1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"math/big"
"strings"
"unsafe"
"github.com/seancfoley/ipaddress-go/ipaddr/addrerr"
)
type ipAddressSegmentInternal struct {
addressSegmentInternal
}
func (seg *ipAddressSegmentInternal) isPrefixed() bool {
return seg.GetSegmentPrefixLen() != nil
}
// IsPrefixBlock returns whether the segment has a prefix length and the segment range includes the block of values for that prefix length.
// If the prefix length matches the bit count, this returns true.
func (seg *ipAddressSegmentInternal) IsPrefixBlock() bool {
return seg.isPrefixBlock()
}
// IsSinglePrefixBlock returns whether the range matches the block of values for a single prefix identified by the prefix length of this address.
// This is similar to IsPrefixBlock except that it returns false when the subnet has multiple prefixes.
//
// What distinguishes this method from ContainsSinglePrefixBlock is that this method returns
// false if the series does not have a prefix length assigned to it,
// or a prefix length that differs from the prefix length for which ContainsSinglePrefixBlock returns true.
//
// It is similar to IsPrefixBlock but returns false when there are multiple prefixes.
func (seg *ipAddressSegmentInternal) IsSinglePrefixBlock() bool {
cache := seg.getCache()
if cache != nil {
res := cache.isSinglePrefBlock
if res != nil {
return *res
}
}
if prefLen := seg.GetSegmentPrefixLen(); prefLen != nil {
return seg.isSinglePrefixBlock(seg.getDivisionValue(), seg.getUpperDivisionValue(), prefLen.bitCount())
}
return false
}
func (seg *ipAddressSegmentInternal) withoutPrefixLen() *IPAddressSegment {
if seg.isPrefixed() {
return createAddressDivision(seg.derivePrefixed(nil)).ToIP()
}
return seg.toIPAddressSegment()
}
// GetPrefixValueCount returns the count of prefixes in this segment for its prefix length, or the total count if it has no prefix length.
func (seg *ipAddressSegmentInternal) GetPrefixValueCount() SegIntCount {
prefixLength := seg.GetSegmentPrefixLen()
if prefixLength == nil {
return seg.GetValueCount()
}
return getPrefixValueCount(seg.toAddressSegment(), prefixLength.bitCount())
}
// GetSegmentPrefixLen returns the network prefix for the segment.
//
// The network prefix is 16 for an address like "1.2.0.0/16".
//
// When it comes to each address division or segment, the prefix for the division is the
// prefix obtained when applying the address or section prefix.
//
// For instance, consider the address "1.2.0.0/20".
// The first segment has no prefix because the address prefix 20 extends beyond the 8 bits in the first segment, it does not even apply to the segment.
// The second segment has no prefix because the address prefix extends beyond bits 9 to 16 which lie in the second segment, it does not apply to that segment either.
// The third segment has the prefix 4 because the address prefix 20 corresponds to the first 4 bits in the 3rd segment,
// which means that the first 4 bits are part of the network section of the address or segment.
// The last segment has the prefix 0 because not a single bit is in the network section of the address or segment
//
// The division prefixes applied across the address are: nil ... nil (1 to segment bit length) 0 ... 0.
//
// If the segment has no prefix then nil is returned.
func (seg *ipAddressSegmentInternal) GetSegmentPrefixLen() PrefixLen {
return seg.getDivisionPrefixLength()
}
// MatchesWithPrefixMask applies the network mask of the given bit-length to this segment and then compares the result with the given value masked by the same mask,
//returning true if the resulting range matches the given single value.
func (seg *ipAddressSegmentInternal) MatchesWithPrefixMask(value SegInt, networkBits BitCount) bool {
mask := seg.GetSegmentNetworkMask(networkBits)
matchingValue := value & mask
return matchingValue == (seg.GetSegmentValue()&mask) && matchingValue == (seg.GetUpperSegmentValue()&mask)
}
func (seg *ipAddressSegmentInternal) checkForPrefixMask() (networkMaskLen, hostMaskLen PrefixLen) {
val := seg.GetSegmentValue()
if val == 0 {
networkMaskLen, hostMaskLen = cacheBitCount(0), cacheBitCount(seg.GetBitCount())
} else {
maxVal := seg.GetMaxValue()
if val == maxVal {
networkMaskLen, hostMaskLen = cacheBitCount(seg.GetBitCount()), cacheBitCount(0)
} else {
var shifted SegInt
trailingOnes := seg.GetTrailingBitCount(true)
if trailingOnes == 0 {
// can only be 11110000 and not 00000000
trailingZeros := seg.GetTrailingBitCount(false)
shifted = (^val & maxVal) >> uint(trailingZeros)
if shifted == 0 {
networkMaskLen = cacheBitCount(seg.GetBitCount() - trailingZeros)
}
} else {
// can only be 00001111 and not 11111111
shifted = val >> uint(trailingOnes)
if shifted == 0 {
hostMaskLen = cacheBitCount(seg.GetBitCount() - trailingOnes)
}
}
}
}
return
}
// GetBlockMaskPrefixLen returns the prefix length if this address segment is equivalent to the mask for a CIDR prefix block.
// Otherwise, it returns nil.
// A CIDR network mask is a segment with all ones in the network bits and then all zeros in the host bits.
// A CIDR host mask is a segment with all zeros in the network bits and then all ones in the host bits.
// The prefix length is the bit-length of the network bits.
//
// Also, keep in mind that the prefix length returned by this method is not equivalent to the prefix length of this segment.
// The prefix length returned here indicates the whether the value of this segment can be used as a mask for the network and host
// bits of any other segment. Therefore, the two values can be different values, or one can be nil while the other is not.
//
// This method applies only to the lower value of the range if this segment represents multiple values.
func (seg *ipAddressSegmentInternal) GetBlockMaskPrefixLen(network bool) PrefixLen {
hostLength := seg.GetTrailingBitCount(!network)
var shifted SegInt
val := seg.GetSegmentValue()
if network {
maxVal := seg.GetMaxValue()
shifted = (^val & maxVal) >> uint(hostLength)
} else {
shifted = val >> uint(hostLength)
}
if shifted == 0 {
return cacheBitCount(seg.GetBitCount() - hostLength)
}
return nil
}
func (seg *ipAddressSegmentInternal) getUpperStringMasked(radix int, uppercase bool, appendable *strings.Builder) {
if seg.isPrefixed() {
upperValue := seg.GetUpperSegmentValue()
mask := seg.GetSegmentNetworkMask(seg.GetSegmentPrefixLen().bitCount())
upperValue &= mask
toUnsignedStringCased(DivInt(upperValue), radix, 0, uppercase, appendable)
} else {
seg.getUpperString(radix, uppercase, appendable)
}
}
func (seg *ipAddressSegmentInternal) getStringAsLower() string {
if seg.divisionValues != nil {
if cache := seg.getCache(); cache != nil {
return cacheStr(&cache.cachedString, seg.getDefaultLowerString)
}
}
return seg.getDefaultLowerString()
}
func (seg *ipAddressSegmentInternal) getString() string {
stringer := func() string {
if !seg.isMultiple() || seg.IsSinglePrefixBlock() { //covers the case of !isMultiple, ie single addresses, when there is no prefix or the prefix is the bit count
return seg.getDefaultLowerString()
} else if seg.IsFullRange() {
return seg.getDefaultSegmentWildcardString()
}
upperValue := seg.getUpperSegmentValue()
if seg.IsPrefixBlock() {
upperValue &= seg.GetSegmentNetworkMask(seg.getDivisionPrefixLength().bitCount())
}
return seg.getDefaultRangeStringVals(seg.getDivisionValue(), DivInt(upperValue), seg.getDefaultTextualRadix())
}
if seg.divisionValues != nil {
if cache := seg.getCache(); cache != nil {
return cacheStr(&cache.cachedString, stringer)
}
}
return stringer()
}
func (seg *ipAddressSegmentInternal) getWildcardString() string {
stringer := func() string {
if !seg.isPrefixed() || !seg.isMultiple() {
return seg.getString()
} else if seg.IsFullRange() {
return seg.getDefaultSegmentWildcardString()
}
return seg.getDefaultRangeString()
}
if seg.divisionValues != nil {
if cache := seg.getCache(); cache != nil {
return cacheStr(&cache.cachedWildcardString, stringer)
}
}
return stringer()
}
func (seg *ipAddressSegmentInternal) setStandardString(
addressStr string,
isStandardString bool,
lowerStringStartIndex,
lowerStringEndIndex int,
originalLowerValue SegInt) {
if cache := seg.getCache(); cache != nil {
if isStandardString && originalLowerValue == seg.getSegmentValue() {
cacheStr(&cache.cachedString, func() string { return addressStr[lowerStringStartIndex:lowerStringEndIndex] })
}
}
}
func (seg *ipAddressSegmentInternal) setWildcardString(
addressStr string,
isStandardString bool,
lowerStringStartIndex,
lowerStringEndIndex int,
lowerValue SegInt) {
if cache := seg.getCache(); cache != nil {
if isStandardString &&
lowerValue == seg.getSegmentValue() &&
lowerValue == seg.getUpperSegmentValue() {
cacheStr(&cache.cachedWildcardString, func() string { return addressStr[lowerStringStartIndex:lowerStringEndIndex] })
}
}
}
func (seg *ipAddressSegmentInternal) setRangeStandardString(
addressStr string,
isStandardString,
isStandardRangeString bool,
lowerStringStartIndex,
lowerStringEndIndex,
upperStringEndIndex int,
rangeLower,
rangeUpper SegInt) {
if cache := seg.getCache(); cache != nil {
if seg.IsSinglePrefixBlock() {
if isStandardString && rangeLower == seg.getSegmentValue() {
cacheStr(&cache.cachedString, func() string { return addressStr[lowerStringStartIndex:lowerStringEndIndex] })
}
} else if seg.IsFullRange() {
cacheStrPtr(&cache.cachedString, &segmentWildcardStr)
} else if isStandardRangeString && rangeLower == seg.getSegmentValue() {
upper := seg.getUpperSegmentValue()
if seg.isPrefixed() {
upper &= seg.GetSegmentNetworkMask(seg.getDivisionPrefixLength().bitCount())
}
if rangeUpper == upper {
cacheStr(&cache.cachedString, func() string { return addressStr[lowerStringStartIndex:upperStringEndIndex] })
}
}
}
}
func (seg *ipAddressSegmentInternal) setRangeWildcardString(
addressStr string,
isStandardRangeString bool,
lowerStringStartIndex,
upperStringEndIndex int,
rangeLower,
rangeUpper SegInt) {
if cache := seg.getCache(); cache != nil {
if seg.IsFullRange() {
cacheStrPtr(&cache.cachedWildcardString, &segmentWildcardStr)
} else if isStandardRangeString && rangeLower == seg.getSegmentValue() && rangeUpper == seg.getUpperSegmentValue() {
cacheStr(&cache.cachedString, func() string { return addressStr[lowerStringStartIndex:upperStringEndIndex] })
}
}
}
func (seg *ipAddressSegmentInternal) toIPAddressSegment() *IPAddressSegment {
return (*IPAddressSegment)(unsafe.Pointer(seg))
}
//// only needed for godoc / pkgsite
// GetBitCount returns the number of bits in each value comprising this address item.
func (seg *ipAddressSegmentInternal) GetBitCount() BitCount {
return seg.addressSegmentInternal.GetBitCount()
}
// GetByteCount returns the number of bytes required for each value comprising this address item.
func (seg *ipAddressSegmentInternal) GetByteCount() int {
return seg.addressSegmentInternal.GetByteCount()
}
// GetValue returns the lowest value in the address segment range as a big integer.
func (seg *ipAddressSegmentInternal) GetValue() *BigDivInt {
return seg.addressSegmentInternal.GetValue()
}
// GetUpperValue returns the highest value in the address segment range as a big integer.
func (seg *ipAddressSegmentInternal) GetUpperValue() *BigDivInt {
return seg.addressSegmentInternal.GetUpperValue()
}
// Bytes returns the lowest value in the address segment range as a byte slice.
func (seg *ipAddressSegmentInternal) Bytes() []byte {
return seg.addressSegmentInternal.Bytes()
}
// UpperBytes returns the highest value in the address segment range as a byte slice.
func (seg *ipAddressSegmentInternal) UpperBytes() []byte {
return seg.addressSegmentInternal.UpperBytes()
}
// CopyBytes copies the lowest value in the address segment range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (seg *ipAddressSegmentInternal) CopyBytes(bytes []byte) []byte {
return seg.addressSegmentInternal.CopyBytes(bytes)
}
// CopyUpperBytes copies the highest value in the address segment range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (seg *ipAddressSegmentInternal) CopyUpperBytes(bytes []byte) []byte {
return seg.addressSegmentInternal.CopyUpperBytes(bytes)
}
// IsZero returns whether this segment matches exactly the value of zero.
func (seg *ipAddressSegmentInternal) IsZero() bool {
return seg.addressSegmentInternal.IsZero()
}
// IncludesZero returns whether this segment includes the value of zero within its range.
func (seg *ipAddressSegmentInternal) IncludesZero() bool {
return seg.addressSegmentInternal.IncludesZero()
}
// IsMax returns whether this segment matches exactly the maximum possible value, the value whose bits are all ones.
func (seg *ipAddressSegmentInternal) IsMax() bool {
return seg.addressSegmentInternal.IsMax()
}
// IncludesMax returns whether this segment includes the max value, the value whose bits are all ones, within its range.
func (seg *ipAddressSegmentInternal) IncludesMax() bool {
return seg.addressSegmentInternal.IncludesMax()
}
// IsFullRange returns whether the segment range includes all possible values for its bit length.
//
// This is true if and only if both IncludesZero and IncludesMax return true.
func (seg *ipAddressSegmentInternal) IsFullRange() bool {
return seg.addressSegmentInternal.IsFullRange()
}
// ContainsPrefixBlock returns whether the division range includes the block of values for the given prefix length.
func (seg *ipAddressSegmentInternal) ContainsPrefixBlock(prefixLen BitCount) bool {
return seg.addressSegmentInternal.ContainsPrefixBlock(prefixLen)
}
// ContainsSinglePrefixBlock returns whether the segment range matches exactly the block of values for the given prefix length and has just a single prefix for that prefix length.
func (seg *ipAddressSegmentInternal) ContainsSinglePrefixBlock(prefixLen BitCount) bool {
return seg.addressSegmentInternal.ContainsSinglePrefixBlock(prefixLen)
}
// GetMinPrefixLenForBlock returns the smallest prefix length such that this segment includes the block of all values for that prefix length.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use GetPrefixLenForSingleBlock to avoid the case of multiple prefix values.
//
// If this segment represents a single value, this returns the bit count.
func (seg *ipAddressSegmentInternal) GetMinPrefixLenForBlock() BitCount {
return seg.addressSegmentInternal.GetMinPrefixLenForBlock()
}
// GetPrefixLenForSingleBlock returns a prefix length for which there is only one prefix in this segment,
// and the range of values in this segment matches the block of all values for that prefix.
//
// If the range of segment values can be described this way, then this method returns the same value as GetMinPrefixLenForBlock.
//
// If no such prefix length exists, returns nil.
//
// If this segment represents a single value, this returns the bit count of the segment.
func (seg *ipAddressSegmentInternal) GetPrefixLenForSingleBlock() PrefixLen {
return seg.addressSegmentInternal.GetPrefixLenForSingleBlock()
}
// IsSinglePrefix determines if the segment has a single prefix value for the given prefix length. You can call GetPrefixCountLen to get the count of prefixes.
func (seg *ipAddressSegmentInternal) IsSinglePrefix(divisionPrefixLength BitCount) bool {
return seg.addressSegmentInternal.IsSinglePrefix(divisionPrefixLength)
}
// PrefixContains returns whether the prefix values in the prefix of the given segment are also prefix values in this segment.
// It returns whether the prefix of this segment contains the prefix of the given segment.
func (seg *ipAddressSegmentInternal) PrefixContains(other AddressSegmentType, prefixLength BitCount) bool {
return seg.addressSegmentInternal.PrefixContains(other, prefixLength)
}
// PrefixEqual returns whether the prefix bits of this segment match the same bits of the given segment.
// It returns whether the two segments share the same range of prefix values using the given prefix length.
func (seg *ipAddressSegmentInternal) PrefixEqual(other AddressSegmentType, prefixLength BitCount) bool {
return seg.addressSegmentInternal.PrefixEqual(other, prefixLength)
}
// GetSegmentValue returns the lower value of the segment value range.
func (seg *ipAddressSegmentInternal) GetSegmentValue() SegInt {
return seg.addressSegmentInternal.GetSegmentValue()
}
// GetUpperSegmentValue returns the upper value of the segment value range.
func (seg *ipAddressSegmentInternal) GetUpperSegmentValue() SegInt {
return seg.addressSegmentInternal.GetUpperSegmentValue()
}
// Matches returns true if the segment range matches the given single value.
func (seg *ipAddressSegmentInternal) Matches(value SegInt) bool {
return seg.addressSegmentInternal.Matches(value)
}
// MatchesWithMask applies the mask to this segment and then compares the result with the given value,
// returning true if the range of the resulting segment matches that single value.
func (seg *ipAddressSegmentInternal) MatchesWithMask(value, mask SegInt) bool {
return seg.addressSegmentInternal.MatchesWithMask(value, mask)
}
// MatchesValsWithMask applies the mask to this segment and then compares the result with the given values,
// returning true if the range of the resulting segment matches the given range.
func (seg *ipAddressSegmentInternal) MatchesValsWithMask(lowerValue, upperValue, mask SegInt) bool {
return seg.addressSegmentInternal.MatchesValsWithMask(lowerValue, upperValue, mask)
}
// GetPrefixCountLen returns the count of the number of distinct prefix values for the given prefix length in the range of values of this segment.
func (seg *ipAddressSegmentInternal) GetPrefixCountLen(segmentPrefixLength BitCount) *big.Int {
return seg.addressSegmentInternal.GetPrefixCountLen(segmentPrefixLength)
}
// GetPrefixValueCountLen returns the same value as GetPrefixCountLen as an integer.
func (seg *ipAddressSegmentInternal) GetPrefixValueCountLen(segmentPrefixLength BitCount) SegIntCount {
return seg.addressSegmentInternal.GetPrefixValueCountLen(segmentPrefixLength)
}
// GetValueCount returns the same value as GetCount as an integer.
func (seg *ipAddressSegmentInternal) GetValueCount() SegIntCount {
return seg.addressSegmentInternal.GetValueCount()
}
// GetMaxValue gets the maximum possible value for this type or version of segment, determined by the number of bits.
//
// For the highest range value of this particular segment, use GetUpperSegmentValue.
func (seg *ipAddressSegmentInternal) GetMaxValue() SegInt {
return seg.addressSegmentInternal.GetMaxValue()
}
// TestBit returns true if the bit in the lower value of this segment at the given index is 1, where index 0 refers to the least significant bit.
// In other words, it computes (bits & (1 << n)) != 0), using the lower value of this section.
// TestBit will panic if n < 0, or if it matches or exceeds the bit count of this item.
func (seg *ipAddressSegmentInternal) TestBit(n BitCount) bool {
return seg.addressSegmentInternal.TestBit(n)
}
// IsOneBit returns true if the bit in the lower value of this segment at the given index is 1, where index 0 refers to the most significant bit.
// IsOneBit will panic if bitIndex is less than zero, or if it is larger than the bit count of this item.
func (seg *ipAddressSegmentInternal) IsOneBit(segmentBitIndex BitCount) bool {
return seg.addressSegmentInternal.IsOneBit(segmentBitIndex)
}
// ToNormalizedString produces a string that is consistent for all address segments of the same type and version.
// IPv4 segments use base 10, while IPv6 segments use base 16.
func (seg *ipAddressSegmentInternal) ToNormalizedString() string {
return seg.addressSegmentInternal.ToNormalizedString()
}
// ToHexString writes this address segment as a single hexadecimal value (possibly two values if a range that is not a prefixed block),
// the number of digits according to the bit count, with or without a preceding "0x" prefix.
//
// For segments, the error is always nil.
func (seg *ipAddressSegmentInternal) ToHexString(with0xPrefix bool) (string, addrerr.IncompatibleAddressError) {
return seg.addressSegmentInternal.ToHexString(with0xPrefix)
}
// ReverseBits returns a segment with the bits reversed.
//
// If this segment represents a range of values that cannot be reversed, then this returns an error.
//
// To be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
// Otherwise the result is not contiguous and thus cannot be represented by a sequential range of values.
//
// If perByte is true, the bits are reversed within each byte, otherwise all the bits are reversed.
func (seg *ipAddressSegmentInternal) ReverseBits(perByte bool) (res *AddressSegment, err addrerr.IncompatibleAddressError) {
return seg.addressSegmentInternal.ReverseBits(perByte)
}
// ReverseBytes returns a segment with the bytes reversed.
//
// If this segment represents a range of values that cannot be reversed, then this returns an error.
//
// To be reversible, a range must include all values except possibly the largest and/or smallest, which reverse to themselves.
// Otherwise the result is not contiguous and thus cannot be represented by a sequential range of values.
func (seg *ipAddressSegmentInternal) ReverseBytes() (res *AddressSegment, err addrerr.IncompatibleAddressError) {
return seg.addressSegmentInternal.ReverseBytes()
}
//// end needed for godoc / pkgsite
// IPAddressSegment represents a single segment of an IP address. An IP segment contains a single value or a range of sequential values, a prefix length, and it has an assigned bit length.
//
// For IPv4, segments are 1 byte. For IPv6, they are two bytes.
//
// IPAddressSegment objects are immutable and thus also concurrency-safe.
//
// See AddressSegment for more details regarding segments.
type IPAddressSegment struct {
ipAddressSegmentInternal
}
// GetLower returns a segment representing just the lowest value in the range, which will be the same segment if it represents a single value.
func (seg *IPAddressSegment) GetLower() *IPAddressSegment {
return seg.getLower().ToIP()
}
// GetUpper returns a segment representing just the highest value in the range, which will be the same segment if it represents a single value.
func (seg *IPAddressSegment) GetUpper() *IPAddressSegment {
return seg.getUpper().ToIP()
}
// IsMultiple returns whether this segment represents multiple values.
func (seg *IPAddressSegment) IsMultiple() bool {
return seg != nil && seg.isMultiple()
}
// GetCount returns the count of possible distinct values for this item.
// If not representing multiple values, the count is 1.
//
// For instance, a segment with the value range of 3-7 has count 5.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (seg *IPAddressSegment) GetCount() *big.Int {
if seg == nil {
return bigZero()
}
return seg.getCount()
}
// Contains returns whether this is same type and version as the given segment and whether it contains all values in the given segment.
func (seg *IPAddressSegment) Contains(other AddressSegmentType) bool {
if seg == nil {
return other == nil || other.ToSegmentBase() == nil
}
return seg.contains(other)
}
// Equal returns whether the given segment is equal to this segment.
// Two segments are equal if they match:
// - type/version IPv4, IPv6
// - value range
// Prefix lengths are ignored.
func (seg *IPAddressSegment) Equal(other AddressSegmentType) bool {
if seg == nil {
return other == nil || other.ToDiv() == nil
//return seg.getAddrType() == zeroType && other.(StandardDivisionType).ToDiv() == nil
}
return seg.equal(other)
}
// Compare returns a negative integer, zero, or a positive integer if this address segment is less than, equal, or greater than the given item.
// Any address item is comparable to any other. All address items use CountComparator to compare.
func (seg *IPAddressSegment) Compare(item AddressItem) int {
return CountComparator.Compare(seg, item)
}
// CompareSize compares the counts of two items, the number of individual values within.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether this represents more individual values than another.
//
// CompareSize returns a positive integer if this segment has a larger count than the item given, zero if they are the same, or a negative integer if the other has a larger count.
func (seg *IPAddressSegment) CompareSize(other AddressItem) int {
if seg == nil {
if isNilItem(other) {
return 0
}
// we have size 0, other has size >= 1
return -1
}
return seg.compareSize(other)
}
// ContainsPrefixBlock returns whether the division range includes the block of values for the given prefix length.
func (seg *IPAddressSegment) ContainsPrefixBlock(divisionPrefixLen BitCount) bool {
return seg.containsPrefixBlock(divisionPrefixLen)
}
// ToPrefixedNetworkSegment returns a segment with the network bits matching this segment but the host bits converted to zero.
// The new segment will be assigned the given prefix length.
func (seg *IPAddressSegment) ToPrefixedNetworkSegment(segmentPrefixLength PrefixLen) *IPAddressSegment {
return seg.toPrefixedNetworkDivision(segmentPrefixLength).ToIP()
}
// ToNetworkSegment returns a segment with the network bits matching this segment but the host bits converted to zero.
// The new segment will have no assigned prefix length.
func (seg *IPAddressSegment) ToNetworkSegment(segmentPrefixLength PrefixLen) *IPAddressSegment {
return seg.toNetworkDivision(segmentPrefixLength, false).ToIP()
}
// ToPrefixedHostSegment returns a segment with the host bits matching this segment but the network bits converted to zero.
// The new segment will be assigned the given prefix length.
func (seg *IPAddressSegment) ToPrefixedHostSegment(segmentPrefixLength PrefixLen) *IPAddressSegment {
return seg.toPrefixedHostDivision(segmentPrefixLength).ToIP()
}
// ToHostSegment returns a segment with the host bits matching this segment but the network bits converted to zero.
// The new segment will have no assigned prefix length.
func (seg *IPAddressSegment) ToHostSegment(segmentPrefixLength PrefixLen) *IPAddressSegment {
return seg.toHostDivision(segmentPrefixLength, false).ToIP()
}
// Iterator provides an iterator to iterate through the individual address segments of this address segment.
//
// When iterating, the prefix length is preserved. Remove it using WithoutPrefixLen prior to iterating if you wish to drop it from all individual address segments.
//
// Call IsMultiple to determine if this instance represents multiple address segments, or GetValueCount for the count.
func (seg *IPAddressSegment) Iterator() Iterator[*IPAddressSegment] {
if seg == nil {
return ipSegmentIterator{nilSegIterator()}
}
return ipSegmentIterator{seg.iterator()}
}
// PrefixBlockIterator provides an iterator to iterate through the individual prefix blocks, one for each prefix of this address segment.
// Each iterated address segment will be a prefix block with the same prefix length as this address segment.
//
// If this address segment has no prefix length, then this is equivalent to Iterator.
func (seg *IPAddressSegment) PrefixBlockIterator() Iterator[*IPAddressSegment] {
return ipSegmentIterator{seg.prefixBlockIterator()}
}
// PrefixedBlockIterator provides an iterator to iterate through the individual prefix blocks of the given prefix length in this segment,
// one for each prefix of this address or subnet.
//
// It is similar to PrefixBlockIterator except that this method allows you to specify the prefix length.
func (seg *IPAddressSegment) PrefixedBlockIterator(segmentPrefixLen BitCount) Iterator[*IPAddressSegment] {
return ipSegmentIterator{seg.prefixedBlockIterator(segmentPrefixLen)}
}
// PrefixIterator provides an iterator to iterate through the individual prefixes of this segment,
// each iterated element spanning the range of values for its prefix.
//
// It is similar to the prefix block iterator, except for possibly the first and last iterated elements, which might not be prefix blocks,
// instead constraining themselves to values from this segment.
//
// If this address segment has no prefix length, then this is equivalent to Iterator.
func (seg *IPAddressSegment) PrefixIterator() Iterator[*IPAddressSegment] {
return ipSegmentIterator{seg.prefixIterator()}
}
// IsPrefixed returns whether this section has an associated prefix length.
func (seg *IPAddressSegment) IsPrefixed() bool {
return seg != nil && seg.isPrefixed()
}
// WithoutPrefixLen returns a segment with the same value range but without a prefix length.
func (seg *IPAddressSegment) WithoutPrefixLen() *IPAddressSegment {
if !seg.IsPrefixed() {
return seg
}
return seg.withoutPrefixLen()
}
// IsIPv4 returns true if this segment originated as an IPv4 segment. If so, use ToIPv4 to convert back to the IPv4-specific type.
func (seg *IPAddressSegment) IsIPv4() bool {
return seg != nil && seg.matchesIPv4Segment()
}
// IsIPv6 returns true if this segment originated as an IPv6 segment. If so, use ToIPv6 to convert back to the IPv6-specific type.
func (seg *IPAddressSegment) IsIPv6() bool {
return seg != nil && seg.matchesIPv6Segment()
}
// ToDiv converts to an AddressDivision, a polymorphic type usable with all address segments and divisions.
// Afterwards, you can convert back with ToIP.
//
// ToDiv can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *IPAddressSegment) ToDiv() *AddressDivision {
return seg.ToSegmentBase().ToDiv()
}
// ToSegmentBase converts to an AddressSegment, a polymorphic type usable with all address segments.
// Afterwards, you can convert back with ToIP.
//
// ToSegmentBase can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *IPAddressSegment) ToSegmentBase() *AddressSegment {
return (*AddressSegment)(unsafe.Pointer(seg))
}
// ToIPv4 converts to an IPv4AddressSegment if this segment originated as an IPv4 segment.
// If not, ToIPv4 returns nil.
//
// ToIPv4 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *IPAddressSegment) ToIPv4() *IPv4AddressSegment {
if seg.IsIPv4() {
return (*IPv4AddressSegment)(seg)
}
return nil
}
// ToIPv6 converts to an IPv6AddressSegment if this segment originated as an IPv6 segment.
// If not, ToIPv6 returns nil.
//
// ToIPv6 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (seg *IPAddressSegment) ToIPv6() *IPv6AddressSegment {
if seg.IsIPv6() {
return (*IPv6AddressSegment)(seg)
}
return nil
}
// GetString produces a normalized string to represent the segment.
// If the segment is a CIDR network prefix block for its prefix length, then the string contains only the lower value of the block range.
// Otherwise, the explicit range will be printed.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (seg *IPAddressSegment) GetString() string {
if seg == nil {
return nilString()
}
return seg.getString()
}
// GetWildcardString produces a normalized string to represent the segment, favouring wildcards and range characters while ignoring any network prefix length.
// The explicit range of a range-valued segment will be printed.
//
// The string returned is useful in the context of creating strings for address sections or full addresses,
// in which case the radix and the bit-length can be deduced from the context.
// The String method produces strings more appropriate when no context is provided.
func (seg *IPAddressSegment) GetWildcardString() string {
if seg == nil {
return nilString()
}
return seg.getWildcardString()
}
// String produces a string that is useful when a segment string is provided with no context.
// If the segment was originally constructed as an IPv4 address segment it uses decimal, otherwise hexadecimal.
// It uses a string prefix for hex ("0x"), and does not use the wildcard '*', because division size is variable, so '*' is ambiguous.
// GetWildcardString is more appropriate in context with other segments or divisions. It does not use a string prefix and uses '*' for full-range segments.
// GetString is more appropriate in context with prefix lengths, it uses zeros instead of wildcards with full prefix block ranges alongside prefix lengths.
func (seg *IPAddressSegment) String() string {
if seg == nil {
return nilString()
}
return seg.toString()
}
|