask applies the given mask to all addresses represented by this IPAddress.
// The mask is applied to all individual addresses.
//
// If the mask is a different version than this, then an error is returned.
//
// If this represents multiple addresses, and applying the mask to all addresses creates a set of addresses
// that cannot be represented as a sequential range within each segment, then an error is returned.
func (addr *IPAddress) Mask(other *IPAddress) (masked *IPAddress, err addrerr.IncompatibleAddressError) {
	return addr.maskPrefixed(other, true)
}

func (addr *IPAddress) maskPrefixed(other *IPAddress, retainPrefix bool) (*IPAddress, addrerr.IncompatibleAddressError) {
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		if oth := other.ToIPv4(); oth != nil {
			result, err := thisAddr.maskPrefixed(oth, retainPrefix)
			return result.ToIP(), err
		}
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		if oth := other.ToIPv6(); oth != nil {
			result, err := thisAddr.maskPrefixed(oth, retainPrefix)
			return result.ToIP(), err
		}
	}
	return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.ipMismatch"}}
}

// BitwiseOr does the bitwise disjunction with this address or subnet, useful when subnetting.
// It is similar to Mask which does the bitwise conjunction.
//
// The operation is applied to all individual addresses and the result is returned.
//
// If the given address is a different version than this, then an error is returned.
//
// If this is a subnet representing multiple addresses, and applying the operations to all addresses creates a set of addresses
// that cannot be represented as a sequential range within each segment, then an error is returned.
func (addr *IPAddress) BitwiseOr(other *IPAddress) (masked *IPAddress, err addrerr.IncompatibleAddressError) {
	return addr.bitwiseOrPrefixed(other, true)
}

func (addr *IPAddress) bitwiseOrPrefixed(other *IPAddress, retainPrefix bool) (*IPAddress, addrerr.IncompatibleAddressError) {
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		if oth := other.ToIPv4(); oth != nil {
			result, err := thisAddr.bitwiseOrPrefixed(oth, retainPrefix)
			return result.ToIP(), err
		}
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		if oth := other.ToIPv6(); oth != nil {
			result, err := thisAddr.bitwiseOrPrefixed(oth, retainPrefix)
			return result.ToIP(), err
		}
	}
	return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.ipMismatch"}}
}

// Intersect returns the subnet whose addresses are found in both this and the given subnet argument, or nil if no such addresses exist.
//
// This is also known as the conjunction of the two sets of addresses.
func (addr *IPAddress) Intersect(other *IPAddress) *IPAddress {
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		if oth := other.ToIPv4(); oth != nil {
			return thisAddr.Intersect(oth).ToIP()
		}
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		if oth := other.ToIPv6(); oth != nil {
			return thisAddr.Intersect(oth).ToIP()
		}
	}
	return nil
}

// Subtract subtracts the given subnet from this subnet, returning an array of subnets for the result (the subnets will not be contiguous so an array is required).
// Subtract computes the subnet difference, the set of addresses in this address subnet but not in the provided subnet.
// This is also known as the relative complement of the given argument in this subnet.
// This is set subtraction, not subtraction of address values (use Increment for the latter).  We have a subnet of addresses and we are removing those addresses found in the argument subnet.
// If there are no remaining addresses, nil is returned.
func (addr *IPAddress) Subtract(other *IPAddress) []*IPAddress {
	if !versionsMatch(addr, other) {
		return []*IPAddress{addr}
	}
	addr = addr.init()
	sects, _ := addr.GetSection().subtract(other.GetSection())
	sectLen := len(sects)
	if sectLen == 0 {
		return nil
	} else if sectLen == 1 {
		sec := sects[0]
		if sec.ToSectionBase() == addr.section {
			return []*IPAddress{addr}
		}
	}
	res := make([]*IPAddress, sectLen)
	for i, sect := range sects {
		res[i] = newIPAddressZoned(sect, addr.zone)
	}
	return res
}

// IsLinkLocal returns whether the address or subnet is entirely link local, whether unicast or multicast.
func (addr *IPAddress) IsLinkLocal() bool {
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		return thisAddr.IsLinkLocal()
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		return thisAddr.IsLinkLocal()
	}
	return false
}

// IsLocal returns true if the address is link local, site local, organization local, administered locally, or unspecified.
// This includes both unicast and multicast.
func (addr *IPAddress) IsLocal() bool {
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		return thisAddr.IsLocal()
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		return thisAddr.IsLocal()
	}
	return false
}

// IsUnspecified returns true if exactly zero.  The unspecified address is the address that is all zeros.
func (addr *IPAddress) IsUnspecified() bool {
	return addr.section != nil && addr.IsZero()
}

// IsAnyLocal returns whether this address is the address which binds to any address on the local host.
// This is the address that has the value of 0, aka the unspecified address.
func (addr *IPAddress) IsAnyLocal() bool {
	return addr.section != nil && addr.IsZero()
}

// IsLoopback returns whether this address is a loopback address,  such as "::1" or "127.0.0.1".
func (addr *IPAddress) IsLoopback() bool {
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		return thisAddr.IsLoopback()
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		return thisAddr.IsLoopback()
	}
	return false
}

// IsMulticast returns whether this address or subnet is entirely multicast.
func (addr *IPAddress) IsMulticast() bool {
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		return thisAddr.IsMulticast()
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		return thisAddr.IsMulticast()
	}
	return false
}

func versionsMatch(one, two *IPAddress) bool {
	return one.getAddrType() == two.getAddrType()
}

//func allVersionsMatch(one *IPAddress, two []*IPAddress) bool {
//	addrType := one.getAddrType()
//	for _, addr := range two {
//		if addr.getAddrType() != addrType {
//			return false
//		}
//	}
//	return true
//}

// MergeToSequentialBlocks merges this with the list of addresses to produce the smallest array of sequential blocks.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
// Arguments that are not the same IP version are ignored.
func (addr *IPAddress) MergeToSequentialBlocks(addrs ...*IPAddress) []*IPAddress {
	series := filterCloneIPAddrs(addr, addrs)
	blocks := getMergedSequentialBlocks(series)
	return cloneToIPAddrs(blocks)
}

// MergeToPrefixBlocks merges this subnet with the list of subnets to produce the smallest array of prefix blocks.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
// Arguments that are not the same IP version are ignored.
func (addr *IPAddress) MergeToPrefixBlocks(addrs ...*IPAddress) []*IPAddress {
	series := filterCloneIPAddrs(addr, addrs)
	blocks := getMergedPrefixBlocks(series)
	return cloneToIPAddrs(blocks)
}

// SpanWithPrefixBlocks returns an array of prefix blocks that cover the same set of addresses as this subnet.
//
// Unlike SpanWithPrefixBlocksTo, the result only includes addresses that are a part of this subnet.
func (addr *IPAddress) SpanWithPrefixBlocks() []*IPAddress {
	addr = addr.init()
	if addr.IsSequential() {
		if addr.IsSinglePrefixBlock() {
			return []*IPAddress{addr}
		}
		wrapped := addr.Wrap()
		spanning := getSpanningPrefixBlocks(wrapped, wrapped)
		return cloneToIPAddrs(spanning)
	}
	wrapped := addr.Wrap()
	return cloneToIPAddrs(spanWithPrefixBlocks(wrapped))
}

// SpanWithPrefixBlocksTo returns the smallest slice of prefix block subnets that span from this subnet to the given subnet.
//
// If the given address is a different version than this, then the given address is ignored, and the result is equivalent to calling SpanWithPrefixBlocks.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
//
// From the list of returned subnets you can recover the original range (this to other) by converting each to IPAddressRange with ToSequentialRange
// and them joining them into a single range with the Join method of IPAddressSeqRange.
func (addr *IPAddress) SpanWithPrefixBlocksTo(other *IPAddress) []*IPAddress {
	if !versionsMatch(addr, other) {
		return addr.SpanWithPrefixBlocks()
	}
	return cloneToIPAddrs(
		getSpanningPrefixBlocks(
			addr.init().Wrap(),
			other.init().Wrap(),
		),
	)
}

// CoverWithPrefixBlockTo returns the minimal-size prefix block that covers all the addresses spanning from this subnet to the given subnet.
//
// If the argument is not the same IP version as the receiver, the argument is ignored, and the result is the same as CoverWithPrefixBlock.
func (addr *IPAddress) CoverWithPrefixBlockTo(other *IPAddress) *IPAddress {
	if !versionsMatch(addr, other) {
		return addr.CoverWithPrefixBlock()
	}
	return addr.init().coverWithPrefixBlockTo(other)
}

// CoverWithPrefixBlock returns the minimal-size prefix block that covers all the addresses in this subnet.
// The resulting block will have a larger subnet size than this, unless this subnet is already a prefix block.
func (addr *IPAddress) CoverWithPrefixBlock() *IPAddress {
	return addr.init().coverWithPrefixBlock()
}

// SpanWithSequentialBlocks produces the smallest slice of sequential blocks that cover the same set of addresses as this subnet.
//
// This slice can be shorter than that produced by SpanWithPrefixBlocks and is never longer.
//
// Unlike SpanWithSequentialBlocksTo, this method only includes addresses that are a part of this subnet.
func (addr *IPAddress) SpanWithSequentialBlocks() []*IPAddress {
	addr = addr.init()
	if addr.IsSequential() {
		return []*IPAddress{addr}
	}
	return cloneToIPAddrs(spanWithSequentialBlocks(addr.Wrap()))
}

// SpanWithSequentialBlocksTo produces the smallest slice of sequential block subnets that span all values from this subnet to the given subnet.
// The span will cover all addresses in both subnets and everything in between.
//
// Individual block subnets come in the form "1-3.1-4.5.6-8", however that particular subnet is not sequential since address "1.1.5.8" is in the subnet,
// the next sequential address "1.1.5.9" is not in the subnet, and a higher address "1.2.5.6" is in the subnet.
// Blocks are sequential when the first segment with a range of values is followed by segments that span all values.
//
// If the other address is a different version than this, then this is equivalent to calling SpanWithSequentialBlocks on this subnet.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
func (addr *IPAddress) SpanWithSequentialBlocksTo(other *IPAddress) []*IPAddress {
	if !versionsMatch(addr, other) {
		return addr.SpanWithSequentialBlocks()
	}
	return cloneToIPAddrs(
		getSpanningSequentialBlocks(
			addr.init().Wrap(),
			other.init().Wrap(),
		),
	)
}

// ReverseBytes returns a new address with the bytes reversed.  Any prefix length is dropped.
//
// If each segment is more than 1 byte long, and the bytes within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, then this returns an error.
//
// In practice this means that to be reversible, a segment range must include all values except possibly the largest and/or smallest, which reverse to themselves.
func (addr *IPAddress) ReverseBytes() (*IPAddress, addrerr.IncompatibleAddressError) {
	res, err := addr.init().reverseBytes()
	return res.ToIP(), err
}

// ReverseBits returns a new address with the bits reversed.  Any prefix length is dropped.
//
// If the bits within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, this returns an error.
//
// In practice this means that to be reversible, a segment range must include all values except possibly the largest and/or smallest, which reverse to themselves.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
func (addr *IPAddress) ReverseBits(perByte bool) (*IPAddress, addrerr.IncompatibleAddressError) {
	res, err := addr.init().reverseBits(perByte)
	return res.ToIP(), err
}

// ReverseSegments returns a new address with the segments reversed.
func (addr *IPAddress) ReverseSegments() *IPAddress {
	return addr.init().reverseSegments().ToIP()
}

// GetSegmentStrings returns a slice with the string for each segment being the string that is normalized with wildcards.
func (addr *IPAddress) GetSegmentStrings() []string {
	if addr == nil {
		return nil
	}
	return addr.init().getSegmentStrings()
}

//I considered changing to uppercase, see https://www.ieee802.org/1/files/public/docs2020/yangsters-smansfield-mac-address-format-0420-v01.pdf
//and https://standards.ieee.org/wp-content/uploads/import/documents/tutorials/macgrp.pdf and https://en.wikipedia.org/wiki/MAC_address
//canonicalParams = new MACStringOptions.Builder().setSeparator(MACAddress.DASH_SEGMENT_SEPARATOR).setUppercase(true).setExpandedSegments(true).setWildcards(new Wildcards(MACAddress.DASHED_SEGMENT_RANGE_SEPARATOR_STR, Address.SEGMENT_WILDCARD_STR, null)).toOptions();
// Search docs for: An example is "01-23-45-67-89-ab"
// But ACTUALLY, in the ends I decided not to: https://www.mef.net/wp-content/uploads/MEF-89.pdf

// ToCanonicalString produces a canonical string for the address.
//
// For IPv4, dotted octet format, also known as dotted decimal format, is used.
// https://datatracker.ietf.org/doc/html/draft-main-ipaddr-text-rep-00#section-2.1
//
// For IPv6, RFC 5952 describes canonical string representation.
// https://en.wikipedia.org/wiki/IPv6_address#Representation
// http://tools.ietf.org/html/rfc5952
//
// For MAC, it uses the canonical standardized IEEE 802 MAC address representation of xx-xx-xx-xx-xx-xx.  An example is "01-23-45-67-89-ab".
// For range segments, '|' is used: "11-22-33|44-55-66".
//
// Each address has a unique canonical string, not counting the prefix length.
// With IP addresses, the prefix length is included in the string, and the prefix length can cause two equal addresses to have different strings, for example "1.2.3.4/16" and "1.2.3.4".
// It can also cause two different addresses to have the same string, such as "1.2.0.0/16" for the individual address "1.2.0.0" and also the prefix block "1.2.*.*".
// Use ToCanonicalWildcardString for a unique string for each IP address and subnet.
func (addr *IPAddress) ToCanonicalString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toCanonicalString()
}

// ToCanonicalWildcardString produces a string similar to the canonical string and avoids the CIDR prefix length.
// Addresses and subnets with a network prefix length will be shown with wildcards and ranges (denoted by '*' and '-') instead of using the CIDR prefix length notation.
// IPv6 addresses will be compressed according to the canonical representation.
// For IPv4 it is the same as ToNormalizedWildcardString.
func (addr *IPAddress) ToCanonicalWildcardString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toCanonicalWildcardString()
}

// ToNormalizedString produces a normalized string for the address.
//
// For IPv4, it is the same as the canonical string.
//
// For IPv6, it differs from the canonical string.  Zero-segments are not compressed.
//
// Each address has a unique normalized string, not counting the prefix length.
// With IP addresses, the prefix length can cause two equal addresses to have different strings, for example "1.2.3.4/16" and "1.2.3.4".
// It can also cause two different addresses to have the same string, such as "1.2.0.0/16" for the individual address "1.2.0.0" and also the prefix block "1.2.*.*".
// Use the method ToNormalizedWildcardString for a unique string for each IP address and subnet.
func (addr *IPAddress) ToNormalizedString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toNormalizedString()
}

// ToCompressedString produces a short representation of this address while remaining within the confines of standard representation(s) of the address.
//
// For IPv4, it is the same as the canonical string.
//
// For IPv6, it differs from the canonical string.  It compresses the maximum number of zeros and/or host segments with the IPv6 compression notation '::'.
func (addr *IPAddress) ToCompressedString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toCompressedString()
}

// ToNormalizedWildcardString produces a string similar to the normalized string but avoids the CIDR prefix length.
// CIDR addresses will be shown with wildcards and ranges (denoted by '*' and '-') instead of using the CIDR prefix notation.
func (addr *IPAddress) ToNormalizedWildcardString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toNormalizedWildcardString()
}

// ToSegmentedBinaryString writes this IP address segment series as segments of binary values preceded by the "0b" prefix.
func (addr *IPAddress) ToSegmentedBinaryString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toSegmentedBinaryString()
}

// ToSQLWildcardString create a string similar to that from toNormalizedWildcardString except that
// it uses SQL wildcards.  It uses '%' instead of '*' and also uses the wildcard '_'.
func (addr *IPAddress) ToSQLWildcardString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toSQLWildcardString()
}

// ToFullString produces a string with no compressed segments and all segments of full length with leading zeros,
// which is 4 characters for IPv6 segments and 3 characters for IPv4 segments.
func (addr *IPAddress) ToFullString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toFullString()
}

// ToReverseDNSString generates the reverse-DNS lookup string,
// returning an error if this address is an IPv6 multiple-valued subnet for which the range cannot be represented.
// For "8.255.4.4" it is "4.4.255.8.in-addr.arpa".
// For "2001:db8::567:89ab" it is "b.a.9.8.7.6.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa".
func (addr *IPAddress) ToReverseDNSString() (string, addrerr.IncompatibleAddressError) {
	if addr == nil {
		return nilString(), nil
	}
	return addr.init().toReverseDNSString()
}

// ToPrefixLenString returns a string with a CIDR network prefix length if this address has a network prefix length.
// For IPv6, a zero host section will be compressed with "::". For IPv4 the string is equivalent to the canonical string.
func (addr *IPAddress) ToPrefixLenString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toPrefixLenString()
}

// ToSubnetString produces a string with specific formats for subnets.
// The subnet string looks like "1.2.*.*" or "1:2::/16".
//
// In the case of IPv4, this means that wildcards are used instead of a network prefix when a network prefix has been supplied.
// In the case of IPv6, when a network prefix has been supplied, the prefix will be shown and the host section will be compressed with "::".
func (addr *IPAddress) ToSubnetString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toSubnetString()
}

// ToCompressedWildcardString produces a string similar to ToNormalizedWildcardString, avoiding the CIDR prefix, but with full IPv6 segment compression as well, including single zero-segments.
// For IPv4 it is the same as ToNormalizedWildcardString.
func (addr *IPAddress) ToCompressedWildcardString() string {
	if addr == nil {
		return nilString()
	}
	return addr.init().toCompressedWildcardString()
}

// ToHexString writes this address as a single hexadecimal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0x" prefix.
//
// If a subnet cannot be written as a single prefix block or a range of two values, an error is returned.
func (addr *IPAddress) ToHexString(with0xPrefix bool) (string, addrerr.IncompatibleAddressError) {
	if addr == nil {
		return nilString(), nil
	}
	return addr.init().toHexString(with0xPrefix)
}

// ToOctalString writes this address as a single octal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0" prefix.
//
// If a subnet cannot be written as a single prefix block or a range of two values, an error is returned.
func (addr *IPAddress) ToOctalString(with0Prefix bool) (string, addrerr.IncompatibleAddressError) {
	if addr == nil {
		return nilString(), nil
	}
	return addr.init().toOctalString(with0Prefix)
}

// ToBinaryString writes this address as a single binary value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0b" prefix.
//
// If a subnet cannot be written as a single prefix block or a range of two values, an error is returned.
func (addr *IPAddress) ToBinaryString(with0bPrefix bool) (string, addrerr.IncompatibleAddressError) {
	if addr == nil {
		return nilString(), nil
	}
	return addr.init().toBinaryString(with0bPrefix)
}

// ToUNCHostName Generates the Microsoft UNC path component for this address.  See https://ipv6-literal.com/
//
// For IPv4 it is the canonical string.
// For IPv6, it is the canonical string but with colons replaced by dashes, percent signs with the letter ā€œsā€, and then appended with the root domain ".ipv6-literal.net".
func (addr *IPAddress) ToUNCHostName() string {
	if addr == nil {
		return nilString()
	} else if thisAddr := addr.ToIPv4(); thisAddr != nil {
		return thisAddr.ToUNCHostName()
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		return thisAddr.ToUNCHostName()
	}
	return addr.ToCanonicalString()
}

// ToCustomString creates a customized string from this address or subnet according to the given string option parameters.
func (addr *IPAddress) ToCustomString(stringOptions addrstr.IPStringOptions) string {
	if addr == nil {
		return nilString()
	}
	return addr.GetSection().toCustomZonedString(stringOptions, addr.zone)
}

// ToAddressString retrieves or generates an IPAddressString instance for this IPAddress instance.
// This may be the IPAddressString this instance was generated from, if it was generated from an IPAddressString.
//
// In general, users are intended to create IPAddress instances from IPAddressString instances,
// while the reverse direction is generally not common and not useful, except under specific circumstances.
//
// However, the reverse direction can be useful under certain circumstances,
// such as when maintaining a collection of HostIdentifierString or IPAddressString instances.
func (addr *IPAddress) ToAddressString() *IPAddressString {
	addr = addr.init()
	cache := addr.cache
	if cache != nil {
		res := cache.identifierStr
		if res != nil {
			hostIdStr := res.idStr
			if str, ok := hostIdStr.(*IPAddressString); ok {
				return str
			}
		}
	}
	return newIPAddressStringFromAddr(addr.toCanonicalString(), addr)
}

// ToHostName returns the HostName used to resolve, if this address was resolved from a host.
// Otherwise, if this address represents a subnet of multiple addresses, returns a HostName for that subnet.
// Otherwise, it does a reverse name lookup to obtain the proper HostName.
func (addr *IPAddress) ToHostName() *HostName {
	addr = addr.init()
	cache := addr.cache
	if cache != nil {
		res := cache.identifierStr
		if res != nil {
			hostIdStr := res.idStr
			if h, ok := hostIdStr.(*HostName); ok {
				return h
			}
		}
	}
	var h *HostName
	if !addr.isMultiple() {
		h, _ = addr.ToCanonicalHostName()
	}
	if h == nil {
		h = NewHostNameFromAddr(addr)
	}
	return h
}

// ToCanonicalHostName does a reverse name lookup to get the canonical host name.
// Note that the canonical host name may differ on different systems.
//
// This returns an error if this address is a subnet multiple values.
func (addr *IPAddress) ToCanonicalHostName() (*HostName, error) {
	if addr.isMultiple() {
		return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.unavailable.numeric"}}
	}
	return addr.init().lookupAddr()
}

func (addr *IPAddress) lookupAddr() (*HostName, error) {
	names, err := net.LookupAddr(addr.ToNormalizedWildcardString())
	if err != nil {
		return nil, err
	} else if len(names) == 0 {
		return nil, nil
	} else if names[0] == "" {
		return nil, nil
	}
	return NewHostName(names[0]), nil
}

// IncludesZeroHostLen returns whether the subnet contains an individual address with a host of zero, an individual address for which all bits past the given prefix length are zero.
func (addr *IPAddress) IncludesZeroHostLen(networkPrefixLength BitCount) bool {
	return addr.init().includesZeroHostLen(networkPrefixLength)
}

// IncludesMaxHostLen returns whether the subnet contains an individual address with a host of all one-bits, an individual address for which all bits past the given prefix length are all ones.
func (addr *IPAddress) IncludesMaxHostLen(networkPrefixLength BitCount) bool {
	return addr.init().includesMaxHostLen(networkPrefixLength)
}

// GetLeadingBitCount returns the number of consecutive leading one or zero bits.
// If ones is true, returns the number of consecutive leading one bits.
// Otherwise, returns the number of consecutive leading zero bits.
//
// This method applies to the lower value of the range if this is a subnet representing multiple values.
func (addr *IPAddress) GetLeadingBitCount(ones bool) BitCount {
	return addr.init().getLeadingBitCount(ones)
}

// GetTrailingBitCount returns the number of consecutive trailing one or zero bits.
// If ones is true, returns the number of consecutive trailing zero bits.
// Otherwise, returns the number of consecutive trailing one bits.
//
// This method applies to the lower value of the range if this is a subnet representing multiple values.
func (addr *IPAddress) GetTrailingBitCount(ones bool) BitCount {
	return addr.init().getTrailingBitCount(ones)
}

// GetNetwork returns the singleton network instance for the IP version of this address or subnet.
func (addr *IPAddress) GetNetwork() IPAddressNetwork {
	return addr.getNetwork()
}

func (addr *IPAddress) toMaxLower() *IPAddress {
	return addr.init().addressInternal.toMaxLower().ToIP()
}

func (addr *IPAddress) toMinUpper() *IPAddress {
	return addr.init().addressInternal.toMinUpper().ToIP()
}

// ToKey creates the associated address key.
// While addresses can be compared with the Compare, TrieCompare or Equal methods as well as various provided instances of AddressComparator,
// they are not comparable with Go operators.
// However, AddressKey instances are comparable with Go operators, and thus can be used as map keys.
func (addr *IPAddress) ToKey() Key[*IPAddress] {
	key := Key[*IPAddress]{}
	contents := &key.keyContents
	if thisAddr := addr.ToIPv4(); thisAddr != nil {
		key.scheme = ipv4Scheme
		thisAddr.toIPv4Key(contents)
	} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
		key.scheme = ipv6Scheme
		thisAddr.toIPv6Key(contents)
	} // else key.scheme == anySchemeX
	return key
}

// ToGenericKey produces a generic Key[*IPAddress] that can be used with generic code working with [Address], [IPAddress], [IPv4Address], [IPv6Address] and [MACAddress].
func (addr *IPAddress) ToGenericKey() Key[*IPAddress] {
	return addr.ToKey()
}

func (addr *IPAddress) fromKey(scheme addressScheme, key *keyContents) *IPAddress {
	if scheme == ipv4Scheme {
		ipv4Addr := fromIPv4IPKey(key)
		return ipv4Addr.ToIP()
	} else if scheme == ipv6Scheme {
		ipv6Addr := fromIPv6IPKey(key)
		return ipv6Addr.ToIP()
	}
	// scheme == adaptiveZeroScheme
	zeroAddr := IPAddress{}
	return zeroAddr.init()
}

// IPAddressValueProvider supplies all the values that incorporate an IPAddress instance.
type IPAddressValueProvider interface {
	AddressValueProvider

	GetPrefixLen() PrefixLen // return nil if none

	GetIPVersion() IPVersion // should not return IndeterminateVersion

	GetZone() string // return "" or NoZone if none
}

func addrFromIP(ip net.IP) (addr *IPAddress, err addrerr.AddressValueError) {
	if ipv4 := ip.To4(); ipv4 != nil {
		ip = ipv4
	}
	return addrFromBytes(ip)
}

func addrFromBytes(ip []byte) (addr *IPAddress, err addrerr.AddressValueError) {
	addrLen := len(ip)
	if len(ip) == 0 {
		return &IPAddress{}, nil
	} else if addrLen <= IPv4ByteCount {
		var addr4 *IPv4Address
		addr4, err = NewIPv4AddressFromBytes(ip)
		addr = addr4.ToIP()
	} else if addrLen <= IPv6ByteCount {
		var addr6 *IPv6Address
		addr6, err = NewIPv6AddressFromBytes(ip)
		addr = addr6.ToIP()
	} else {
		extraCount := len(ip) - IPv6ByteCount
		if isAllZeros(ip[:extraCount]) {
			var addr6 *IPv6Address
			addr6, err = NewIPv6AddressFromBytes(ip[extraCount:])
			addr = addr6.ToIP()
		} else {
			err = &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
		}
	}
	return
}

func addrFromPrefixedIP(ip net.IP, prefixLen PrefixLen) (addr *IPAddress, err addrerr.AddressValueError) {
	if ipv4 := ip.To4(); ipv4 != nil {
		ip = ipv4
	}
	return addrFromPrefixedBytes(ip, prefixLen)
}

func addrFromPrefixedBytes(ip []byte, prefixLen PrefixLen) (addr *IPAddress, err addrerr.AddressValueError) {
	addrLen := len(ip)
	if len(ip) == 0 {
		return &IPAddress{}, nil
	} else if addrLen <= IPv4ByteCount {
		var addr4 *IPv4Address
		addr4, err = NewIPv4AddressFromPrefixedBytes(ip, prefixLen)
		addr = addr4.ToIP()
	} else if addrLen <= IPv6ByteCount {
		var addr6 *IPv6Address
		addr6, err = NewIPv6AddressFromPrefixedBytes(ip, prefixLen)
		addr = addr6.ToIP()
	} else {
		extraCount := len(ip) - IPv6ByteCount
		if isAllZeros(ip[:extraCount]) {
			var addr6 *IPv6Address
			addr6, err = NewIPv6AddressFromPrefixedBytes(ip[extraCount:], prefixLen)
			addr = addr6.ToIP()
		} else {
			err = &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
		}
	}
	return
}

func addrFromZonedIP(addr *net.IPAddr) (*IPAddress, addrerr.AddressValueError) {
	ip := addr.IP
	if ipv4 := ip.To4(); ipv4 != nil {
		ip = ipv4
	}
	if len(ip) == 0 {
		return &IPAddress{}, nil
	} else if len(ip) <= IPv4ByteCount {
		res, err := NewIPv4AddressFromBytes(ip)
		return res.ToIP(), err
	} else if len(ip) <= IPv6ByteCount {
		res, err := NewIPv6AddressFromZonedBytes(ip, addr.Zone)
		return res.ToIP(), err
	} else {
		extraCount := len(ip) - IPv6ByteCount
		if isAllZeros(ip[:extraCount]) {
			var addr6 *IPv6Address
			addr6, err := NewIPv6AddressFromZonedBytes(ip[extraCount:], addr.Zone)
			res := addr6.ToIP()
			return res, err
		}
	}
	return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
}

func addrFromPrefixedZonedIP(addr *net.IPAddr, prefixLen PrefixLen) (*IPAddress, addrerr.AddressValueError) {
	ip := addr.IP
	if ipv4 := ip.To4(); ipv4 != nil {
		ip = ipv4
	}
	if len(ip) == 0 {
		return &IPAddress{}, nil
	} else if len(ip) <= IPv4ByteCount {
		res, err := NewIPv4AddressFromPrefixedBytes(ip, prefixLen)
		return res.ToIP(), err
	} else if len(ip) <= IPv6ByteCount {
		res, err := NewIPv6AddressFromPrefixedZonedBytes(ip, prefixLen, addr.Zone)
		return res.ToIP(), err
	} else {
		extraCount := len(ip) - IPv6ByteCount
		if isAllZeros(ip[:extraCount]) {
			var addr6 *IPv6Address
			addr6, err := NewIPv6AddressFromPrefixedZonedBytes(ip[extraCount:], prefixLen, addr.Zone)
			res := addr6.ToIP()
			return res, err
		}
	}
	return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
}

func isAllZeros(byts []byte) bool {
	for _, b := range byts {
		if b != 0 {
			return false
		}
	}
	return true
}

// IPAddressCreator is a polymporphic type providing constructor methods to construct IP addresses corresponding to its contained IP version
type IPAddressCreator struct {
	IPVersion
}

// CreateSegment creates an IPv4 or IPv6 segment depending on the IP version assigned to this IPAddressCreator instance.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) CreateSegment(lower, upper SegInt, segmentPrefixLength PrefixLen) *IPAddressSegment {
	if creator.IsIPv4() {
		return NewIPv4RangePrefixedSegment(IPv4SegInt(lower), IPv4SegInt(upper), segmentPrefixLength).ToIP()
	} else if creator.IsIPv6() {
		return NewIPv6RangePrefixedSegment(IPv6SegInt(lower), IPv6SegInt(upper), segmentPrefixLength).ToIP()
	}
	return nil
}

// CreateRangeSegment creates an IPv4 or IPv6 range-valued segment depending on the IP version assigned to this IPAddressCreator instance.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) CreateRangeSegment(lower, upper SegInt) *IPAddressSegment {
	if creator.IsIPv4() {
		return NewIPv4RangeSegment(IPv4SegInt(lower), IPv4SegInt(upper)).ToIP()
	} else if creator.IsIPv6() {
		return NewIPv6RangeSegment(IPv6SegInt(lower), IPv6SegInt(upper)).ToIP()
	}
	return nil
}

// CreatePrefixSegment creates an IPv4 or IPv6 segment with a prefix length depending on the IP version assigned to this IPAddressCreator instance.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) CreatePrefixSegment(value SegInt, segmentPrefixLength PrefixLen) *IPAddressSegment {
	if creator.IsIPv4() {
		return NewIPv4PrefixedSegment(IPv4SegInt(value), segmentPrefixLength).ToIP()
	} else if creator.IsIPv6() {
		return NewIPv6PrefixedSegment(IPv6SegInt(value), segmentPrefixLength).ToIP()
	}
	return nil
}

// NewIPSectionFromBytes creates an address section from the given bytes,  It is IPv4 or IPv6 depending on the IP version assigned to this IPAddressCreator instance.
// The number of segments is determined by the length of the byte array.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) NewIPSectionFromBytes(bytes []byte) *IPAddressSection {
	if creator.IsIPv4() {
		return NewIPv4SectionFromBytes(bytes).ToIP()
	} else if creator.IsIPv6() {
		return NewIPv6SectionFromBytes(bytes).ToIP()
	}
	return nil
}

// NewIPSectionFromSegmentedBytes creates an address section from the given bytes.  It is IPv4 or IPv6 depending on the IP version assigned to this IPAddressCreator instance.
// The number of segments is given.  An error is returned when the byte slice has too many bytes to match the segment count.
// IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) NewIPSectionFromSegmentedBytes(bytes []byte, segmentCount int) (*IPAddressSection, addrerr.AddressValueError) {
	if creator.IsIPv4() {
		addr, err := NewIPv4SectionFromSegmentedBytes(bytes, segmentCount)
		return addr.ToIP(), err
	} else if creator.IsIPv6() {
		addr, err := NewIPv6SectionFromSegmentedBytes(bytes, segmentCount)
		return addr.ToIP(), err
	}
	return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionIndeterminate"}}
}

// NewIPSectionFromPrefixedBytes creates an address section from the given bytes and prefix length.  It is IPv4 or IPv6 depending on the IP version assigned to this IPAddressCreator instance.
// The number of segments is given.  An error is returned when the byte slice has too many bytes to match the segment count.
// IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) NewIPSectionFromPrefixedBytes(bytes []byte, segmentCount int, prefLen PrefixLen) (*IPAddressSection, addrerr.AddressValueError) {
	if creator.IsIPv4() {
		addr, err := NewIPv4SectionFromPrefixedBytes(bytes, segmentCount, prefLen)
		return addr.ToIP(), err
	} else if creator.IsIPv6() {
		addr, err := NewIPv4SectionFromPrefixedBytes(bytes, segmentCount, prefLen)
		return addr.ToIP(), err
	}
	return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionIndeterminate"}}
}

// NewIPAddressFromVals constructs an IPAddress from the provided segment values.
// If the IP version of this IPAddressCreator is indeterminate, then nil is returned.
func (creator IPAddressCreator) NewIPAddressFromVals(lowerValueProvider SegmentValueProvider) *IPAddress {
	return NewIPAddressFromVals(creator.IPVersion, lowerValueProvider)
}

// NewIPAddressFromPrefixedVals constructs an IPAddress from the provided segment values and prefix length.
// If the IP version of this IPAddressCreator is indeterminate, then nil is returned.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func (creator IPAddressCreator) NewIPAddressFromPrefixedVals(lowerValueProvider, upperValueProvider SegmentValueProvider, prefixLength PrefixLen) *IPAddress {
	return NewIPAddressFromPrefixedVals(creator.IPVersion, lowerValueProvider, upperValueProvider, prefixLength)
}

// NewIPAddressFromPrefixedZonedVals constructs an IPAddress from the provided segment values, prefix length, and zone.
// If the IP version of this IPAddressCreator is indeterminate, then nil is returned.
// If the version is IPv4, then the zone is ignored.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func (creator IPAddressCreator) NewIPAddressFromPrefixedZonedVals(lowerValueProvider, upperValueProvider SegmentValueProvider, prefixLength PrefixLen, zone string) *IPAddress {
	return NewIPAddressFromPrefixedZonedVals(creator.IPVersion, lowerValueProvider, upperValueProvider, prefixLength, zone)
}

// NewIPAddressFromNetIPMask constructs an address from a net.IPMask.
// An error is returned when the mask has an invalid number of bytes.  IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromNetIPMask(ip net.IPMask) (*IPAddress, addrerr.AddressValueError) {
	return addrFromBytes(ip)
}

// NewIPAddressFromBytes constructs an address from a slice of bytes.
// An error is returned when the IP has an invalid number of bytes.  IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromBytes(ip net.IP) (*IPAddress, addrerr.AddressValueError) {
	return addrFromBytes(ip)
}

// NewIPAddressFromNetIP constructs an address from a net.IP.
// An error is returned when the IP has an invalid number of bytes.  IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromNetIP(ip net.IP) (*IPAddress, addrerr.AddressValueError) {
	return addrFromIP(ip)
}

// NewIPAddressFromPrefixedNetIP constructs an address or subnet from a net.IP with a prefix length.
// An error is returned when the IP has an invalid number of bytes.  IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromPrefixedNetIP(ip net.IP, prefixLength PrefixLen) (*IPAddress, addrerr.AddressValueError) {
	return addrFromPrefixedIP(ip, prefixLength)
}

// NewIPAddressFromNetIPAddr constructs an address or subnet from a net.IPAddr.
// An error is returned when the IP has an invalid number of bytes.  IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromNetIPAddr(addr *net.IPAddr) (*IPAddress, addrerr.AddressValueError) {
	return addrFromZonedIP(addr)
}

// NewIPAddressFromPrefixedNetIPAddr constructs an address or subnet from a net.IPAddr with a prefix length.
// An error is returned when the IP has an invalid number of bytes.  IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromPrefixedNetIPAddr(addr *net.IPAddr, prefixLength PrefixLen) (*IPAddress, addrerr.AddressValueError) {
	return addrFromPrefixedZonedIP(addr, prefixLength)
}

// NewIPAddressFromNetIPNet constructs a subnet from a net.IPNet.
// The error can be either addrerr.AddressValueError, when the net.IPNet IP or mask has an invalid number of bytes,
// or addrerr.IncompatibleAddressError when the mask and the IP from net.IPNet are different IP versions.
func NewIPAddressFromNetIPNet(ipnet *net.IPNet) (*IPAddress, addrerr.AddressError) {
	ip := ipnet.IP
	maskIp := ipnet.Mask
	if ipv4 := ip.To4(); ipv4 != nil {
		ip = ipv4
		if len(maskIp) == net.IPv6len {
			maskIp = maskIp[IPv6MixedOriginalByteCount:]
		}
	}
	addr, err := addrFromBytes(ip)
	if err != nil {
		return nil, err
	} else if addr == nil {
		return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
	}
	mask, err := NewIPAddressFromNetIPMask(maskIp)
	if err != nil {
		return nil, err
	} else if mask == nil {
		return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
	} else if addr.getAddrType() != mask.getAddrType() {
		//} else if !addr.GetIPVersion().Equal(mask.GetIPVersion()) {
		return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.ipMismatch"}}
	}
	prefLen := mask.GetBlockMaskPrefixLen(true)
	if prefLen == nil {
		return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.notNetworkMask"}}
	}
	return addr.ToPrefixBlockLen(prefLen.bitCount()), nil
}

func NewIPAddressFromNetNetIPAddr(addr netip.Addr) *IPAddress {
	if res := addr.AsSlice(); res != nil {
		if addr.Is6() {
			if zone := addr.Zone(); zone != "" {
				addr, _ := NewIPv6AddressFromZonedBytes(res, zone)
				return addr.ToIP()
			}
		}
		addr, _ := addrFromBytes(res)
		return addr.ToIP()
	}
	// the zero addr
	return &IPAddress{}
}

func NewIPAddressFromNetNetIPPrefix(prefixedAddr netip.Prefix) (*IPAddress, addrerr.AddressError) {
	prefixLen := prefixedAddr.Bits()
	if prefixLen < 0 {
		return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.invalidCIDRPrefix"}}
	}
	addr := prefixedAddr.Addr()
	if res := addr.AsSlice(); res != nil {
		var p PrefixBitCount = PrefixBitCount(prefixLen)
		if addr.Is6() {
			if zone := addr.Zone(); zone != "" {
				addr, _ := NewIPv6AddressFromPrefixedZonedBytes(res, &p, zone)
				return addr.ToIP(), nil
			}
		}
		addr, _ := addrFromPrefixedBytes(res, &p)
		return addr.ToIP(), nil
	}
	return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionIndeterminate"}}
}

// NewIPAddressFromVals constructs an IPAddress from the provided segment values.
// If the given version is indeterminate, then nil is returned.
func NewIPAddressFromVals(version IPVersion, lowerValueProvider SegmentValueProvider) *IPAddress {
	if version.IsIPv4() {
		return NewIPv4AddressFromVals(WrapSegmentValueProviderForIPv4(lowerValueProvider)).ToIP()
	} else if version.IsIPv6() {
		return NewIPv6AddressFromVals(WrapSegmentValueProviderForIPv6(lowerValueProvider)).ToIP()
	}
	return nil
}

// NewIPAddressFromPrefixedVals constructs an IPAddress from the provided segment values and prefix length.
// If the given version is indeterminate, then nil is returned.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func NewIPAddressFromPrefixedVals(version IPVersion, lowerValueProvider, upperValueProvider SegmentValueProvider, prefixLength PrefixLen) *IPAddress {
	return NewIPAddressFromPrefixedZonedVals(version, lowerValueProvider, upperValueProvider, prefixLength, "")
}

// NewIPAddressFromPrefixedZonedVals constructs an IPAddress from the provided segment values, prefix length, and zone.
// If the given version is indeterminate, then nil is returned.
// If the version is IPv4, then the zone is ignored.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func NewIPAddressFromPrefixedZonedVals(version IPVersion, lowerValueProvider, upperValueProvider SegmentValueProvider, prefixLength PrefixLen, zone string) *IPAddress {
	if version.IsIPv4() {
		return NewIPv4AddressFromPrefixedRange(
			WrapSegmentValueProviderForIPv4(lowerValueProvider),
			WrapSegmentValueProviderForIPv4(upperValueProvider),
			prefixLength).ToIP()
	} else if version.IsIPv6() {
		return NewIPv6AddressFromPrefixedZonedRange(
			WrapSegmentValueProviderForIPv6(lowerValueProvider),
			WrapSegmentValueProviderForIPv6(upperValueProvider),
			prefixLength,
			zone).ToIP()
	}
	return nil
}

// NewIPAddressFromSegs constructs an address from the given segments.
// If the segments are not consistently IPv4 or IPv6, or if there is not the correct number of segments for the IP version (4 for IPv4, 8 for IPv6),
// then an error is returned.
func NewIPAddressFromSegs(segments []*IPAddressSegment) (res *IPAddress, err addrerr.AddressValueError) {
	return NewIPAddressFromPrefixedSegments(segments, nil)
}

// NewIPAddressFromPrefixedSegments constructs an address from the given segments and prefix length.
// If the segments are not consistently IPv4 or IPv6, or if there is not the correct number of segments for the IP version (4 for IPv4, 8 for IPv6),
// then an error is returned.
func NewIPAddressFromPrefixedSegments(segs []*IPAddressSegment, prefixLength PrefixLen) (res *IPAddress, err addrerr.AddressValueError) {
	if len(segs) > 0 {
		if segs[0].IsIPv4() {
			for _, seg := range segs[1:] {
				if !seg.IsIPv4() {
					err = &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionMismatch"}}
					return
				}
			}
			sect := createIPSectionFromSegs(true, segs, prefixLength)
			addr, addrErr := NewIPv4Address(sect.ToIPv4())
			res, err = addr.ToIP(), addrErr
		} else if segs[0].IsIPv6() {
			for _, seg := range segs[1:] {
				if !seg.IsIPv6() {
					err = &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionMismatch"}}
					return
				}
			}
			sect := createIPSectionFromSegs(false, segs, prefixLength)
			addr, addrErr := NewIPv6Address(sect.ToIPv6())
			res, err = addr.ToIP(), addrErr
		} else {
			err = &addressValueError{addressError: addressError{key: "ipaddress.error.invalid.size"}}
		}
	} else {
		err = &addressValueError{addressError: addressError{key: "ipaddress.error.invalid.size"}}
	}
	return
}

// NewIPAddressFromValueProvider constructs an IPAddress from the provided segment values, prefix length, and zone,
// all of which are supplied by the implementation of IPAddressValueProvider.
// If the given version is indeterminate, then nil is returned.
// If the version is IPv4, then the zone is ignored.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func NewIPAddressFromValueProvider(valueProvider IPAddressValueProvider) *IPAddress {
	if valueProvider.GetIPVersion().IsIPv4() {
		return NewIPv4AddressFromPrefixedRange(
			WrapSegmentValueProviderForIPv4(valueProvider.GetValues()),
			WrapSegmentValueProviderForIPv4(valueProvider.GetUpperValues()),
			valueProvider.GetPrefixLen()).ToIP()
	} else if valueProvider.GetIPVersion().IsIPv6() {
		return NewIPv6AddressFromPrefixedZonedRange(
			WrapSegmentValueProviderForIPv6(valueProvider.GetValues()),
			WrapSegmentValueProviderForIPv6(valueProvider.GetUpperValues()),
			valueProvider.GetPrefixLen(),
			valueProvider.GetZone()).ToIP()
	}
	return nil
}