1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"fmt"
"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
"github.com/seancfoley/ipaddress-go/ipaddr/addrstr"
"math/big"
"net"
"net/netip"
"strings"
"unsafe"
)
const (
PrefixLenSeparator = '/'
PrefixLenSeparatorStr = "/"
)
// IPVersion is the version type used by IP address types.
type IPVersion string
const (
// IndeterminateIPVersion represents an unspecified IP address version
IndeterminateIPVersion IPVersion = ""
// IPv4 represents Internet Protocol version 4
IPv4 IPVersion = "IPv4"
// IPv6 represents Internet Protocol version 6
IPv6 IPVersion = "IPv6"
)
// IsIPv6 returns true if this represents version 6
func (version IPVersion) IsIPv6() bool {
return len(version) == 4 && strings.EqualFold(string(version), string(IPv6))
}
// IsIPv4 returns true if this represents version 4
func (version IPVersion) IsIPv4() bool {
return len(version) == 4 && strings.EqualFold(string(version), string(IPv4))
}
// IsIndeterminate returns true if this represents an unspecified IP address version
func (version IPVersion) IsIndeterminate() bool {
if len(version) == 4 {
// we allow mixed case in the event code is converted a string to IPVersion
dig := version[3]
if dig != '4' && dig != '6' {
return true
}
dig = version[0]
if dig != 'I' && dig != 'i' {
return true
}
dig = version[1]
if dig != 'P' && dig != 'p' {
return true
}
dig = version[2]
if dig != 'v' && dig != 'V' {
return true
}
return false
}
return true
}
// index returns an index starting from 0 with IndeterminateIPVersion being the highest
func (version IPVersion) index() int {
if version.IsIPv4() {
return 0
} else if version.IsIPv6() {
return 1
}
return 2
}
// Equal returns whether the given version matches this version. Two indeterminate versions always match, even if their associated strings do not.
func (version IPVersion) Equal(other IPVersion) bool {
return strings.EqualFold(string(version), string(other)) || (version.IsIndeterminate() && other.IsIndeterminate())
}
// String returns "IPv4", "IPv6", or the zero-value "" representing an indeterminate version
func (version IPVersion) String() string {
return string(version)
}
func (version IPVersion) GetNetwork() (network IPAddressNetwork) {
if version.IsIPv6() {
network = ipv6Network
} else if version.IsIPv4() {
network = ipv4Network
}
return
}
func (version IPVersion) toType() (t addrType) {
if version.IsIPv6() {
t = ipv6Type
} else if version.IsIPv4() {
t = ipv4Type
}
return
}
// GetMaxSegmentValue returns the maximum possible segment value for this IP version, determined by the number of bits per segment.
func (version IPVersion) GetMaxSegmentValue() SegInt {
if version.IsIPv4() {
return IPv4MaxValuePerSegment
} else if version.IsIPv6() {
return IPv6MaxValuePerSegment
}
return 0
}
// GetBytesPerSegment returns the number of bytes comprising each segment in this address or subnet. Segments in the same address are equal length.
func (version IPVersion) GetBytesPerSegment() int {
if version.IsIPv4() {
return IPv4BytesPerSegment
} else if version.IsIPv6() {
return IPv6BytesPerSegment
}
return 0
}
// GetBitsPerSegment returns the number of bits comprising each segment for this address version, either 8 or 16 for IPv4 and IPv6 respectively. Segments in the same address are equal length.
func (version IPVersion) GetBitsPerSegment() BitCount {
if version.IsIPv4() {
return IPv4BitsPerSegment
} else if version.IsIPv6() {
return IPv6BitsPerSegment
}
return 0
}
// GetByteCount returns the number of bytes comprising an address of this IP Version.
func (version IPVersion) GetByteCount() int {
if version.IsIPv4() {
return IPv4ByteCount
} else if version.IsIPv6() {
return IPv6ByteCount
}
return 0
}
// GetSegmentCount returns the number of segments comprising an address of this IP Version: 4 for IPv4 and 8 for IPv6.
func (version IPVersion) GetSegmentCount() int {
if version.IsIPv4() {
return IPv4SegmentCount
} else if version.IsIPv6() {
return IPv6SegmentCount
}
return 0
}
// GetBitCount returns the number of bits comprising an address of this IP Version.
func (version IPVersion) GetBitCount() BitCount {
if version.IsIPv4() {
return IPv4BitCount
} else if version.IsIPv6() {
return IPv6BitCount
}
return 0
}
func createIPAddress(section *AddressSection, zone Zone) *IPAddress {
return &IPAddress{
ipAddressInternal{
addressInternal{
section: section,
zone: zone,
cache: &addressCache{},
},
},
}
}
func newIPAddressZoned(section *IPAddressSection, zone Zone) *IPAddress {
result := createIPAddress(section.ToSectionBase(), zone)
if zone != NoZone { // will need to cache its own strings
result.cache.stringCache = &stringCache{}
}
return result
}
// necessary to avoid direct access to IPAddress
type ipAddressInternal struct {
addressInternal
}
func (addr *ipAddressInternal) toIPAddress() *IPAddress {
return (*IPAddress)(unsafe.Pointer(addr))
}
func (addr *ipAddressInternal) getIPVersion() IPVersion {
if addr.isIPv4() {
return IPv4
} else if addr.isIPv6() {
return IPv6
}
return IndeterminateIPVersion
}
func (addr *ipAddressInternal) getNetworkPrefixLen() PrefixLen {
section := addr.section
if section == nil {
return nil
}
return section.ToIP().getNetworkPrefixLen()
}
// GetNetworkPrefixLen returns the prefix length, or nil if there is no prefix length.
// GetNetworkPrefixLen is equivalent to the method GetPrefixLen.
func (addr *ipAddressInternal) GetNetworkPrefixLen() PrefixLen {
return addr.getNetworkPrefixLen().copy()
}
func (addr *ipAddressInternal) getNetNetIPAddr() netip.Addr {
netAddr, _ := netip.AddrFromSlice(addr.getBytes())
return netAddr
}
func (addr *ipAddressInternal) getUpperNetNetIPAddr() netip.Addr {
netAddr, _ := netip.AddrFromSlice(addr.getUpperBytes())
return netAddr
}
// IncludesZeroHost returns whether the subnet contains an individual address with a host of zero. If the subnet has no prefix length it returns false.
// If the prefix length matches the bit count, then it returns true.
//
// Otherwise, it checks whether it contains an individual address for which all bits past the prefix are zero.
func (addr *ipAddressInternal) IncludesZeroHost() bool {
section := addr.section
if section == nil {
return false
}
return section.ToIP().IncludesZeroHost()
}
func (addr *ipAddressInternal) includesZeroHostLen(networkPrefixLength BitCount) bool {
return addr.getSection().IncludesZeroHostLen(networkPrefixLength)
}
// IncludesMaxHost returns whether the subnet contains an individual address with a host of all one-bits. If the subnet has no prefix length it returns false.
// If the prefix length matches the bit count, then it returns true.
//
// Otherwise, it checks whether it contains an individual address for which all bits past the prefix are one.
func (addr *ipAddressInternal) IncludesMaxHost() bool {
section := addr.section
if section == nil {
return false
}
return section.ToIP().IncludesMaxHost()
}
func (addr *ipAddressInternal) includesMaxHostLen(networkPrefixLength BitCount) bool {
return addr.getSection().IncludesMaxHostLen(networkPrefixLength)
}
// IsSingleNetwork returns whether the network section of the address, the prefix, consists of a single value.
//
// If it has no prefix length, it returns true if not multiple, if it contains only a single individual address.
func (addr *ipAddressInternal) IsSingleNetwork() bool {
section := addr.section
return section == nil || section.ToIP().IsSingleNetwork()
}
// IsMaxHost returns whether this section has a prefix length and if so,
// whether the host section is always all one-bits, the max value, for all individual addresses in this subnet.
//
// If the host section is zero length (there are zero host bits), IsMaxHost returns true.
func (addr *ipAddressInternal) IsMaxHost() bool {
section := addr.section
return section != nil && section.ToIP().IsMaxHost()
}
// IsMaxHostLen returns whether the host section is always one-bits, the max value, for all individual addresses in this subnet,
// for the given prefix length.
//
// If the host section is zero length (there are zero host bits), IsMaxHostLen returns true.
func (addr *ipAddressInternal) isMaxHostLen(prefLen BitCount) bool {
return addr.getSection().IsMaxHostLen(prefLen)
}
// IsZeroHost returns whether this subnet has a prefix length and if so,
// whether the host section is always zero for all individual addresses in this subnet.
//
// If the host section is zero length (there are zero host bits), IsZeroHost returns true.
func (addr *ipAddressInternal) IsZeroHost() bool {
section := addr.section
return section != nil && section.ToIP().IsZeroHost()
}
// IsZeroHostLen returns whether the host section is always zero for all individual sections in this address section,
// for the given prefix length.
//
// If the host section is zero length (there are zero host bits), IsZeroHostLen returns true.
func (addr *ipAddressInternal) isZeroHostLen(prefLen BitCount) bool {
return addr.getSection().IsZeroHostLen(prefLen)
}
// when boundariesOnly is true, there will be no error
func (addr *ipAddressInternal) toZeroHost(boundariesOnly bool) (res *IPAddress, err addrerr.IncompatibleAddressError) {
section, err := addr.section.toIPAddressSection().toZeroHost(boundariesOnly)
if err == nil {
res = addr.checkIdentity(section)
}
return
}
func (addr *ipAddressInternal) toZeroHostLen(prefixLength BitCount) (res *IPAddress, err addrerr.IncompatibleAddressError) {
section, err := addr.getSection().toZeroHostLen(prefixLength)
if err == nil {
res = addr.checkIdentity(section)
}
return
}
func (addr *ipAddressInternal) toZeroNetwork() *IPAddress {
return addr.checkIdentity(addr.getSection().toZeroNetwork())
}
func (addr *ipAddressInternal) toMaxHost() (res *IPAddress, err addrerr.IncompatibleAddressError) {
section, err := addr.section.toIPAddressSection().toMaxHost()
if err == nil {
res = addr.checkIdentity(section)
}
return
}
func (addr *ipAddressInternal) toMaxHostLen(prefixLength BitCount) (res *IPAddress, err addrerr.IncompatibleAddressError) {
section, err := addr.getSection().toMaxHostLen(prefixLength)
if err == nil {
res = addr.checkIdentity(section)
}
return
}
func (addr *ipAddressInternal) checkIdentity(section *IPAddressSection) *IPAddress {
if section == nil {
return nil
}
sect := section.ToSectionBase()
if sect == addr.section {
return addr.toIPAddress()
}
return createIPAddress(sect, addr.zone)
}
func (addr *ipAddressInternal) getSection() *IPAddressSection {
return addr.section.ToIP()
}
func (addr *ipAddressInternal) adjustPrefixLen(prefixLen BitCount) *IPAddress {
return addr.checkIdentity(addr.getSection().adjustPrefixLen(prefixLen))
}
func (addr *ipAddressInternal) adjustPrefixLenZeroed(prefixLen BitCount) (res *IPAddress, err addrerr.IncompatibleAddressError) {
section, err := addr.getSection().adjustPrefixLenZeroed(prefixLen)
if err == nil {
res = addr.checkIdentity(section)
}
return
}
// GetBlockMaskPrefixLen returns the prefix length if this address is equivalent to the mask for a CIDR prefix block.
// Otherwise, it returns nil.
// A CIDR network mask is an address with all ones in the network section and then all zeros in the host section.
// A CIDR host mask is an address with all zeros in the network section and then all ones in the host section.
// The prefix length is the bit-length of the network section.
//
// Also, keep in mind that the prefix length returned by this method is not equivalent to the prefix length of this instance,
// indicating the network and host section of this address.
// The prefix length returned here indicates the whether the value of this address can be used as a mask for the network and host
// section of any other address. Therefore, the two values can be different values, or one can be nil while the other is not.
//
// This method applies only to the lower value of the range if this address represents multiple values.
func (addr *ipAddressInternal) GetBlockMaskPrefixLen(network bool) PrefixLen {
section := addr.section
if section == nil {
return nil
}
return section.ToIP().GetBlockMaskPrefixLen(network)
}
func (addr *ipAddressInternal) spanWithPrefixBlocks() []ExtendedIPSegmentSeries {
wrapped := addr.toIPAddress().Wrap()
if addr.IsSequential() {
if addr.IsSinglePrefixBlock() {
return []ExtendedIPSegmentSeries{wrapped}
}
return getSpanningPrefixBlocks(wrapped, wrapped)
}
return spanWithPrefixBlocks(wrapped)
}
func (addr *ipAddressInternal) spanWithSequentialBlocks() []ExtendedIPSegmentSeries {
wrapped := addr.toIPAddress().Wrap()
if addr.IsSequential() {
return []ExtendedIPSegmentSeries{wrapped}
}
return spanWithSequentialBlocks(wrapped)
}
func (addr *ipAddressInternal) coverSeriesWithPrefixBlock() ExtendedIPSegmentSeries {
// call from wrapper
if addr.IsSinglePrefixBlock() {
return addr.toIPAddress().Wrap()
}
return coverWithPrefixBlock(
addr.getLower().ToIP().Wrap(),
addr.getUpper().ToIP().Wrap(),
)
}
func (addr *ipAddressInternal) coverWithPrefixBlock() *IPAddress {
// call from ip ipv4 ipv6
if addr.IsSinglePrefixBlock() {
return addr.toIPAddress()
}
res := coverWithPrefixBlock(
addr.getLower().ToIP().Wrap(),
addr.getUpper().ToIP().Wrap(),
)
return res.(WrappedIPAddress).IPAddress
}
func (addr *ipAddressInternal) coverWithPrefixBlockTo(other *IPAddress) *IPAddress {
res := getCoveringPrefixBlock(
addr.toIPAddress().Wrap(),
other.Wrap(),
)
return res.(WrappedIPAddress).IPAddress
}
func (addr *ipAddressInternal) getNetworkMask(network IPAddressNetwork) *IPAddress {
var prefLen BitCount
if addr.isPrefixed() {
prefLen = addr.getNetworkPrefixLen().bitCount()
} else {
prefLen = addr.GetBitCount()
}
return network.GetNetworkMask(prefLen)
}
func (addr *ipAddressInternal) getHostMask(network IPAddressNetwork) *IPAddress {
var prefLen BitCount
if addr.isPrefixed() {
prefLen = addr.getNetworkPrefixLen().bitCount()
}
return network.GetHostMask(prefLen)
}
func (addr *ipAddressInternal) toCanonicalWildcardString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toCanonicalWildcardStringZoned(addr.zone)
}
return cacheStr(&cache.canonicalWildcardString,
func() string {
return addr.section.ToIPv6().toCanonicalWildcardStringZoned(addr.zone)
})
}
return addr.getSection().ToCanonicalWildcardString()
}
func (addr *ipAddressInternal) toNormalizedWildcardString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toNormalizedWildcardStringZoned(addr.zone)
}
return cacheStr(&cache.normalizedWildcardString,
func() string {
return addr.section.ToIPv6().toNormalizedWildcardStringZoned(addr.zone)
})
}
return addr.getSection().ToNormalizedWildcardString()
}
func (addr *ipAddressInternal) toSegmentedBinaryString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toSegmentedBinaryStringZoned(addr.zone)
}
return cacheStr(&cache.segmentedBinaryString,
func() string {
return addr.section.ToIPv6().toSegmentedBinaryStringZoned(addr.zone)
})
}
return addr.getSection().ToSegmentedBinaryString()
}
func (addr *ipAddressInternal) toSQLWildcardString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toSQLWildcardStringZoned(addr.zone)
}
return cacheStr(&cache.sqlWildcardString,
func() string {
return addr.section.ToIPv6().toSQLWildcardStringZoned(addr.zone)
})
}
return addr.getSection().ToSQLWildcardString()
}
func (addr *ipAddressInternal) toFullString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toFullStringZoned(addr.zone)
}
return cacheStr(&cache.fullString,
func() string {
return addr.section.ToIPv6().toFullStringZoned(addr.zone)
})
}
return addr.getSection().ToFullString()
}
func (addr *ipAddressInternal) toReverseDNSString() (string, addrerr.IncompatibleAddressError) {
return addr.getSection().ToReverseDNSString()
}
func (addr *ipAddressInternal) toPrefixLenString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toPrefixLenStringZoned(addr.zone)
}
return cacheStr(&cache.networkPrefixLengthString,
func() string {
return addr.section.ToIPv6().toPrefixLenStringZoned(addr.zone)
})
}
return addr.getSection().ToPrefixLenString()
}
func (addr *ipAddressInternal) toSubnetString() string {
if addr.hasZone() {
return addr.toPrefixLenString()
}
return addr.getSection().ToSubnetString()
}
func (addr *ipAddressInternal) toCompressedWildcardString() string {
if addr.hasZone() {
cache := addr.getStringCache()
if cache == nil {
return addr.section.ToIPv6().toCompressedWildcardStringZoned(addr.zone)
}
return cacheStr(&cache.compressedWildcardString,
func() string {
return addr.section.ToIPv6().toCompressedWildcardStringZoned(addr.zone)
})
}
return addr.getSection().ToCompressedWildcardString()
}
func (addr *ipAddressInternal) getNetwork() IPAddressNetwork {
return addr.getSection().getNetwork()
}
//// only needed for godoc / pkgsite
// GetPrefixCount returns the count of prefixes in this address or subnet.
//
// The prefix length is given by GetPrefixLen.
//
// If this has a non-nil prefix length, returns the count of the range of values in the prefix.
//
// If this has a nil prefix length, returns the same value as GetCount.
func (addr *ipAddressInternal) GetPrefixCount() *big.Int {
return addr.addressInternal.GetPrefixCount()
}
// GetPrefixCountLen returns the count of prefixes in this address or subnet for the given prefix length.
//
// If not a subnet of multiple addresses, or a subnet with just single prefix of the given length, returns 1.
func (addr *ipAddressInternal) GetPrefixCountLen(prefixLen BitCount) *big.Int {
return addr.addressInternal.GetPrefixCountLen(prefixLen)
}
// GetBlockCount returns the count of distinct values in the given number of initial (more significant) segments.
func (addr *ipAddressInternal) GetBlockCount(segments int) *big.Int {
return addr.addressInternal.GetBlockCount(segments)
}
// GetPrefixLen returns the prefix length, or nil if there is no prefix length.
//
// A prefix length indicates the number of bits in the initial part of the address that comprise the prefix.
//
// A prefix is a part of the address that is not specific to that address but common amongst a group of addresses, such as a CIDR prefix block subnet.
//
// For IP addresses, the prefix is explicitly defined when the address is created. For example, "1.2.0.0/16" has a prefix length of 16, while "1.2.*.*" has no prefix length,
// even though they both represent the same set of addresses and are considered equal. Prefixes can be considered variable for a given IP address and can depend on routing.
//
// The methods GetMinPrefixLenForBlock and GetPrefixLenForSingleBlock can help you to obtain or define a prefix length if one does not exist already.
// The method ToPrefixBlockLen allows you to create the subnet consisting of the block of addresses for any given prefix length.
func (addr *ipAddressInternal) GetPrefixLen() PrefixLen {
return addr.addressInternal.GetPrefixLen()
}
// IsSinglePrefixBlock returns whether the address range matches the block of values for a single prefix identified by the prefix length of this address.
// This is similar to IsPrefixBlock except that it returns false when the subnet has multiple prefixes.
//
// What distinguishes this method from ContainsSinglePrefixBlock is that this method returns
// false if the series does not have a prefix length assigned to it,
// or a prefix length that differs from the prefix length for which ContainsSinglePrefixBlock returns true.
//
// It is similar to IsPrefixBlock but returns false when there are multiple prefixes.
//
// For instance, "1.*.*.* /16" returns false from this method and returns true from IsPrefixBlock.
func (addr *ipAddressInternal) IsSinglePrefixBlock() bool {
return addr.addressInternal.IsSinglePrefixBlock()
}
// IsPrefixBlock returns whether the address has a prefix length and the address range includes the block of values for that prefix length.
// If the prefix length matches the bit count, this returns true.
//
// To create a prefix block from any address, use ToPrefixBlock.
//
// This is different from ContainsPrefixBlock in that this method returns
// false if the series has no prefix length, or a prefix length that differs from a prefix length for which ContainsPrefixBlock returns true.
func (addr *ipAddressInternal) IsPrefixBlock() bool {
return addr.addressInternal.IsPrefixBlock()
}
// ContainsPrefixBlock returns whether the range of this address or subnet contains the block of addresses for the given prefix length.
//
// Unlike ContainsSinglePrefixBlock, whether there are multiple prefix values in this item for the given prefix length makes no difference.
//
// Use GetMinPrefixLenForBlock to determine the smallest prefix length for which this method returns true.
func (addr *ipAddressInternal) ContainsPrefixBlock(prefixLen BitCount) bool {
return addr.addressInternal.ContainsPrefixBlock(prefixLen)
}
// ContainsSinglePrefixBlock returns whether this address contains a single prefix block for the given prefix length.
//
// This means there is only one prefix value for the given prefix length, and it also contains the full prefix block for that prefix, all addresses with that prefix.
//
// Use GetPrefixLenForSingleBlock to determine whether there is a prefix length for which this method returns true.
func (addr *ipAddressInternal) ContainsSinglePrefixBlock(prefixLen BitCount) bool {
return addr.addressInternal.ContainsSinglePrefixBlock(prefixLen)
}
// GetMinPrefixLenForBlock returns the smallest prefix length such that this includes the block of addresses for that prefix length.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use GetPrefixLenForSingleBlock to avoid the case of multiple prefix values.
//
// If this represents just a single address, returns the bit length of this address.
//
// See AssignMinPrefixForBlock for some examples.
func (addr *ipAddressInternal) GetMinPrefixLenForBlock() BitCount {
return addr.addressInternal.GetMinPrefixLenForBlock()
}
// GetPrefixLenForSingleBlock returns a prefix length for which the range of this address subnet matches exactly the block of addresses for that prefix.
//
// If the range can be described this way, then this method returns the same value as GetMinPrefixLenForBlock.
//
// If no such prefix exists, returns nil.
//
// If this segment grouping represents a single value, returns the bit length of this address division series.
//
// IP address examples:
// - 1.2.3.4 returns 32
// - 1.2.3.4/16 returns 32
// - 1.2.*.* returns 16
// - 1.2.*.0/24 returns 16
// - 1.2.0.0/16 returns 16
// - 1.2.*.4 returns nil
// - 1.2.252-255.* returns 22
func (addr *ipAddressInternal) GetPrefixLenForSingleBlock() PrefixLen {
return addr.addressInternal.GetPrefixLenForSingleBlock()
}
func (addr *ipAddressInternal) rangeIterator(
//creator parsedAddressCreator, /* nil for zero sections */
upper *IPAddress,
valsAreMultiple bool,
prefixLen PrefixLen,
segProducer func(addr *IPAddress, index int) *IPAddressSegment,
segmentIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
segValueComparator func(seg1, seg2 *IPAddress, index int) bool,
networkSegmentIndex,
hostSegmentIndex int,
prefixedSegIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
) Iterator[*Address] {
//lower := rng.lower
//upper := rng.upper
lower := addr.toIPAddress()
divCount := lower.GetSegmentCount()
// at any given point in time, this list provides an iterator for the segment at each index
segIteratorProducerList := make([]func() Iterator[*IPAddressSegment], divCount)
// at any given point in time, finalValue[i] is true if and only if we have reached the very last value for segment i - 1
// when that happens, the next iterator for the segment at index i will be the last
finalValue := make([]bool, divCount+1)
// here is how the segment iterators will work:
// the low and high values of the range at each segment are low, high
// the maximum possible values for any segment are min, max
// we first find the first k >= 0 such that low != high for the segment at index k
// the initial set of iterators at each index are as follows:
// for i < k finalValue[i] is set to true right away.
// we create an iterator from seg = new Seg(low)
// for i == k we create a wrapped iterator from Seg(low, high), wrapper will set finalValue[i] once we reach the final value of the iterator
// for i > k we create an iterator from Seg(low, max)
//
// after the initial iterator has been supplied, any further iterator supplied for the same segment is as follows:
// for i <= k, there was only one iterator, there will be no further iterator
// for i > k,
// if i == 0 or of if flagged[i - 1] is true, we create a wrapped iterator from Seg(low, high), wrapper will set finalValue[i] once we reach the final value of the iterator
// otherwise we create an iterator from Seg(min, max)
//
// By following these rules, we iterate through all possible addresses
notDiffering := true
finalValue[0] = true
var allSegShared *IPAddressSegment
for i := 0; i < divCount; i++ {
var segIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment]
if prefixedSegIteratorProducer != nil && i >= networkSegmentIndex {
segIteratorProducer = prefixedSegIteratorProducer
} else {
segIteratorProducer = segmentIteratorProducer
}
lowerSeg := segProducer(lower, i)
indexi := i
if notDiffering {
notDiffering = segValueComparator(lower, upper, i)
if notDiffering {
// there is only one iterator and it produces only one value
finalValue[i+1] = true
iterator := segIteratorProducer(lowerSeg, i)
segIteratorProducerList[i] = func() Iterator[*IPAddressSegment] { return iterator }
} else {
// in the first differing segment the only iterator will go from segment value of lower address to segment value of upper address
iterator := segIteratorProducer(
createAddressDivision(lowerSeg.deriveNewMultiSeg(lowerSeg.getSegmentValue(), upper.GetGenericSegment(i).GetSegmentValue(), nil)).ToIP(),
i)
wrappedFinalIterator := &wrappedIterator{
iterator: iterator,
finalValue: finalValue,
indexi: indexi,
}
segIteratorProducerList[i] = func() Iterator[*IPAddressSegment] { return wrappedFinalIterator }
}
} else {
// in the second and all following differing segments, rather than go from segment value of lower address to segment value of upper address
// we go from segment value of lower address to the max seg value the first time through
// then we go from the min value of the seg to the max seg value each time until the final time,
// the final time we go from the min value to the segment value of upper address
// we know it is the final time through when the previous iterator has reached its final value, which we track
// the first iterator goes from the segment value of lower address to the max value of the segment
firstIterator := segIteratorProducer(
createAddressDivision(lowerSeg.deriveNewMultiSeg(lowerSeg.getSegmentValue(), lower.GetMaxSegmentValue(), nil)).ToIP(),
i)
// the final iterator goes from 0 to the segment value of our upper address
finalIterator := segIteratorProducer(
createAddressDivision(lowerSeg.deriveNewMultiSeg(0, upper.GetGenericSegment(i).GetSegmentValue(), nil)).ToIP(),
i)
// the wrapper iterator detects when the final iterator has reached its final value
wrappedFinalIterator := &wrappedIterator{
iterator: finalIterator,
finalValue: finalValue,
indexi: indexi,
}
if allSegShared == nil {
allSegShared = createAddressDivision(lowerSeg.deriveNewMultiSeg(0, lower.GetMaxSegmentValue(), nil)).ToIP()
}
// all iterators after the first iterator and before the final iterator go from 0 the max segment value,
// and there will be many such iterators
finalIteratorProducer := func() Iterator[*IPAddressSegment] {
if finalValue[indexi] {
return wrappedFinalIterator
}
return segIteratorProducer(allSegShared, indexi)
}
segIteratorProducerList[i] = func() Iterator[*IPAddressSegment] {
//the first time through, we replace the iterator producer so the first iterator used only once (ie we remove this function from the list)
segIteratorProducerList[indexi] = finalIteratorProducer
return firstIterator
}
}
}
iteratorProducer := func(iteratorIndex int) Iterator[*AddressSegment] {
iter := segIteratorProducerList[iteratorIndex]()
return wrappedSegmentIterator[*IPAddressSegment]{iter}
}
return rangeAddrIterator(
false,
lower.ToAddressBase(),
prefixLen,
valsAreMultiple,
rangeSegmentsIterator(
divCount,
iteratorProducer,
networkSegmentIndex,
hostSegmentIndex,
iteratorProducer,
),
)
}
//// end needed for godoc / pkgsite
var zeroIPAddr = createIPAddress(zeroSection, NoZone)
// IPAddress represents an IP address or subnet, either IPv4 or IPv6 (except for the zero-valued IPAddress which is neither).
// An IP address is composed of range-valued segments and can optionally have an associated prefix length.
// The zero value IPAddress has no segments, neither IPv4 nor IPv6, which is not compatible with zero value for IPv4 or IPv6, those being 0.0.0.0 and :: respectively.
// The zero value is also known as the adaptive zero.
//
// To construct one from a string, use NewIPAddressString,
// then use the ToAddress or GetAddress method of [IPAddressString].
type IPAddress struct {
ipAddressInternal
}
func (addr *IPAddress) init() *IPAddress {
if addr.section == nil {
return zeroIPAddr // this has a zero section
}
return addr
}
func (addr *IPAddress) getProvider() ipAddressProvider {
if addr.IsPrefixed() {
if !addr.IsPrefixBlock() {
return getProviderFor(addr, addr.WithoutPrefixLen())
}
zeroedAddr, _ := addr.toZeroHost(true)
return getProviderFor(addr, zeroedAddr.WithoutPrefixLen())
}
return getProviderFor(addr, addr)
}
// GetCount returns the count of addresses that this address or subnet represents.
//
// If just a single address, not a subnet of multiple addresses, returns 1.
//
// For instance, the IP address subnet "2001:db8::/64" has the count of 2 to the power of 64.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (addr *IPAddress) GetCount() *big.Int {
if addr == nil {
return bigZero()
}
return addr.getCount()
}
// IsMultiple returns true if this represents more than a single individual address, whether it is a subnet of multiple addresses.
func (addr *IPAddress) IsMultiple() bool {
return addr != nil && addr.isMultiple()
}
// Format implements [fmt.Formatter] interface. It accepts the formats
// - 'v' for the default address and section format (either the normalized or canonical string),
// - 's' (string) for the same,
// - 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
// - 'd' (decimal), 'x' (lowercase hexadecimal), and
// - 'X' (uppercase hexadecimal).
// Also supported are some of fmt's format flags for integral types.
// Sign control is not supported since addresses and sections are never negative.
// '#' for an alternate format is supported, which adds a leading zero for octal, and for hexadecimal it adds
// a leading "0x" or "0X" for "%#x" and "%#X" respectively.
// Also supported is specification of minimum digits precision, output field width,
// space or zero padding, and '-' for left or right justification.
func (addr IPAddress) Format(state fmt.State, verb rune) {
addr.init().format(state, verb)
}
// String implements the [fmt.Stringer] interface, returning the canonical string provided by ToCanonicalString, or "<nil>" if the receiver is a nil pointer.
func (addr *IPAddress) String() string {
if addr == nil {
return nilString()
}
return addr.init().ipAddressInternal.toString()
}
// GetSection returns the backing section for this address or subnet, comprising all segments.
func (addr *IPAddress) GetSection() *IPAddressSection {
return addr.init().section.ToIP()
}
// GetTrailingSection gets the subsection from the series starting from the given index.
// The first segment is at index 0.
func (addr *IPAddress) GetTrailingSection(index int) *IPAddressSection {
return addr.GetSection().GetTrailingSection(index)
}
// GetSubSection gets the subsection from the series starting from the given index and ending just before the give endIndex.
// The first segment is at index 0.
func (addr *IPAddress) GetSubSection(index, endIndex int) *IPAddressSection {
return addr.GetSection().GetSubSection(index, endIndex)
}
// GetNetworkSection returns an address section containing the segments with the network of the address or subnet, the prefix bits.
// The returned section will have only as many segments as needed as determined by the existing CIDR network prefix length.
//
// If this series has no CIDR prefix length, the returned network section will
// be the entire series as a prefixed section with prefix length matching the address bit length.
func (addr *IPAddress) GetNetworkSection() *IPAddressSection {
return addr.GetSection().GetNetworkSection()
}
// GetNetworkSectionLen returns a section containing the segments with the network of the address or subnet, the prefix bits according to the given prefix length.
// The returned section will have only as many segments as needed to contain the network.
//
// The new section will be assigned the given prefix length,
// unless the existing prefix length is smaller, in which case the existing prefix length will be retained.
func (addr *IPAddress) GetNetworkSectionLen(prefLen BitCount) *IPAddressSection {
return addr.GetSection().GetNetworkSectionLen(prefLen)
}
// GetHostSection returns a section containing the segments with the host of the address or subnet, the bits beyond the CIDR network prefix length.
// The returned section will have only as many segments as needed to contain the host.
//
// If this series has no prefix length, the returned host section will be the full section.
func (addr *IPAddress) GetHostSection() *IPAddressSection {
return addr.GetSection().GetHostSection()
}
// GetHostSectionLen returns a section containing the segments with the host of the address or subnet, the bits beyond the given CIDR network prefix length.
// The returned section will have only as many segments as needed to contain the host.
func (addr *IPAddress) GetHostSectionLen(prefLen BitCount) *IPAddressSection {
return addr.GetSection().GetHostSectionLen(prefLen)
}
// GetNetworkMask returns the network mask associated with the CIDR network prefix length of this address or subnet.
// If this address or subnet has no prefix length, then the all-ones mask is returned.
func (addr *IPAddress) GetNetworkMask() *IPAddress {
return addr.getNetworkMask(addr.getNetwork())
}
// GetHostMask returns the host mask associated with the CIDR network prefix length of this address or subnet.
// If this address or subnet has no prefix length, then the all-ones mask is returned.
func (addr *IPAddress) GetHostMask() *IPAddress {
return addr.getHostMask(addr.getNetwork())
}
// CopySubSegments copies the existing segments from the given start index until but not including the segment at the given end index,
// into the given slice, as much as can be fit into the slice, returning the number of segments copied.
func (addr *IPAddress) CopySubSegments(start, end int, segs []*IPAddressSegment) (count int) {
return addr.GetSection().CopySubSegments(start, end, segs)
}
// CopySegments copies the existing segments into the given slice,
// as much as can be fit into the slice, returning the number of segments copied.
func (addr *IPAddress) CopySegments(segs []*IPAddressSegment) (count int) {
return addr.GetSection().CopySegments(segs)
}
// GetSegments returns a slice with the address segments. The returned slice is not backed by the same array as this section.
func (addr *IPAddress) GetSegments() []*IPAddressSegment {
return addr.GetSection().GetSegments()
}
// GetSegment returns the segment at the given index.
// The first segment is at index 0.
// GetSegment will panic given a negative index or an index matching or larger than the segment count.
func (addr *IPAddress) GetSegment(index int) *IPAddressSegment {
return addr.getSegment(index).ToIP()
}
// GetSegmentCount returns the segment count, the number of segments in this address.
func (addr *IPAddress) GetSegmentCount() int {
return addr.getDivisionCount()
}
// ForEachSegment visits each segment in order from most-significant to least, the most significant with index 0, calling the given function for each, terminating early if the function returns true.
// Returns the number of visited segments.
func (addr *IPAddress) ForEachSegment(consumer func(segmentIndex int, segment *IPAddressSegment) (stop bool)) int {
return addr.GetSection().ForEachSegment(consumer)
}
// GetGenericDivision returns the segment at the given index as a DivisionType.
func (addr *IPAddress) GetGenericDivision(index int) DivisionType {
return addr.getDivision(index)
}
// GetGenericSegment returns the segment at the given index as an AddressSegmentType.
// The first segment is at index 0.
// GetGenericSegment will panic given a negative index or an index matching or larger than the segment count.
func (addr *IPAddress) GetGenericSegment(index int) AddressSegmentType {
return addr.getSegment(index)
}
// GetDivisionCount returns the segment count.
func (addr *IPAddress) GetDivisionCount() int {
return addr.getDivisionCount()
}
// GetBitCount returns the number of bits comprising this address,
// or each address in the range if a subnet, which is 32 for IPv4 and 128 for IPv6.
func (addr *IPAddress) GetBitCount() BitCount {
if address := addr.ToIPv4(); address != nil {
return address.GetBitCount()
} else if address := addr.ToIPv6(); address != nil {
return address.GetBitCount()
}
return addr.addressInternal.GetBitCount()
}
// GetByteCount returns the number of bytes required for this address,
// or each address in the range if a subnet, which is 4 for IPv4 and 16 for IPv6.
func (addr *IPAddress) GetByteCount() int {
if address := addr.ToIPv4(); address != nil {
return address.GetByteCount()
} else if address := addr.ToIPv6(); address != nil {
return address.GetByteCount()
}
return addr.addressInternal.GetByteCount()
}
// GetLowerIPAddress returns the address in the subnet or address collection with the lowest numeric value,
// which will be the receiver if it represents a single address.
// For example, for "1.2-3.4.5-6", the series "1.2.4.5" is returned.
// GetLowerIPAddress implements the IPAddressRange interface, and is equivalent to GetLower.
func (addr *IPAddress) GetLowerIPAddress() *IPAddress {
return addr.GetLower()
}
// GetUpperIPAddress returns the address in the subnet or address collection with the highest numeric value,
// which will be the receiver if it represents a single address.
// For example, for the subnet "1.2-3.4.5-6", the address "1.3.4.6" is returned.
// GetUpperIPAddress implements the IPAddressRange interface, and is equivalent to GetUpper.
func (addr *IPAddress) GetUpperIPAddress() *IPAddress {
return addr.GetUpper()
}
// GetLower returns the lowest address in the subnet range,
// which will be the receiver if it represents a single address.
// For example, for the subnet "1.2-3.4.5-6", the address "1.2.4.5" is returned.
func (addr *IPAddress) GetLower() *IPAddress {
return addr.init().getLower().ToIP()
}
// GetUpper returns the highest address in the subnet range,
// which will be the receiver if it represents a single address.
// For example, for "1.2-3.4.5-6", the series "1.3.4.6" is returned.
func (addr *IPAddress) GetUpper() *IPAddress {
return addr.init().getUpper().ToIP()
}
// IsZeroHostLen returns whether the host section is always zero for all individual addresses in this subnet,
// for the given prefix length.
//
// If the host section is zero length (there are zero host bits), IsZeroHostLen returns true.
func (addr *IPAddress) IsZeroHostLen(prefLen BitCount) bool {
return addr.init().isZeroHostLen(prefLen)
}
// ToZeroHost converts the address or subnet to one in which all individual addresses have a host of zero,
// the host being the bits following the prefix length.
// If the address or subnet has no prefix length, then it returns an all-zero address.
//
// The returned address or subnet will have the same prefix and prefix length.
//
// For instance, the zero host of "1.2.3.4/16" is the individual address "1.2.0.0/16".
//
// This returns an error if the subnet is a range of addresses which cannot be converted to a range in which all addresses have zero hosts,
// because the conversion results in a subnet segment that is not a sequential range of values.
func (addr *IPAddress) ToZeroHost() (*IPAddress, addrerr.IncompatibleAddressError) {
return addr.init().toZeroHost(false)
}
// ToZeroHostLen converts the address or subnet to one in which all individual addresses have a host of zero,
// the host being the bits following the given prefix length.
// If this address or subnet has the same prefix length, then the returned one will too, otherwise the returned series will have no prefix length.
//
// For instance, the zero host of "1.2.3.4" for the prefix length of 16 is the address "1.2.0.0".
//
// This returns an error if the subnet is a range of addresses which cannot be converted to a range in which all addresses have zero hosts,
// because the conversion results in a subnet segment that is not a sequential range of values.
func (addr *IPAddress) ToZeroHostLen(prefixLength BitCount) (*IPAddress, addrerr.IncompatibleAddressError) {
return addr.init().toZeroHostLen(prefixLength)
}
// ToZeroNetwork converts the address or subnet to one in which all individual addresses have a network of zero,
// the network being the bits within the prefix length.
// If the address or subnet has no prefix length, then it returns an all-zero address.
//
// The returned address or subnet will have the same prefix length.
func (addr *IPAddress) ToZeroNetwork() *IPAddress {
return addr.init().toZeroNetwork()
}
// IsMaxHostLen returns whether the host is all one-bits, the max value, for all individual addresses in this subnet,
// for the given prefix length, the host being the bits following the prefix.
//
// If the host section is zero length (there are zero host bits), IsMaxHostLen returns true.
func (addr *IPAddress) IsMaxHostLen(prefLen BitCount) bool {
return addr.init().isMaxHostLen(prefLen)
}
// ToMaxHost converts the address or subnet to one in which all individual addresses have a host of all one-bits, the max value,
// the host being the bits following the prefix length.
// If the address or subnet has no prefix length, then it returns an all-ones address, the max address.
//
// The returned address or subnet will have the same prefix and prefix length.
//
// For instance, the max host of "1.2.3.4/16" gives the broadcast address "1.2.255.255/16".
//
// This returns an error if the subnet is a range of addresses which cannot be converted to a range in which all addresses have max hosts,
// because the conversion results in a subnet segment that is not a sequential range of values.
func (addr *IPAddress) ToMaxHost() (*IPAddress, addrerr.IncompatibleAddressError) {
return addr.init().toMaxHost()
}
// ToMaxHostLen converts the address or subnet to one in which all individual addresses have a host of all one-bits, the max host,
// the host being the bits following the given prefix length.
// If this address or subnet has the same prefix length, then the resulting one will too, otherwise the resulting address or subnet will have no prefix length.
//
// For instance, the zero host of "1.2.3.4" for the prefix length of 16 is the address "1.2.255.255".
//
// This returns an error if the subnet is a range of addresses which cannot be converted to a range in which all addresses have max hosts,
// because the conversion results in a subnet segment that is not a sequential range of values.
func (addr *IPAddress) ToMaxHostLen(prefixLength BitCount) (*IPAddress, addrerr.IncompatibleAddressError) {
return addr.init().toMaxHostLen(prefixLength)
}
// ToPrefixBlock returns the subnet associated with the prefix length of this address.
// If this address has no prefix length, this address is returned.
//
// The subnet will include all addresses with the same prefix as this one, the prefix "block".
// The network prefix will match the prefix of this address or subnet, and the host values will span all values.
//
// For example, if the address is "1.2.3.4/16" it returns the subnet "1.2.0.0/16", which can also be written as "1.2.*.*/16".
func (addr *IPAddress) ToPrefixBlock() *IPAddress {
return addr.init().toPrefixBlock().ToIP()
}
// ToPrefixBlockLen returns the subnet associated with the given prefix length.
//
// The subnet will include all addresses with the same prefix as this one, the prefix "block" for that prefix length.
// The network prefix will match the prefix of this address or subnet, and the host values will span all values.
//
// For example, if the address is "1.2.3.4" and the prefix length provided is 16, it returns the subnet "1.2.0.0/16", which can also be written as "1.2.*.*/16".
func (addr *IPAddress) ToPrefixBlockLen(prefLen BitCount) *IPAddress {
return addr.init().toPrefixBlockLen(prefLen).ToIP()
}
// ToBlock creates a new block of addresses by changing the segment at the given index to have the given lower and upper value,
// and changing the following segments to be full-range.
func (addr *IPAddress) ToBlock(segmentIndex int, lower, upper SegInt) *IPAddress {
return addr.init().toBlock(segmentIndex, lower, upper).ToIP()
}
// IsPrefixed returns whether this address has an associated prefix length.
func (addr *IPAddress) IsPrefixed() bool {
return addr != nil && addr.isPrefixed()
}
// WithoutPrefixLen provides the same address but with no prefix length. The values remain unchanged.
func (addr *IPAddress) WithoutPrefixLen() *IPAddress {
if !addr.IsPrefixed() {
return addr
}
return addr.withoutPrefixLen().ToIP()
}
// SetPrefixLen sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address.
// The provided prefix length will be adjusted to these boundaries if necessary.
func (addr *IPAddress) SetPrefixLen(prefixLen BitCount) *IPAddress {
return addr.init().setPrefixLen(prefixLen).ToIP()
}
// SetPrefixLenZeroed sets the prefix length.
//
// A prefix length will not be set to a value lower than zero or beyond the bit length of the address.
// The provided prefix length will be adjusted to these boundaries if necessary.
//
// If this address has a prefix length, and the prefix length is increased when setting the new prefix length, the bits moved within the prefix become zero.
// If this address has a prefix length, and the prefix length is decreased when setting the new prefix length, the bits moved outside the prefix become zero.
//
// In other words, bits that move from one side of the prefix length to the other (bits moved into the prefix or outside the prefix) are zeroed.
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (addr *IPAddress) SetPrefixLenZeroed(prefixLen BitCount) (*IPAddress, addrerr.IncompatibleAddressError) {
res, err := addr.init().setPrefixLenZeroed(prefixLen)
return res.ToIP(), err
}
// AdjustPrefixLen increases or decreases the prefix length by the given increment.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address.
//
// If this address has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
func (addr *IPAddress) AdjustPrefixLen(prefixLen BitCount) *IPAddress {
return addr.init().adjustPrefixLen(prefixLen).ToIP()
}
// AdjustPrefixLenZeroed increases or decreases the prefix length by the given increment while zeroing out the bits that have moved into or outside the prefix.
//
// A prefix length will not be adjusted lower than zero or beyond the bit length of the address.
//
// If this address has no prefix length, then the prefix length will be set to the adjustment if positive,
// or it will be set to the adjustment added to the bit count if negative.
//
// When prefix length is increased, the bits moved within the prefix become zero.
// When a prefix length is decreased, the bits moved outside the prefix become zero.
//
// For example, "1.2.0.0/16" adjusted by -8 becomes "1.0.0.0/8".
// "1.2.0.0/16" adjusted by 8 becomes "1.2.0.0/24".
//
// If the result cannot be zeroed because zeroing out bits results in a non-contiguous segment, an error is returned.
func (addr *IPAddress) AdjustPrefixLenZeroed(prefixLen BitCount) (*IPAddress, addrerr.IncompatibleAddressError) {
res, err := addr.init().adjustPrefixLenZeroed(prefixLen)
return res.ToIP(), err
}
// AssignPrefixForSingleBlock returns the equivalent prefix block that matches exactly the range of values in this address.
// The returned block will have an assigned prefix length indicating the prefix length for the block.
//
// There may be no such address - it is required that the range of values match the range of a prefix block.
// If there is no such address, then nil is returned.
//
// Examples:
// - 1.2.3.4 returns 1.2.3.4/32
// - 1.2.*.* returns 1.2.0.0/16
// - 1.2.*.0/24 returns 1.2.0.0/16
// - 1.2.*.4 returns nil
// - 1.2.0-1.* returns 1.2.0.0/23
// - 1.2.1-2.* returns nil
// - 1.2.252-255.* returns 1.2.252.0/22
// - 1.2.3.4/16 returns 1.2.3.4/32
func (addr *IPAddress) AssignPrefixForSingleBlock() *IPAddress {
return addr.init().assignPrefixForSingleBlock().ToIP()
}
// AssignMinPrefixForBlock returns an equivalent subnet, assigned the smallest prefix length possible,
// such that the prefix block for that prefix length is in this subnet.
//
// In other words, this method assigns a prefix length to this subnet matching the largest prefix block in this subnet.
//
// Examples:
// - 1.2.3.4 returns 1.2.3.4/32
// - 1.2.*.* returns 1.2.0.0/16
// - 1.2.*.0/24 returns 1.2.0.0/16
// - 1.2.*.4 returns 1.2.*.4/32
// - 1.2.0-1.* returns 1.2.0.0/23
// - 1.2.1-2.* returns 1.2.1-2.0/24
// - 1.2.252-255.* returns 1.2.252.0/22
// - 1.2.3.4/16 returns 1.2.3.4/32
func (addr *IPAddress) AssignMinPrefixForBlock() *IPAddress {
return addr.init().assignMinPrefixForBlock().ToIP()
}
// ToSinglePrefixBlockOrAddress converts to a single prefix block or address.
// If the given address is a single prefix block, it is returned.
// If it can be converted to a single prefix block by assigning a prefix length, the converted block is returned.
// If it is a single address, any prefix length is removed and the address is returned.
// Otherwise, nil is returned.
// This method provides the address formats used by tries.
// ToSinglePrefixBlockOrAddress is quite similar to AssignPrefixForSingleBlock, which always returns prefixed addresses, while this does not.
func (addr *IPAddress) ToSinglePrefixBlockOrAddress() *IPAddress {
return addr.init().toSinglePrefixBlockOrAddr().ToIP()
}
func (addr *IPAddress) toSinglePrefixBlockOrAddress() (*IPAddress, addrerr.IncompatibleAddressError) {
if addr == nil {
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.address.not.block"}}
}
res := addr.ToSinglePrefixBlockOrAddress()
if res == nil {
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.address.not.block"}}
}
return res, nil
}
// GetValue returns the lowest address in this subnet or address as an integer value.
func (addr *IPAddress) GetValue() *big.Int {
return addr.init().section.GetValue()
}
// GetUpperValue returns the highest address in this subnet or address as an integer value.
func (addr *IPAddress) GetUpperValue() *big.Int {
return addr.init().section.GetUpperValue()
}
// GetNetIPAddr returns the lowest address in this subnet or address as a net.IPAddr.
func (addr *IPAddress) GetNetIPAddr() *net.IPAddr {
return &net.IPAddr{
IP: addr.GetNetIP(),
Zone: string(addr.zone),
}
}
// GetUpperNetIPAddr returns the highest address in this subnet or address as a net.IPAddr.
func (addr *IPAddress) GetUpperNetIPAddr() *net.IPAddr {
return &net.IPAddr{
IP: addr.GetUpperNetIP(),
Zone: string(addr.zone),
}
}
// GetNetIP returns the lowest address in this subnet or address as a net.IP.
func (addr *IPAddress) GetNetIP() net.IP {
return addr.Bytes()
}
// GetUpperNetIP returns the highest address in this subnet or address as a net.IP.
func (addr *IPAddress) GetUpperNetIP() net.IP {
return addr.UpperBytes()
}
// GetNetNetIPAddr returns the lowest address in this subnet or address range as a netip.Addr.
func (addr *IPAddress) GetNetNetIPAddr() netip.Addr {
res := addr.init().getNetNetIPAddr()
if addr.hasZone() {
res = res.WithZone(string(addr.zone))
}
return res
}
// GetUpperNetNetIPAddr returns the highest address in this subnet or address range as a netip.Addr.
func (addr *IPAddress) GetUpperNetNetIPAddr() netip.Addr {
return addr.init().getUpperNetNetIPAddr()
}
// CopyNetIP copies the value of the lowest individual address in the subnet into a net.IP.
//
// If the value can fit in the given net.IP slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *IPAddress) CopyNetIP(ip net.IP) net.IP {
if ipv4Addr := addr.ToIPv4(); ipv4Addr != nil {
return ipv4Addr.CopyNetIP(ip) // this shrinks the arg to 4 bytes if it was 16, we need only 4
}
return addr.CopyBytes(ip)
}
// CopyUpperNetIP copies the value of the highest individual address in the subnet into a net.IP.
//
// If the value can fit in the given net.IP slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *IPAddress) CopyUpperNetIP(ip net.IP) net.IP {
if ipv4Addr := addr.ToIPv4(); ipv4Addr != nil {
return ipv4Addr.CopyUpperNetIP(ip) // this shrinks the arg to 4 bytes if it was 16, we need only 4
}
return addr.CopyUpperBytes(ip)
}
// Bytes returns the lowest address in this subnet or address as a byte slice.
func (addr *IPAddress) Bytes() []byte {
return addr.init().section.Bytes()
}
// UpperBytes returns the highest address in this subnet or address as a byte slice.
func (addr *IPAddress) UpperBytes() []byte {
return addr.init().section.UpperBytes()
}
// CopyBytes copies the value of the lowest individual address in the subnet into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *IPAddress) CopyBytes(bytes []byte) []byte {
return addr.init().section.CopyBytes(bytes)
}
// CopyUpperBytes copies the value of the highest individual address in the subnet into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (addr *IPAddress) CopyUpperBytes(bytes []byte) []byte {
return addr.init().section.CopyUpperBytes(bytes)
}
// IsMax returns whether this address matches exactly the maximum possible value, the address whose bits are all ones.
func (addr *IPAddress) IsMax() bool {
return addr.init().section.IsMax()
}
// IncludesMax returns whether this address includes the max address, the address whose bits are all ones, within its range.
func (addr *IPAddress) IncludesMax() bool {
return addr.init().section.IncludesMax()
}
// TestBit returns true if the bit in the lower value of this address at the given index is 1, where index 0 refers to the least significant bit.
// In other words, it computes (bits & (1 << n)) != 0), using the lower value of this address.
// TestBit will panic if n < 0, or if it matches or exceeds the bit count of this item.
func (addr *IPAddress) TestBit(n BitCount) bool {
return addr.init().testBit(n)
}
// IsOneBit returns true if the bit in the lower value of this address at the given index is 1, where index 0 refers to the most significant bit.
// IsOneBit will panic if bitIndex is less than zero, or if it is larger than the bit count of this item.
func (addr *IPAddress) IsOneBit(bitIndex BitCount) bool {
return addr.init().isOneBit(bitIndex)
}
// PrefixEqual determines if the given address matches this address up to the prefix length of this address.
// It returns whether the two addresses share the same range of prefix values.
func (addr *IPAddress) PrefixEqual(other AddressType) bool {
return addr.init().prefixEquals(other)
}
// PrefixContains returns whether the prefix values in the given address or subnet
// are prefix values in this address or subnet, using the prefix length of this address or subnet.
// If this address has no prefix length, the entire address is compared.
//
// It returns whether the prefix of this address contains all values of the same prefix length in the given address.
func (addr *IPAddress) PrefixContains(other AddressType) bool {
return addr.init().prefixContains(other)
}
// Contains returns whether this is the same type and version as the given address or subnet and whether it contains all addresses in the given address or subnet.
func (addr *IPAddress) Contains(other AddressType) bool {
if addr == nil {
return other == nil || other.ToAddressBase() == nil
}
return addr.init().contains(other)
}
// Compare returns a negative integer, zero, or a positive integer if this address or subnet is less than, equal, or greater than the given item.
// Any address item is comparable to any other. All address items use CountComparator to compare.
func (addr *IPAddress) Compare(item AddressItem) int {
return CountComparator.Compare(addr, item)
}
// Equal returns whether the given address or subnet is equal to this address or subnet.
// Two address instances are equal if they represent the same set of addresses.
func (addr *IPAddress) Equal(other AddressType) bool {
if addr == nil {
return other == nil || other.ToAddressBase() == nil
}
return addr.init().equals(other)
}
// CompareSize compares the counts of two subnets or addresses or other items, the number of individual items within.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether one subnet represents more individual addresses than another.
//
// CompareSize returns a positive integer if this address or subnet has a larger count than the one given, zero if they are the same, or a negative integer if the other has a larger count.
func (addr *IPAddress) CompareSize(other AddressItem) int { // this is here to take advantage of the CompareSize in IPAddressSection
if addr == nil {
if isNilItem(other) {
return 0
}
// we have size 0, other has size >= 1
return -1
}
return addr.init().compareSize(other)
}
// TrieCompare compares two addresses according to address trie ordering.
// It returns a number less than zero, zero, or a number greater than zero if the first address argument is less than, equal to, or greater than the second.
//
// The comparison is intended for individual addresses and CIDR prefix blocks.
// If an address is neither an individual address nor a prefix block, it is treated like one:
// - ranges that occur inside the prefix length are ignored, only the lower value is used.
// - ranges beyond the prefix length are assumed to be the full range across all hosts for that prefix length.
func (addr *IPAddress) TrieCompare(other *IPAddress) (int, addrerr.IncompatibleAddressError) {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
if oth := other.ToIPv4(); oth != nil {
return thisAddr.TrieCompare(oth), nil
}
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
if oth := other.ToIPv6(); oth != nil {
return thisAddr.TrieCompare(oth), nil
}
}
return 0, &incompatibleAddressError{addressError{key: "ipaddress.error.mismatched.bit.size"}}
}
// TrieIncrement returns the next address or block according to address trie ordering
//
// If an address is neither an individual address nor a prefix block, it is treated like one:
// - ranges that occur inside the prefix length are ignored, only the lower value is used.
// - ranges beyond the prefix length are assumed to be the full range across all hosts for that prefix length.
func (addr *IPAddress) TrieIncrement() *IPAddress {
if res, ok := trieIncrement(addr); ok {
return res
}
return nil
}
// TrieDecrement returns the previous address or block according to address trie ordering
//
// If an address is neither an individual address nor a prefix block, it is treated like one:
// - ranges that occur inside the prefix length are ignored, only the lower value is used.
// - ranges beyond the prefix length are assumed to be the full range across all hosts for that prefix length.
func (addr *IPAddress) TrieDecrement() *IPAddress {
if res, ok := trieDecrement(addr); ok {
return res
}
return nil
}
// MatchesWithMask applies the mask to this address and then compares the result with the given address,
// returning true if they match, false otherwise.
func (addr *IPAddress) MatchesWithMask(other *IPAddress, mask *IPAddress) bool {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
if oth := other.ToIPv4(); oth != nil {
if msk := mask.ToIPv4(); mask != nil {
return thisAddr.MatchesWithMask(oth, msk)
}
}
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
if oth := other.ToIPv6(); oth != nil {
if msk := mask.ToIPv6(); mask != nil {
return thisAddr.MatchesWithMask(oth, msk)
}
}
}
return false
}
// IsIPv4 returns true if this address or subnet originated as an IPv4 address or subnet. If so, use ToIPv4 to convert back to the IPv4-specific type.
func (addr *IPAddress) IsIPv4() bool {
return addr != nil && addr.isIPv4()
}
// IsIPv6 returns true if this address or subnet originated as an IPv6 address or subnet. If so, use ToIPv6 to convert back to the IPv6-specific type.
func (addr *IPAddress) IsIPv6() bool {
return addr != nil && addr.isIPv6()
}
// GetIPVersion returns the IP version of this IP address.
func (addr *IPAddress) GetIPVersion() IPVersion {
if addr == nil {
return IndeterminateIPVersion
}
return addr.getIPVersion()
}
// ToAddressBase converts to an Address, a polymorphic type usable with all addresses and subnets.
// Afterwards, you can convert back with ToIP.
//
// ToAddressBase can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *IPAddress) ToAddressBase() *Address {
if addr != nil {
addr = addr.init()
}
return (*Address)(unsafe.Pointer(addr))
}
// ToIP is an identity method.
//
// ToIP can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *IPAddress) ToIP() *IPAddress {
return addr
}
// ToIPv6 converts to an IPv6Address if this address or subnet originated as an IPv6 address or subnet.
// If not, ToIPv6 returns nil.
//
// ToIPv6 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *IPAddress) ToIPv6() *IPv6Address {
if addr.IsIPv6() {
return (*IPv6Address)(addr)
}
return nil
}
// ToIPv4 converts to an IPv4Address if this address or subnet originated as an IPv4 address or subnet.
// If not, ToIPv4 returns nil.
//
// ToIPv4 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (addr *IPAddress) ToIPv4() *IPv4Address {
if addr.IsIPv4() {
return (*IPv4Address)(addr)
}
return nil
}
// Wrap wraps this IP address, returning a WrappedIPAddress, an implementation of ExtendedIPSegmentSeries,
// which can be used to write code that works with both IP addresses and IP address sections.
// Wrap can be called with a nil receiver, wrapping a nil address.
func (addr *IPAddress) Wrap() WrappedIPAddress {
return wrapIPAddress(addr)
}
// WrapAddress wraps this IP address, returning a WrappedAddress, an implementation of ExtendedSegmentSeries,
// which can be used to write code that works with both addresses and address sections.
// WrapAddress can be called with a nil receiver, wrapping a nil address.
func (addr *IPAddress) WrapAddress() WrappedAddress {
return wrapAddress(addr.ToAddressBase())
}
// GetMaxSegmentValue returns the maximum possible segment value for this type of address.
//
// Note this is not the maximum of the range of segment values in this specific address,
// this is the maximum value of any segment for this address type and version, determined by the number of bits per segment.
func (addr *IPAddress) GetMaxSegmentValue() SegInt {
return addr.init().getMaxSegmentValue()
}
// Iterator provides an iterator to iterate through the individual addresses of this address or subnet.
//
// When iterating, the prefix length is preserved. Remove it using WithoutPrefixLen prior to iterating if you wish to drop it from all individual addresses.
//
// Call IsMultiple to determine if this instance represents multiple addresses, or GetCount for the count.
func (addr *IPAddress) Iterator() Iterator[*IPAddress] {
if addr == nil {
return ipAddrIterator{nilAddrIterator()}
}
return ipAddrIterator{addr.init().addrIterator(nil)}
}
// PrefixIterator provides an iterator to iterate through the individual prefixes of this subnet,
// each iterated element spanning the range of values for its prefix.
//
// It is similar to the prefix block iterator, except for possibly the first and last iterated elements, which might not be prefix blocks,
// instead constraining themselves to values from this subnet.
//
// If the subnet has no prefix length, then this is equivalent to Iterator.
func (addr *IPAddress) PrefixIterator() Iterator[*IPAddress] {
return ipAddrIterator{addr.init().prefixIterator(false)}
}
// PrefixBlockIterator provides an iterator to iterate through the individual prefix blocks, one for each prefix of this address or subnet.
// Each iterated address or subnet will be a prefix block with the same prefix length as this address or subnet.
//
// If this address has no prefix length, then this is equivalent to Iterator.
func (addr *IPAddress) PrefixBlockIterator() Iterator[*IPAddress] {
return ipAddrIterator{addr.init().prefixIterator(true)}
}
// BlockIterator iterates through the addresses that can be obtained by iterating through all the upper segments up to the given segment count.
// The segments following remain the same in all iterated addresses.
//
// For instance, given the IPv4 subnet "1-2.3-4.5-6.7" and the count argument 2,
// BlockIterator will iterate through "1.3.5-6.7", "1.4.5-6.7", "2.3.5-6.7" and "2.4.5-6.7".
func (addr *IPAddress) BlockIterator(segmentCount int) Iterator[*IPAddress] {
return ipAddrIterator{addr.init().blockIterator(segmentCount)}
}
// SequentialBlockIterator iterates through the sequential subnets or addresses that make up this address or subnet.
//
// Practically, this means finding the count of segments for which the segments that follow are not full range, and then using BlockIterator with that segment count.
//
// For instance, given the IPv4 subnet "1-2.3-4.5-6.7-8", it will iterate through "1.3.5.7-8", "1.3.6.7-8", "1.4.5.7-8", "1.4.6.7-8", "2.3.5.7-8", "2.3.6.7-8", "2.4.6.7-8" and "2.4.6.7-8".
//
// Use GetSequentialBlockCount to get the number of iterated elements.
func (addr *IPAddress) SequentialBlockIterator() Iterator[*IPAddress] {
return ipAddrIterator{addr.init().sequentialBlockIterator()}
}
// GetSequentialBlockIndex gets the minimal segment index for which all following segments are full-range blocks.
//
// The segment at this index is not a full-range block itself, unless all segments are full-range.
// The segment at this index and all following segments form a sequential range.
// For the full subnet to be sequential, the preceding segments must be single-valued.
func (addr *IPAddress) GetSequentialBlockIndex() int {
return addr.getSequentialBlockIndex()
}
// GetSequentialBlockCount provides the count of elements from the sequential block iterator, the minimal number of sequential subnets that comprise this subnet.
func (addr *IPAddress) GetSequentialBlockCount() *big.Int {
return addr.getSequentialBlockCount()
}
func (addr *IPAddress) rangeIterator(
upper *IPAddress,
valsAreMultiple bool,
prefixLen PrefixLen,
segProducer func(addr *IPAddress, index int) *IPAddressSegment,
segmentIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
segValueComparator func(seg1, seg2 *IPAddress, index int) bool,
networkSegmentIndex,
hostSegmentIndex int,
prefixedSegIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
) Iterator[*IPAddress] {
return ipAddrIterator{addr.ipAddressInternal.rangeIterator(upper.ToIP(), valsAreMultiple, prefixLen, segProducer, segmentIteratorProducer, segValueComparator, networkSegmentIndex, hostSegmentIndex, prefixedSegIteratorProducer)}
}
// ToSequentialRange creates a sequential range instance from the lowest and highest addresses in this subnet.
//
// The two will represent the same set of individual addresses if and only if IsSequential is true.
// To get a series of ranges that represent the same set of individual addresses use the SequentialBlockIterator (or PrefixIterator),
// and apply this method to each iterated subnet.
//
// If this represents just a single address then the returned instance covers just that single address as well.
func (addr *IPAddress) ToSequentialRange() *SequentialRange[*IPAddress] {
if addr != nil {
addr = addr.init().WithoutPrefixLen()
return newSequRangeUnchecked(
addr.GetLower(),
addr.GetUpper(),
addr.isMultiple())
}
return nil
}
func (addr *IPAddress) getLowestHighestAddrs() (lower, upper *IPAddress) {
l, u := addr.ipAddressInternal.getLowestHighestAddrs()
return l.ToIP(), u.ToIP()
}
// IncrementBoundary returns the address that is the given increment from the range boundaries of this subnet.
//
// If the given increment is positive, adds the value to the upper address (GetUpper) in the subnet range to produce a new address.
// If the given increment is negative, adds the value to the lower address (GetLower) in the subnet range to produce a new address.
// If the increment is zero, returns this address.
//
// If this is a single address value, that address is simply incremented by the given increment value, positive or negative.
//
// On address overflow or underflow, IncrementBoundary returns nil.
func (addr *IPAddress) IncrementBoundary(increment int64) *IPAddress {
return addr.init().incrementBoundary(increment).ToIP()
}
// Increment returns the address from the subnet that is the given increment upwards into the subnet range,
// with the increment of 0 returning the first address in the range.
//
// If the increment i matches or exceeds the subnet size count c, then i - c + 1
// is added to the upper address of the range.
// An increment matching the subnet count gives you the address just above the highest address in the subnet.
//
// If the increment is negative, it is added to the lower address of the range.
// To get the address just below the lowest address of the subnet, use the increment -1.
//
// If this is just a single address value, the address is simply incremented by the given increment, positive or negative.
//
// If this is a subnet with multiple values, a positive increment i is equivalent i + 1 values from the subnet iterator and beyond.
// For instance, a increment of 0 is the first value from the iterator, an increment of 1 is the second value from the iterator, and so on.
// An increment of a negative value added to the subnet count is equivalent to the same number of iterator values preceding the upper bound of the iterator.
// For instance, an increment of count - 1 is the last value from the iterator, an increment of count - 2 is the second last value, and so on.
//
// On address overflow or underflow, Increment returns nil.
func (addr *IPAddress) Increment(increment int64) *IPAddress {
return addr.init().increment(increment).ToIP()
}
// SpanWithRange returns an IPAddressSeqRange instance that spans this subnet to the given subnet.
// If the other address is a different version than this, then the other is ignored, and the result is equivalent to calling ToSequentialRange.
func (addr *IPAddress) SpanWithRange(other *IPAddress) *SequentialRange[*IPAddress] {
return NewSequentialRange(addr.init(), other)
}
// Mask applies the given mask to all addresses represented by this IPAddress.
// The mask is applied to all individual addresses.
//
// If the mask is a different version than this, then an error is returned.
//
// If this represents multiple addresses, and applying the mask to all addresses creates a set of addresses
// that cannot be represented as a sequential range within each segment, then an error is returned.
func (addr *IPAddress) Mask(other *IPAddress) (masked *IPAddress, err addrerr.IncompatibleAddressError) {
return addr.maskPrefixed(other, true)
}
func (addr *IPAddress) maskPrefixed(other *IPAddress, retainPrefix bool) (*IPAddress, addrerr.IncompatibleAddressError) {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
if oth := other.ToIPv4(); oth != nil {
result, err := thisAddr.maskPrefixed(oth, retainPrefix)
return result.ToIP(), err
}
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
if oth := other.ToIPv6(); oth != nil {
result, err := thisAddr.maskPrefixed(oth, retainPrefix)
return result.ToIP(), err
}
}
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.ipMismatch"}}
}
// BitwiseOr does the bitwise disjunction with this address or subnet, useful when subnetting.
// It is similar to Mask which does the bitwise conjunction.
//
// The operation is applied to all individual addresses and the result is returned.
//
// If the given address is a different version than this, then an error is returned.
//
// If this is a subnet representing multiple addresses, and applying the operations to all addresses creates a set of addresses
// that cannot be represented as a sequential range within each segment, then an error is returned.
func (addr *IPAddress) BitwiseOr(other *IPAddress) (masked *IPAddress, err addrerr.IncompatibleAddressError) {
return addr.bitwiseOrPrefixed(other, true)
}
func (addr *IPAddress) bitwiseOrPrefixed(other *IPAddress, retainPrefix bool) (*IPAddress, addrerr.IncompatibleAddressError) {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
if oth := other.ToIPv4(); oth != nil {
result, err := thisAddr.bitwiseOrPrefixed(oth, retainPrefix)
return result.ToIP(), err
}
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
if oth := other.ToIPv6(); oth != nil {
result, err := thisAddr.bitwiseOrPrefixed(oth, retainPrefix)
return result.ToIP(), err
}
}
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.ipMismatch"}}
}
// Intersect returns the subnet whose addresses are found in both this and the given subnet argument, or nil if no such addresses exist.
//
// This is also known as the conjunction of the two sets of addresses.
func (addr *IPAddress) Intersect(other *IPAddress) *IPAddress {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
if oth := other.ToIPv4(); oth != nil {
return thisAddr.Intersect(oth).ToIP()
}
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
if oth := other.ToIPv6(); oth != nil {
return thisAddr.Intersect(oth).ToIP()
}
}
return nil
}
// Subtract subtracts the given subnet from this subnet, returning an array of subnets for the result (the subnets will not be contiguous so an array is required).
// Subtract computes the subnet difference, the set of addresses in this address subnet but not in the provided subnet.
// This is also known as the relative complement of the given argument in this subnet.
// This is set subtraction, not subtraction of address values (use Increment for the latter). We have a subnet of addresses and we are removing those addresses found in the argument subnet.
// If there are no remaining addresses, nil is returned.
func (addr *IPAddress) Subtract(other *IPAddress) []*IPAddress {
if !versionsMatch(addr, other) {
return []*IPAddress{addr}
}
addr = addr.init()
sects, _ := addr.GetSection().subtract(other.GetSection())
sectLen := len(sects)
if sectLen == 0 {
return nil
} else if sectLen == 1 {
sec := sects[0]
if sec.ToSectionBase() == addr.section {
return []*IPAddress{addr}
}
}
res := make([]*IPAddress, sectLen)
for i, sect := range sects {
res[i] = newIPAddressZoned(sect, addr.zone)
}
return res
}
// IsLinkLocal returns whether the address or subnet is entirely link local, whether unicast or multicast.
func (addr *IPAddress) IsLinkLocal() bool {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
return thisAddr.IsLinkLocal()
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
return thisAddr.IsLinkLocal()
}
return false
}
// IsLocal returns true if the address is link local, site local, organization local, administered locally, or unspecified.
// This includes both unicast and multicast.
func (addr *IPAddress) IsLocal() bool {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
return thisAddr.IsLocal()
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
return thisAddr.IsLocal()
}
return false
}
// IsUnspecified returns true if exactly zero. The unspecified address is the address that is all zeros.
func (addr *IPAddress) IsUnspecified() bool {
return addr.section != nil && addr.IsZero()
}
// IsAnyLocal returns whether this address is the address which binds to any address on the local host.
// This is the address that has the value of 0, aka the unspecified address.
func (addr *IPAddress) IsAnyLocal() bool {
return addr.section != nil && addr.IsZero()
}
// IsLoopback returns whether this address is a loopback address, such as "::1" or "127.0.0.1".
func (addr *IPAddress) IsLoopback() bool {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
return thisAddr.IsLoopback()
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
return thisAddr.IsLoopback()
}
return false
}
// IsMulticast returns whether this address or subnet is entirely multicast.
func (addr *IPAddress) IsMulticast() bool {
if thisAddr := addr.ToIPv4(); thisAddr != nil {
return thisAddr.IsMulticast()
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
return thisAddr.IsMulticast()
}
return false
}
func versionsMatch(one, two *IPAddress) bool {
return one.getAddrType() == two.getAddrType()
}
//func allVersionsMatch(one *IPAddress, two []*IPAddress) bool {
// addrType := one.getAddrType()
// for _, addr := range two {
// if addr.getAddrType() != addrType {
// return false
// }
// }
// return true
//}
// MergeToSequentialBlocks merges this with the list of addresses to produce the smallest array of sequential blocks.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
// Arguments that are not the same IP version are ignored.
func (addr *IPAddress) MergeToSequentialBlocks(addrs ...*IPAddress) []*IPAddress {
series := filterCloneIPAddrs(addr, addrs)
blocks := getMergedSequentialBlocks(series)
return cloneToIPAddrs(blocks)
}
// MergeToPrefixBlocks merges this subnet with the list of subnets to produce the smallest array of prefix blocks.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
// Arguments that are not the same IP version are ignored.
func (addr *IPAddress) MergeToPrefixBlocks(addrs ...*IPAddress) []*IPAddress {
series := filterCloneIPAddrs(addr, addrs)
blocks := getMergedPrefixBlocks(series)
return cloneToIPAddrs(blocks)
}
// SpanWithPrefixBlocks returns an array of prefix blocks that cover the same set of addresses as this subnet.
//
// Unlike SpanWithPrefixBlocksTo, the result only includes addresses that are a part of this subnet.
func (addr *IPAddress) SpanWithPrefixBlocks() []*IPAddress {
addr = addr.init()
if addr.IsSequential() {
if addr.IsSinglePrefixBlock() {
return []*IPAddress{addr}
}
wrapped := addr.Wrap()
spanning := getSpanningPrefixBlocks(wrapped, wrapped)
return cloneToIPAddrs(spanning)
}
wrapped := addr.Wrap()
return cloneToIPAddrs(spanWithPrefixBlocks(wrapped))
}
// SpanWithPrefixBlocksTo returns the smallest slice of prefix block subnets that span from this subnet to the given subnet.
//
// If the given address is a different version than this, then the given address is ignored, and the result is equivalent to calling SpanWithPrefixBlocks.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
//
// From the list of returned subnets you can recover the original range (this to other) by converting each to IPAddressRange with ToSequentialRange
// and them joining them into a single range with the Join method of IPAddressSeqRange.
func (addr *IPAddress) SpanWithPrefixBlocksTo(other *IPAddress) []*IPAddress {
if !versionsMatch(addr, other) {
return addr.SpanWithPrefixBlocks()
}
return cloneToIPAddrs(
getSpanningPrefixBlocks(
addr.init().Wrap(),
other.init().Wrap(),
),
)
}
// CoverWithPrefixBlockTo returns the minimal-size prefix block that covers all the addresses spanning from this subnet to the given subnet.
//
// If the argument is not the same IP version as the receiver, the argument is ignored, and the result is the same as CoverWithPrefixBlock.
func (addr *IPAddress) CoverWithPrefixBlockTo(other *IPAddress) *IPAddress {
if !versionsMatch(addr, other) {
return addr.CoverWithPrefixBlock()
}
return addr.init().coverWithPrefixBlockTo(other)
}
// CoverWithPrefixBlock returns the minimal-size prefix block that covers all the addresses in this subnet.
// The resulting block will have a larger subnet size than this, unless this subnet is already a prefix block.
func (addr *IPAddress) CoverWithPrefixBlock() *IPAddress {
return addr.init().coverWithPrefixBlock()
}
// SpanWithSequentialBlocks produces the smallest slice of sequential blocks that cover the same set of addresses as this subnet.
//
// This slice can be shorter than that produced by SpanWithPrefixBlocks and is never longer.
//
// Unlike SpanWithSequentialBlocksTo, this method only includes addresses that are a part of this subnet.
func (addr *IPAddress) SpanWithSequentialBlocks() []*IPAddress {
addr = addr.init()
if addr.IsSequential() {
return []*IPAddress{addr}
}
return cloneToIPAddrs(spanWithSequentialBlocks(addr.Wrap()))
}
// SpanWithSequentialBlocksTo produces the smallest slice of sequential block subnets that span all values from this subnet to the given subnet.
// The span will cover all addresses in both subnets and everything in between.
//
// Individual block subnets come in the form "1-3.1-4.5.6-8", however that particular subnet is not sequential since address "1.1.5.8" is in the subnet,
// the next sequential address "1.1.5.9" is not in the subnet, and a higher address "1.2.5.6" is in the subnet.
// Blocks are sequential when the first segment with a range of values is followed by segments that span all values.
//
// If the other address is a different version than this, then this is equivalent to calling SpanWithSequentialBlocks on this subnet.
//
// The resulting slice is sorted from lowest address value to highest, regardless of the size of each prefix block.
func (addr *IPAddress) SpanWithSequentialBlocksTo(other *IPAddress) []*IPAddress {
if !versionsMatch(addr, other) {
return addr.SpanWithSequentialBlocks()
}
return cloneToIPAddrs(
getSpanningSequentialBlocks(
addr.init().Wrap(),
other.init().Wrap(),
),
)
}
// ReverseBytes returns a new address with the bytes reversed. Any prefix length is dropped.
//
// If each segment is more than 1 byte long, and the bytes within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, then this returns an error.
//
// In practice this means that to be reversible, a segment range must include all values except possibly the largest and/or smallest, which reverse to themselves.
func (addr *IPAddress) ReverseBytes() (*IPAddress, addrerr.IncompatibleAddressError) {
res, err := addr.init().reverseBytes()
return res.ToIP(), err
}
// ReverseBits returns a new address with the bits reversed. Any prefix length is dropped.
//
// If the bits within a single segment cannot be reversed because the segment represents a range,
// and reversing the segment values results in a range that is not contiguous, this returns an error.
//
// In practice this means that to be reversible, a segment range must include all values except possibly the largest and/or smallest, which reverse to themselves.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
func (addr *IPAddress) ReverseBits(perByte bool) (*IPAddress, addrerr.IncompatibleAddressError) {
res, err := addr.init().reverseBits(perByte)
return res.ToIP(), err
}
// ReverseSegments returns a new address with the segments reversed.
func (addr *IPAddress) ReverseSegments() *IPAddress {
return addr.init().reverseSegments().ToIP()
}
// GetSegmentStrings returns a slice with the string for each segment being the string that is normalized with wildcards.
func (addr *IPAddress) GetSegmentStrings() []string {
if addr == nil {
return nil
}
return addr.init().getSegmentStrings()
}
//I considered changing to uppercase, see https://www.ieee802.org/1/files/public/docs2020/yangsters-smansfield-mac-address-format-0420-v01.pdf
//and https://standards.ieee.org/wp-content/uploads/import/documents/tutorials/macgrp.pdf and https://en.wikipedia.org/wiki/MAC_address
//canonicalParams = new MACStringOptions.Builder().setSeparator(MACAddress.DASH_SEGMENT_SEPARATOR).setUppercase(true).setExpandedSegments(true).setWildcards(new Wildcards(MACAddress.DASHED_SEGMENT_RANGE_SEPARATOR_STR, Address.SEGMENT_WILDCARD_STR, null)).toOptions();
// Search docs for: An example is "01-23-45-67-89-ab"
// But ACTUALLY, in the ends I decided not to: https://www.mef.net/wp-content/uploads/MEF-89.pdf
// ToCanonicalString produces a canonical string for the address.
//
// For IPv4, dotted octet format, also known as dotted decimal format, is used.
// https://datatracker.ietf.org/doc/html/draft-main-ipaddr-text-rep-00#section-2.1
//
// For IPv6, RFC 5952 describes canonical string representation.
// https://en.wikipedia.org/wiki/IPv6_address#Representation
// http://tools.ietf.org/html/rfc5952
//
// For MAC, it uses the canonical standardized IEEE 802 MAC address representation of xx-xx-xx-xx-xx-xx. An example is "01-23-45-67-89-ab".
// For range segments, '|' is used: "11-22-33|44-55-66".
//
// Each address has a unique canonical string, not counting the prefix length.
// With IP addresses, the prefix length is included in the string, and the prefix length can cause two equal addresses to have different strings, for example "1.2.3.4/16" and "1.2.3.4".
// It can also cause two different addresses to have the same string, such as "1.2.0.0/16" for the individual address "1.2.0.0" and also the prefix block "1.2.*.*".
// Use ToCanonicalWildcardString for a unique string for each IP address and subnet.
func (addr *IPAddress) ToCanonicalString() string {
if addr == nil {
return nilString()
}
return addr.init().toCanonicalString()
}
// ToCanonicalWildcardString produces a string similar to the canonical string and avoids the CIDR prefix length.
// Addresses and subnets with a network prefix length will be shown with wildcards and ranges (denoted by '*' and '-') instead of using the CIDR prefix length notation.
// IPv6 addresses will be compressed according to the canonical representation.
// For IPv4 it is the same as ToNormalizedWildcardString.
func (addr *IPAddress) ToCanonicalWildcardString() string {
if addr == nil {
return nilString()
}
return addr.init().toCanonicalWildcardString()
}
// ToNormalizedString produces a normalized string for the address.
//
// For IPv4, it is the same as the canonical string.
//
// For IPv6, it differs from the canonical string. Zero-segments are not compressed.
//
// Each address has a unique normalized string, not counting the prefix length.
// With IP addresses, the prefix length can cause two equal addresses to have different strings, for example "1.2.3.4/16" and "1.2.3.4".
// It can also cause two different addresses to have the same string, such as "1.2.0.0/16" for the individual address "1.2.0.0" and also the prefix block "1.2.*.*".
// Use the method ToNormalizedWildcardString for a unique string for each IP address and subnet.
func (addr *IPAddress) ToNormalizedString() string {
if addr == nil {
return nilString()
}
return addr.init().toNormalizedString()
}
// ToCompressedString produces a short representation of this address while remaining within the confines of standard representation(s) of the address.
//
// For IPv4, it is the same as the canonical string.
//
// For IPv6, it differs from the canonical string. It compresses the maximum number of zeros and/or host segments with the IPv6 compression notation '::'.
func (addr *IPAddress) ToCompressedString() string {
if addr == nil {
return nilString()
}
return addr.init().toCompressedString()
}
// ToNormalizedWildcardString produces a string similar to the normalized string but avoids the CIDR prefix length.
// CIDR addresses will be shown with wildcards and ranges (denoted by '*' and '-') instead of using the CIDR prefix notation.
func (addr *IPAddress) ToNormalizedWildcardString() string {
if addr == nil {
return nilString()
}
return addr.init().toNormalizedWildcardString()
}
// ToSegmentedBinaryString writes this IP address segment series as segments of binary values preceded by the "0b" prefix.
func (addr *IPAddress) ToSegmentedBinaryString() string {
if addr == nil {
return nilString()
}
return addr.init().toSegmentedBinaryString()
}
// ToSQLWildcardString create a string similar to that from toNormalizedWildcardString except that
// it uses SQL wildcards. It uses '%' instead of '*' and also uses the wildcard '_'.
func (addr *IPAddress) ToSQLWildcardString() string {
if addr == nil {
return nilString()
}
return addr.init().toSQLWildcardString()
}
// ToFullString produces a string with no compressed segments and all segments of full length with leading zeros,
// which is 4 characters for IPv6 segments and 3 characters for IPv4 segments.
func (addr *IPAddress) ToFullString() string {
if addr == nil {
return nilString()
}
return addr.init().toFullString()
}
// ToReverseDNSString generates the reverse-DNS lookup string,
// returning an error if this address is an IPv6 multiple-valued subnet for which the range cannot be represented.
// For "8.255.4.4" it is "4.4.255.8.in-addr.arpa".
// For "2001:db8::567:89ab" it is "b.a.9.8.7.6.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa".
func (addr *IPAddress) ToReverseDNSString() (string, addrerr.IncompatibleAddressError) {
if addr == nil {
return nilString(), nil
}
return addr.init().toReverseDNSString()
}
// ToPrefixLenString returns a string with a CIDR network prefix length if this address has a network prefix length.
// For IPv6, a zero host section will be compressed with "::". For IPv4 the string is equivalent to the canonical string.
func (addr *IPAddress) ToPrefixLenString() string {
if addr == nil {
return nilString()
}
return addr.init().toPrefixLenString()
}
// ToSubnetString produces a string with specific formats for subnets.
// The subnet string looks like "1.2.*.*" or "1:2::/16".
//
// In the case of IPv4, this means that wildcards are used instead of a network prefix when a network prefix has been supplied.
// In the case of IPv6, when a network prefix has been supplied, the prefix will be shown and the host section will be compressed with "::".
func (addr *IPAddress) ToSubnetString() string {
if addr == nil {
return nilString()
}
return addr.init().toSubnetString()
}
// ToCompressedWildcardString produces a string similar to ToNormalizedWildcardString, avoiding the CIDR prefix, but with full IPv6 segment compression as well, including single zero-segments.
// For IPv4 it is the same as ToNormalizedWildcardString.
func (addr *IPAddress) ToCompressedWildcardString() string {
if addr == nil {
return nilString()
}
return addr.init().toCompressedWildcardString()
}
// ToHexString writes this address as a single hexadecimal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0x" prefix.
//
// If a subnet cannot be written as a single prefix block or a range of two values, an error is returned.
func (addr *IPAddress) ToHexString(with0xPrefix bool) (string, addrerr.IncompatibleAddressError) {
if addr == nil {
return nilString(), nil
}
return addr.init().toHexString(with0xPrefix)
}
// ToOctalString writes this address as a single octal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0" prefix.
//
// If a subnet cannot be written as a single prefix block or a range of two values, an error is returned.
func (addr *IPAddress) ToOctalString(with0Prefix bool) (string, addrerr.IncompatibleAddressError) {
if addr == nil {
return nilString(), nil
}
return addr.init().toOctalString(with0Prefix)
}
// ToBinaryString writes this address as a single binary value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0b" prefix.
//
// If a subnet cannot be written as a single prefix block or a range of two values, an error is returned.
func (addr *IPAddress) ToBinaryString(with0bPrefix bool) (string, addrerr.IncompatibleAddressError) {
if addr == nil {
return nilString(), nil
}
return addr.init().toBinaryString(with0bPrefix)
}
// ToUNCHostName Generates the Microsoft UNC path component for this address. See https://ipv6-literal.com/
//
// For IPv4 it is the canonical string.
// For IPv6, it is the canonical string but with colons replaced by dashes, percent signs with the letter āsā, and then appended with the root domain ".ipv6-literal.net".
func (addr *IPAddress) ToUNCHostName() string {
if addr == nil {
return nilString()
} else if thisAddr := addr.ToIPv4(); thisAddr != nil {
return thisAddr.ToUNCHostName()
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
return thisAddr.ToUNCHostName()
}
return addr.ToCanonicalString()
}
// ToCustomString creates a customized string from this address or subnet according to the given string option parameters.
func (addr *IPAddress) ToCustomString(stringOptions addrstr.IPStringOptions) string {
if addr == nil {
return nilString()
}
return addr.GetSection().toCustomZonedString(stringOptions, addr.zone)
}
// ToAddressString retrieves or generates an IPAddressString instance for this IPAddress instance.
// This may be the IPAddressString this instance was generated from, if it was generated from an IPAddressString.
//
// In general, users are intended to create IPAddress instances from IPAddressString instances,
// while the reverse direction is generally not common and not useful, except under specific circumstances.
//
// However, the reverse direction can be useful under certain circumstances,
// such as when maintaining a collection of HostIdentifierString or IPAddressString instances.
func (addr *IPAddress) ToAddressString() *IPAddressString {
addr = addr.init()
cache := addr.cache
if cache != nil {
res := cache.identifierStr
if res != nil {
hostIdStr := res.idStr
if str, ok := hostIdStr.(*IPAddressString); ok {
return str
}
}
}
return newIPAddressStringFromAddr(addr.toCanonicalString(), addr)
}
// ToHostName returns the HostName used to resolve, if this address was resolved from a host.
// Otherwise, if this address represents a subnet of multiple addresses, returns a HostName for that subnet.
// Otherwise, it does a reverse name lookup to obtain the proper HostName.
func (addr *IPAddress) ToHostName() *HostName {
addr = addr.init()
cache := addr.cache
if cache != nil {
res := cache.identifierStr
if res != nil {
hostIdStr := res.idStr
if h, ok := hostIdStr.(*HostName); ok {
return h
}
}
}
var h *HostName
if !addr.isMultiple() {
h, _ = addr.ToCanonicalHostName()
}
if h == nil {
h = NewHostNameFromAddr(addr)
}
return h
}
// ToCanonicalHostName does a reverse name lookup to get the canonical host name.
// Note that the canonical host name may differ on different systems.
//
// This returns an error if this address is a subnet multiple values.
func (addr *IPAddress) ToCanonicalHostName() (*HostName, error) {
if addr.isMultiple() {
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.unavailable.numeric"}}
}
return addr.init().lookupAddr()
}
func (addr *IPAddress) lookupAddr() (*HostName, error) {
names, err := net.LookupAddr(addr.ToNormalizedWildcardString())
if err != nil {
return nil, err
} else if len(names) == 0 {
return nil, nil
} else if names[0] == "" {
return nil, nil
}
return NewHostName(names[0]), nil
}
// IncludesZeroHostLen returns whether the subnet contains an individual address with a host of zero, an individual address for which all bits past the given prefix length are zero.
func (addr *IPAddress) IncludesZeroHostLen(networkPrefixLength BitCount) bool {
return addr.init().includesZeroHostLen(networkPrefixLength)
}
// IncludesMaxHostLen returns whether the subnet contains an individual address with a host of all one-bits, an individual address for which all bits past the given prefix length are all ones.
func (addr *IPAddress) IncludesMaxHostLen(networkPrefixLength BitCount) bool {
return addr.init().includesMaxHostLen(networkPrefixLength)
}
// GetLeadingBitCount returns the number of consecutive leading one or zero bits.
// If ones is true, returns the number of consecutive leading one bits.
// Otherwise, returns the number of consecutive leading zero bits.
//
// This method applies to the lower value of the range if this is a subnet representing multiple values.
func (addr *IPAddress) GetLeadingBitCount(ones bool) BitCount {
return addr.init().getLeadingBitCount(ones)
}
// GetTrailingBitCount returns the number of consecutive trailing one or zero bits.
// If ones is true, returns the number of consecutive trailing zero bits.
// Otherwise, returns the number of consecutive trailing one bits.
//
// This method applies to the lower value of the range if this is a subnet representing multiple values.
func (addr *IPAddress) GetTrailingBitCount(ones bool) BitCount {
return addr.init().getTrailingBitCount(ones)
}
// GetNetwork returns the singleton network instance for the IP version of this address or subnet.
func (addr *IPAddress) GetNetwork() IPAddressNetwork {
return addr.getNetwork()
}
func (addr *IPAddress) toMaxLower() *IPAddress {
return addr.init().addressInternal.toMaxLower().ToIP()
}
func (addr *IPAddress) toMinUpper() *IPAddress {
return addr.init().addressInternal.toMinUpper().ToIP()
}
// ToKey creates the associated address key.
// While addresses can be compared with the Compare, TrieCompare or Equal methods as well as various provided instances of AddressComparator,
// they are not comparable with Go operators.
// However, AddressKey instances are comparable with Go operators, and thus can be used as map keys.
func (addr *IPAddress) ToKey() Key[*IPAddress] {
key := Key[*IPAddress]{}
contents := &key.keyContents
if thisAddr := addr.ToIPv4(); thisAddr != nil {
key.scheme = ipv4Scheme
thisAddr.toIPv4Key(contents)
} else if thisAddr := addr.ToIPv6(); thisAddr != nil {
key.scheme = ipv6Scheme
thisAddr.toIPv6Key(contents)
} // else key.scheme == anySchemeX
return key
}
// ToGenericKey produces a generic Key[*IPAddress] that can be used with generic code working with [Address], [IPAddress], [IPv4Address], [IPv6Address] and [MACAddress].
func (addr *IPAddress) ToGenericKey() Key[*IPAddress] {
return addr.ToKey()
}
func (addr *IPAddress) fromKey(scheme addressScheme, key *keyContents) *IPAddress {
if scheme == ipv4Scheme {
ipv4Addr := fromIPv4IPKey(key)
return ipv4Addr.ToIP()
} else if scheme == ipv6Scheme {
ipv6Addr := fromIPv6IPKey(key)
return ipv6Addr.ToIP()
}
// scheme == adaptiveZeroScheme
zeroAddr := IPAddress{}
return zeroAddr.init()
}
// IPAddressValueProvider supplies all the values that incorporate an IPAddress instance.
type IPAddressValueProvider interface {
AddressValueProvider
GetPrefixLen() PrefixLen // return nil if none
GetIPVersion() IPVersion // should not return IndeterminateVersion
GetZone() string // return "" or NoZone if none
}
func addrFromIP(ip net.IP) (addr *IPAddress, err addrerr.AddressValueError) {
if ipv4 := ip.To4(); ipv4 != nil {
ip = ipv4
}
return addrFromBytes(ip)
}
func addrFromBytes(ip []byte) (addr *IPAddress, err addrerr.AddressValueError) {
addrLen := len(ip)
if len(ip) == 0 {
return &IPAddress{}, nil
} else if addrLen <= IPv4ByteCount {
var addr4 *IPv4Address
addr4, err = NewIPv4AddressFromBytes(ip)
addr = addr4.ToIP()
} else if addrLen <= IPv6ByteCount {
var addr6 *IPv6Address
addr6, err = NewIPv6AddressFromBytes(ip)
addr = addr6.ToIP()
} else {
extraCount := len(ip) - IPv6ByteCount
if isAllZeros(ip[:extraCount]) {
var addr6 *IPv6Address
addr6, err = NewIPv6AddressFromBytes(ip[extraCount:])
addr = addr6.ToIP()
} else {
err = &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
}
}
return
}
func addrFromPrefixedIP(ip net.IP, prefixLen PrefixLen) (addr *IPAddress, err addrerr.AddressValueError) {
if ipv4 := ip.To4(); ipv4 != nil {
ip = ipv4
}
return addrFromPrefixedBytes(ip, prefixLen)
}
func addrFromPrefixedBytes(ip []byte, prefixLen PrefixLen) (addr *IPAddress, err addrerr.AddressValueError) {
addrLen := len(ip)
if len(ip) == 0 {
return &IPAddress{}, nil
} else if addrLen <= IPv4ByteCount {
var addr4 *IPv4Address
addr4, err = NewIPv4AddressFromPrefixedBytes(ip, prefixLen)
addr = addr4.ToIP()
} else if addrLen <= IPv6ByteCount {
var addr6 *IPv6Address
addr6, err = NewIPv6AddressFromPrefixedBytes(ip, prefixLen)
addr = addr6.ToIP()
} else {
extraCount := len(ip) - IPv6ByteCount
if isAllZeros(ip[:extraCount]) {
var addr6 *IPv6Address
addr6, err = NewIPv6AddressFromPrefixedBytes(ip[extraCount:], prefixLen)
addr = addr6.ToIP()
} else {
err = &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
}
}
return
}
func addrFromZonedIP(addr *net.IPAddr) (*IPAddress, addrerr.AddressValueError) {
ip := addr.IP
if ipv4 := ip.To4(); ipv4 != nil {
ip = ipv4
}
if len(ip) == 0 {
return &IPAddress{}, nil
} else if len(ip) <= IPv4ByteCount {
res, err := NewIPv4AddressFromBytes(ip)
return res.ToIP(), err
} else if len(ip) <= IPv6ByteCount {
res, err := NewIPv6AddressFromZonedBytes(ip, addr.Zone)
return res.ToIP(), err
} else {
extraCount := len(ip) - IPv6ByteCount
if isAllZeros(ip[:extraCount]) {
var addr6 *IPv6Address
addr6, err := NewIPv6AddressFromZonedBytes(ip[extraCount:], addr.Zone)
res := addr6.ToIP()
return res, err
}
}
return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
}
func addrFromPrefixedZonedIP(addr *net.IPAddr, prefixLen PrefixLen) (*IPAddress, addrerr.AddressValueError) {
ip := addr.IP
if ipv4 := ip.To4(); ipv4 != nil {
ip = ipv4
}
if len(ip) == 0 {
return &IPAddress{}, nil
} else if len(ip) <= IPv4ByteCount {
res, err := NewIPv4AddressFromPrefixedBytes(ip, prefixLen)
return res.ToIP(), err
} else if len(ip) <= IPv6ByteCount {
res, err := NewIPv6AddressFromPrefixedZonedBytes(ip, prefixLen, addr.Zone)
return res.ToIP(), err
} else {
extraCount := len(ip) - IPv6ByteCount
if isAllZeros(ip[:extraCount]) {
var addr6 *IPv6Address
addr6, err := NewIPv6AddressFromPrefixedZonedBytes(ip[extraCount:], prefixLen, addr.Zone)
res := addr6.ToIP()
return res, err
}
}
return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
}
func isAllZeros(byts []byte) bool {
for _, b := range byts {
if b != 0 {
return false
}
}
return true
}
// IPAddressCreator is a polymporphic type providing constructor methods to construct IP addresses corresponding to its contained IP version
type IPAddressCreator struct {
IPVersion
}
// CreateSegment creates an IPv4 or IPv6 segment depending on the IP version assigned to this IPAddressCreator instance.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) CreateSegment(lower, upper SegInt, segmentPrefixLength PrefixLen) *IPAddressSegment {
if creator.IsIPv4() {
return NewIPv4RangePrefixedSegment(IPv4SegInt(lower), IPv4SegInt(upper), segmentPrefixLength).ToIP()
} else if creator.IsIPv6() {
return NewIPv6RangePrefixedSegment(IPv6SegInt(lower), IPv6SegInt(upper), segmentPrefixLength).ToIP()
}
return nil
}
// CreateRangeSegment creates an IPv4 or IPv6 range-valued segment depending on the IP version assigned to this IPAddressCreator instance.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) CreateRangeSegment(lower, upper SegInt) *IPAddressSegment {
if creator.IsIPv4() {
return NewIPv4RangeSegment(IPv4SegInt(lower), IPv4SegInt(upper)).ToIP()
} else if creator.IsIPv6() {
return NewIPv6RangeSegment(IPv6SegInt(lower), IPv6SegInt(upper)).ToIP()
}
return nil
}
// CreatePrefixSegment creates an IPv4 or IPv6 segment with a prefix length depending on the IP version assigned to this IPAddressCreator instance.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) CreatePrefixSegment(value SegInt, segmentPrefixLength PrefixLen) *IPAddressSegment {
if creator.IsIPv4() {
return NewIPv4PrefixedSegment(IPv4SegInt(value), segmentPrefixLength).ToIP()
} else if creator.IsIPv6() {
return NewIPv6PrefixedSegment(IPv6SegInt(value), segmentPrefixLength).ToIP()
}
return nil
}
// NewIPSectionFromBytes creates an address section from the given bytes, It is IPv4 or IPv6 depending on the IP version assigned to this IPAddressCreator instance.
// The number of segments is determined by the length of the byte array.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) NewIPSectionFromBytes(bytes []byte) *IPAddressSection {
if creator.IsIPv4() {
return NewIPv4SectionFromBytes(bytes).ToIP()
} else if creator.IsIPv6() {
return NewIPv6SectionFromBytes(bytes).ToIP()
}
return nil
}
// NewIPSectionFromSegmentedBytes creates an address section from the given bytes. It is IPv4 or IPv6 depending on the IP version assigned to this IPAddressCreator instance.
// The number of segments is given. An error is returned when the byte slice has too many bytes to match the segment count.
// IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) NewIPSectionFromSegmentedBytes(bytes []byte, segmentCount int) (*IPAddressSection, addrerr.AddressValueError) {
if creator.IsIPv4() {
addr, err := NewIPv4SectionFromSegmentedBytes(bytes, segmentCount)
return addr.ToIP(), err
} else if creator.IsIPv6() {
addr, err := NewIPv6SectionFromSegmentedBytes(bytes, segmentCount)
return addr.ToIP(), err
}
return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionIndeterminate"}}
}
// NewIPSectionFromPrefixedBytes creates an address section from the given bytes and prefix length. It is IPv4 or IPv6 depending on the IP version assigned to this IPAddressCreator instance.
// The number of segments is given. An error is returned when the byte slice has too many bytes to match the segment count.
// IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
// If the IP version is indeterminate, then nil is returned.
func (creator IPAddressCreator) NewIPSectionFromPrefixedBytes(bytes []byte, segmentCount int, prefLen PrefixLen) (*IPAddressSection, addrerr.AddressValueError) {
if creator.IsIPv4() {
addr, err := NewIPv4SectionFromPrefixedBytes(bytes, segmentCount, prefLen)
return addr.ToIP(), err
} else if creator.IsIPv6() {
addr, err := NewIPv4SectionFromPrefixedBytes(bytes, segmentCount, prefLen)
return addr.ToIP(), err
}
return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionIndeterminate"}}
}
// NewIPAddressFromVals constructs an IPAddress from the provided segment values.
// If the IP version of this IPAddressCreator is indeterminate, then nil is returned.
func (creator IPAddressCreator) NewIPAddressFromVals(lowerValueProvider SegmentValueProvider) *IPAddress {
return NewIPAddressFromVals(creator.IPVersion, lowerValueProvider)
}
// NewIPAddressFromPrefixedVals constructs an IPAddress from the provided segment values and prefix length.
// If the IP version of this IPAddressCreator is indeterminate, then nil is returned.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func (creator IPAddressCreator) NewIPAddressFromPrefixedVals(lowerValueProvider, upperValueProvider SegmentValueProvider, prefixLength PrefixLen) *IPAddress {
return NewIPAddressFromPrefixedVals(creator.IPVersion, lowerValueProvider, upperValueProvider, prefixLength)
}
// NewIPAddressFromPrefixedZonedVals constructs an IPAddress from the provided segment values, prefix length, and zone.
// If the IP version of this IPAddressCreator is indeterminate, then nil is returned.
// If the version is IPv4, then the zone is ignored.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func (creator IPAddressCreator) NewIPAddressFromPrefixedZonedVals(lowerValueProvider, upperValueProvider SegmentValueProvider, prefixLength PrefixLen, zone string) *IPAddress {
return NewIPAddressFromPrefixedZonedVals(creator.IPVersion, lowerValueProvider, upperValueProvider, prefixLength, zone)
}
// NewIPAddressFromNetIPMask constructs an address from a net.IPMask.
// An error is returned when the mask has an invalid number of bytes. IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromNetIPMask(ip net.IPMask) (*IPAddress, addrerr.AddressValueError) {
return addrFromBytes(ip)
}
// NewIPAddressFromBytes constructs an address from a slice of bytes.
// An error is returned when the IP has an invalid number of bytes. IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromBytes(ip net.IP) (*IPAddress, addrerr.AddressValueError) {
return addrFromBytes(ip)
}
// NewIPAddressFromNetIP constructs an address from a net.IP.
// An error is returned when the IP has an invalid number of bytes. IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromNetIP(ip net.IP) (*IPAddress, addrerr.AddressValueError) {
return addrFromIP(ip)
}
// NewIPAddressFromPrefixedNetIP constructs an address or subnet from a net.IP with a prefix length.
// An error is returned when the IP has an invalid number of bytes. IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromPrefixedNetIP(ip net.IP, prefixLength PrefixLen) (*IPAddress, addrerr.AddressValueError) {
return addrFromPrefixedIP(ip, prefixLength)
}
// NewIPAddressFromNetIPAddr constructs an address or subnet from a net.IPAddr.
// An error is returned when the IP has an invalid number of bytes. IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromNetIPAddr(addr *net.IPAddr) (*IPAddress, addrerr.AddressValueError) {
return addrFromZonedIP(addr)
}
// NewIPAddressFromPrefixedNetIPAddr constructs an address or subnet from a net.IPAddr with a prefix length.
// An error is returned when the IP has an invalid number of bytes. IPv4 should have 4 bytes or less, IPv6 16 bytes or less, although extra leading zeros are tolerated.
func NewIPAddressFromPrefixedNetIPAddr(addr *net.IPAddr, prefixLength PrefixLen) (*IPAddress, addrerr.AddressValueError) {
return addrFromPrefixedZonedIP(addr, prefixLength)
}
// NewIPAddressFromNetIPNet constructs a subnet from a net.IPNet.
// The error can be either addrerr.AddressValueError, when the net.IPNet IP or mask has an invalid number of bytes,
// or addrerr.IncompatibleAddressError when the mask and the IP from net.IPNet are different IP versions.
func NewIPAddressFromNetIPNet(ipnet *net.IPNet) (*IPAddress, addrerr.AddressError) {
ip := ipnet.IP
maskIp := ipnet.Mask
if ipv4 := ip.To4(); ipv4 != nil {
ip = ipv4
if len(maskIp) == net.IPv6len {
maskIp = maskIp[IPv6MixedOriginalByteCount:]
}
}
addr, err := addrFromBytes(ip)
if err != nil {
return nil, err
} else if addr == nil {
return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
}
mask, err := NewIPAddressFromNetIPMask(maskIp)
if err != nil {
return nil, err
} else if mask == nil {
return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.exceeds.size"}}
} else if addr.getAddrType() != mask.getAddrType() {
//} else if !addr.GetIPVersion().Equal(mask.GetIPVersion()) {
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.ipMismatch"}}
}
prefLen := mask.GetBlockMaskPrefixLen(true)
if prefLen == nil {
return nil, &incompatibleAddressError{addressError{key: "ipaddress.error.notNetworkMask"}}
}
return addr.ToPrefixBlockLen(prefLen.bitCount()), nil
}
func NewIPAddressFromNetNetIPAddr(addr netip.Addr) *IPAddress {
if res := addr.AsSlice(); res != nil {
if addr.Is6() {
if zone := addr.Zone(); zone != "" {
addr, _ := NewIPv6AddressFromZonedBytes(res, zone)
return addr.ToIP()
}
}
addr, _ := addrFromBytes(res)
return addr.ToIP()
}
// the zero addr
return &IPAddress{}
}
func NewIPAddressFromNetNetIPPrefix(prefixedAddr netip.Prefix) (*IPAddress, addrerr.AddressError) {
prefixLen := prefixedAddr.Bits()
if prefixLen < 0 {
return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.invalidCIDRPrefix"}}
}
addr := prefixedAddr.Addr()
if res := addr.AsSlice(); res != nil {
var p PrefixBitCount = PrefixBitCount(prefixLen)
if addr.Is6() {
if zone := addr.Zone(); zone != "" {
addr, _ := NewIPv6AddressFromPrefixedZonedBytes(res, &p, zone)
return addr.ToIP(), nil
}
}
addr, _ := addrFromPrefixedBytes(res, &p)
return addr.ToIP(), nil
}
return nil, &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionIndeterminate"}}
}
// NewIPAddressFromVals constructs an IPAddress from the provided segment values.
// If the given version is indeterminate, then nil is returned.
func NewIPAddressFromVals(version IPVersion, lowerValueProvider SegmentValueProvider) *IPAddress {
if version.IsIPv4() {
return NewIPv4AddressFromVals(WrapSegmentValueProviderForIPv4(lowerValueProvider)).ToIP()
} else if version.IsIPv6() {
return NewIPv6AddressFromVals(WrapSegmentValueProviderForIPv6(lowerValueProvider)).ToIP()
}
return nil
}
// NewIPAddressFromPrefixedVals constructs an IPAddress from the provided segment values and prefix length.
// If the given version is indeterminate, then nil is returned.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func NewIPAddressFromPrefixedVals(version IPVersion, lowerValueProvider, upperValueProvider SegmentValueProvider, prefixLength PrefixLen) *IPAddress {
return NewIPAddressFromPrefixedZonedVals(version, lowerValueProvider, upperValueProvider, prefixLength, "")
}
// NewIPAddressFromPrefixedZonedVals constructs an IPAddress from the provided segment values, prefix length, and zone.
// If the given version is indeterminate, then nil is returned.
// If the version is IPv4, then the zone is ignored.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func NewIPAddressFromPrefixedZonedVals(version IPVersion, lowerValueProvider, upperValueProvider SegmentValueProvider, prefixLength PrefixLen, zone string) *IPAddress {
if version.IsIPv4() {
return NewIPv4AddressFromPrefixedRange(
WrapSegmentValueProviderForIPv4(lowerValueProvider),
WrapSegmentValueProviderForIPv4(upperValueProvider),
prefixLength).ToIP()
} else if version.IsIPv6() {
return NewIPv6AddressFromPrefixedZonedRange(
WrapSegmentValueProviderForIPv6(lowerValueProvider),
WrapSegmentValueProviderForIPv6(upperValueProvider),
prefixLength,
zone).ToIP()
}
return nil
}
// NewIPAddressFromSegs constructs an address from the given segments.
// If the segments are not consistently IPv4 or IPv6, or if there is not the correct number of segments for the IP version (4 for IPv4, 8 for IPv6),
// then an error is returned.
func NewIPAddressFromSegs(segments []*IPAddressSegment) (res *IPAddress, err addrerr.AddressValueError) {
return NewIPAddressFromPrefixedSegments(segments, nil)
}
// NewIPAddressFromPrefixedSegments constructs an address from the given segments and prefix length.
// If the segments are not consistently IPv4 or IPv6, or if there is not the correct number of segments for the IP version (4 for IPv4, 8 for IPv6),
// then an error is returned.
func NewIPAddressFromPrefixedSegments(segs []*IPAddressSegment, prefixLength PrefixLen) (res *IPAddress, err addrerr.AddressValueError) {
if len(segs) > 0 {
if segs[0].IsIPv4() {
for _, seg := range segs[1:] {
if !seg.IsIPv4() {
err = &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionMismatch"}}
return
}
}
sect := createIPSectionFromSegs(true, segs, prefixLength)
addr, addrErr := NewIPv4Address(sect.ToIPv4())
res, err = addr.ToIP(), addrErr
} else if segs[0].IsIPv6() {
for _, seg := range segs[1:] {
if !seg.IsIPv6() {
err = &addressValueError{addressError: addressError{key: "ipaddress.error.ipVersionMismatch"}}
return
}
}
sect := createIPSectionFromSegs(false, segs, prefixLength)
addr, addrErr := NewIPv6Address(sect.ToIPv6())
res, err = addr.ToIP(), addrErr
} else {
err = &addressValueError{addressError: addressError{key: "ipaddress.error.invalid.size"}}
}
} else {
err = &addressValueError{addressError: addressError{key: "ipaddress.error.invalid.size"}}
}
return
}
// NewIPAddressFromValueProvider constructs an IPAddress from the provided segment values, prefix length, and zone,
// all of which are supplied by the implementation of IPAddressValueProvider.
// If the given version is indeterminate, then nil is returned.
// If the version is IPv4, then the zone is ignored.
// The prefix length is adjusted to 0 if negative or to the bit count if larger.
func NewIPAddressFromValueProvider(valueProvider IPAddressValueProvider) *IPAddress {
if valueProvider.GetIPVersion().IsIPv4() {
return NewIPv4AddressFromPrefixedRange(
WrapSegmentValueProviderForIPv4(valueProvider.GetValues()),
WrapSegmentValueProviderForIPv4(valueProvider.GetUpperValues()),
valueProvider.GetPrefixLen()).ToIP()
} else if valueProvider.GetIPVersion().IsIPv6() {
return NewIPv6AddressFromPrefixedZonedRange(
WrapSegmentValueProviderForIPv6(valueProvider.GetValues()),
WrapSegmentValueProviderForIPv6(valueProvider.GetUpperValues()),
valueProvider.GetPrefixLen(),
valueProvider.GetZone()).ToIP()
}
return nil
}
|