1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
|
//
// Copyright 2020-2022 Sean C Foley
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package ipaddr
import (
"fmt"
"math/big"
"math/bits"
"net"
"net/netip"
"sort"
"strings"
"unsafe"
)
// DefaultSeqRangeSeparator is the low to high value separator used when creating strings for IP ranges.
const DefaultSeqRangeSeparator = " -> "
type rangeCache struct {
cachedCount *big.Int
}
// SequentialRangeConstraint is the generic type constraint for an IP address sequential range.
type SequentialRangeConstraint[T any] interface {
AddressType // cannot use IPAddressType here because ToAddressString() results in a circular dependency, SequentialRangeConstraint -> IPAddressType -> IPAddressString -> SequentialRange -> SequentialRangeConstraint
IPAddressRange
comparable
ToIP() *IPAddress
PrefixedConstraint[T]
Increment(int64) T
GetLower() T
GetUpper() T
CoverWithPrefixBlockTo(T) T
SpanWithPrefixBlocksTo(T) []T
SpanWithSequentialBlocksTo(T) []T
SpanWithPrefixBlocks() []T
IncludesZeroHostLen(BitCount) bool
IncludesMaxHostLen(BitCount) bool
Format(state fmt.State, verb rune)
rangeIterator(upper T,
valsAreMultiple bool,
prefixLen PrefixLen,
segProducer func(addr *IPAddress, index int) *IPAddressSegment,
segmentIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
segValueComparator func(seg1, seg2 *IPAddress, index int) bool,
networkSegmentIndex,
hostSegmentIndex int,
prefixedSegIteratorProducer func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment],
) Iterator[T]
equalsSameVersion(AddressType) bool
getLowestHighestAddrs() (lower, upper T)
getAddrType() addrType
}
var (
_ SequentialRange[*IPAddress]
_ SequentialRange[*IPv4Address]
_ SequentialRange[*IPv6Address]
)
// SequentialRange represents an arbitrary range of consecutive IP addresses, from a lower address to an upper address, inclusive.
//
// For the generic type T you can choose *IPAddress, *IPv4Address, or *IPv6Address.
//
// This type allows the representation of any sequential address range, including those that cannot be represented by [IPAddress] or [IPAddressString].
//
// [IPAddress] and [IPAddressString] allow you to specify a range of values for each segment, allowing
// for single addresses, any address CIDR prefix subnet (for example, "1.2.0.0/16" or "1:2:3:4::/64") or any subnet that can be represented with segment ranges (for example, "1.2.0-255.*" or "1:2:3:4:*").
// See [IPAddressString] for details.
// [IPAddressString] and [IPAddress] cover all potential subnets and addresses that can be represented by a single address string of 4 or less segments for IPv4, and 8 or less segments for IPv6.
// In contrast, this type covers any sequential address range.
//
// String representations of this type include the full address for both the lower and upper bounds of the range.
//
// The zero value is a range from the zero-valued [IPAddress] to itself.
//
// For a range of type SequentialRange[*IPAddress], the range spans from an IPv4 address to another IPv4 address,
// or from an IPv6 address to another IPv6 address. A sequential range cannot include both IPv4 and IPv6 addresses.
type SequentialRange[T SequentialRangeConstraint[T]] struct {
lower,
upper T
isMultiple bool // set on construction, even for zero values
cache *rangeCache
}
func nilConvert[T SequentialRangeConstraint[T]]() (t T) {
anyt := any(t)
if _, ok := anyt.(*IPv6Address); ok {
t = any(zeroIPv6).(T)
} else if _, ok := anyt.(*IPv4Address); ok {
t = any(zeroIPv4).(T)
} else if _, ok := anyt.(*IPAddress); ok {
t = any(zeroIPAddr).(T)
}
return
}
func (rng *SequentialRange[T]) init() *SequentialRange[T] {
var t T
if rng.lower == t { // nil for pointers
t = nilConvert[T]()
zeroSeqRange := newSequRange(t, t)
return zeroSeqRange
}
return rng
}
// GetIPVersion returns the IP version of this IP address sequential range
func (rng *SequentialRange[T]) GetIPVersion() IPVersion {
return rng.init().lower.GetIPVersion()
}
func (rng *SequentialRange[T]) getCachedCount(copy bool) (res *big.Int) {
cache := rng.cache
count := (*big.Int)(atomicLoadPointer((*unsafe.Pointer)(unsafe.Pointer(&cache.cachedCount))))
if count == nil {
if !rng.IsMultiple() {
count = bigOne()
} else {
lower := rng.lower
upper := rng.upper
if ipv4Lower, ok := any(lower).(*IPv4Address); ok {
ipv4Upper := any(upper).(*IPv4Address)
val := int64(ipv4Upper.Uint32Value()) - int64(ipv4Lower.Uint32Value()) + 1
count = new(big.Int).SetInt64(val)
} else {
count = upper.GetValue()
res = lower.GetValue()
count.Sub(count, res).Add(count, bigOneConst())
res.Set(count)
}
}
dataLoc := (*unsafe.Pointer)(unsafe.Pointer(&cache.cachedCount))
atomicStorePointer(dataLoc, unsafe.Pointer(count))
}
if res == nil {
if copy {
res = new(big.Int).Set(count)
} else {
res = count
}
}
return
}
// GetPrefixCountLen returns the count of the number of distinct values within the prefix part of the range of addresses.
func (rng *SequentialRange[T]) GetPrefixCountLen(prefixLen BitCount) *big.Int {
if !rng.IsMultiple() { // also checks for zero-ranges
return bigOne()
}
bitCount := rng.lower.GetBitCount()
if prefixLen <= 0 {
return bigOne()
} else if prefixLen >= bitCount {
return rng.GetCount()
}
shiftAdjustment := bitCount - prefixLen
lower := rng.lower
if ipv4Lower, ok := any(lower).(*IPv4Address); ok {
ipv4Upper := any(rng.upper).(*IPv4Address)
upperAdjusted := ipv4Upper.Uint32Value() >> uint(shiftAdjustment)
lowerAdjusted := ipv4Lower.Uint32Value() >> uint(shiftAdjustment)
result := int64(upperAdjusted) - int64(lowerAdjusted) + 1
return new(big.Int).SetInt64(result)
}
upperVal := rng.upper.GetValue()
ushiftAdjustment := uint(shiftAdjustment)
upperVal.Rsh(upperVal, ushiftAdjustment)
lowerVal := lower.GetValue()
lowerVal.Rsh(lowerVal, ushiftAdjustment)
upperVal.Sub(upperVal, lowerVal).Add(upperVal, bigOneConst())
return upperVal
}
// IsSequential returns whether the address or subnet represents a range of values that are sequential.
//
// IP address sequential ranges are sequential by definition, so this returns true.
func (rng *SequentialRange[T]) IsSequential() bool {
return true
}
// ContainsPrefixBlock returns whether the range contains the block of addresses for the given prefix length.
//
// Unlike ContainsSinglePrefixBlock, whether there are multiple prefix values for the given prefix length makes no difference.
//
// Use GetMinPrefixLenForBlock to determine whether there is a prefix length for which this method returns true.
func (rng *SequentialRange[T]) ContainsPrefixBlock(prefixLen BitCount) bool {
lower := rng.lower
upper := rng.upper
if lower == upper { // also handles zero-value case nil lower and upper
return true
}
prefixLen = checkSubnet(lower, prefixLen)
divCount := lower.GetDivisionCount()
bitsPerSegment := lower.GetBitsPerSegment()
i := getHostSegmentIndex(prefixLen, lower.GetBytesPerSegment(), bitsPerSegment)
if i < divCount {
div := lower.GetGenericSegment(i)
upperDiv := upper.GetGenericSegment(i)
segmentPrefixLength := getPrefixedSegmentPrefixLength(bitsPerSegment, prefixLen, i)
if !isPrefixBlockVals(DivInt(div.GetSegmentValue()), DivInt(upperDiv.GetSegmentValue()), segmentPrefixLength.bitCount(), div.GetBitCount()) {
return false
}
for i++; i < divCount; i++ {
div = lower.GetGenericSegment(i)
upperDiv = upper.GetGenericSegment(i)
//is full range?
if !div.IncludesZero() || !upperDiv.IncludesMax() {
return false
}
}
}
return true
}
// ContainsSinglePrefixBlock returns whether this address range contains a single prefix block for the given prefix length.
//
// This means there is only one prefix value for the given prefix length, and it also contains the full prefix block for that prefix, all addresses with that prefix.
//
// Use GetPrefixLenForSingleBlock to determine whether there is a prefix length for which this method returns true.
func (rng *SequentialRange[T]) ContainsSinglePrefixBlock(prefixLen BitCount) bool {
lower := rng.lower
upper := rng.upper
if lower == upper { // also handles zero-value case nil lower and upper
return true
}
prefixLen = checkSubnet(lower, prefixLen)
var prevBitCount BitCount
divCount := lower.GetDivisionCount()
for i := 0; i < divCount; i++ {
div := lower.GetGenericSegment(i)
upperDiv := upper.GetGenericSegment(i)
bitCount := div.GetBitCount()
totalBitCount := bitCount + prevBitCount
if prefixLen >= totalBitCount {
if !segValSame(div.GetSegmentValue(), upperDiv.GetSegmentValue()) {
return false
}
} else {
divPrefixLen := prefixLen - prevBitCount
if !isPrefixBlockVals(DivInt(div.GetSegmentValue()), DivInt(upperDiv.GetSegmentValue()), divPrefixLen, div.GetBitCount()) {
return false
}
for i++; i < divCount; i++ {
div = lower.GetGenericSegment(i)
upperDiv = upper.GetGenericSegment(i)
if !div.IncludesZero() || !upperDiv.IncludesMax() {
return false
}
}
return true
}
prevBitCount = totalBitCount
}
return true
}
// GetPrefixLenForSingleBlock returns a prefix length for which there is only one prefix in this range,
// and the range of values in this range matches the block of all values for that prefix.
//
// If the range can be described this way, then this method returns the same value as GetMinPrefixLenForBlock.
//
// If no such prefix length exists, returns nil.
//
// If this item represents a single value, this returns the bit count.
func (rng *SequentialRange[T]) GetPrefixLenForSingleBlock() PrefixLen {
rng = rng.init()
lower := rng.lower
upper := rng.upper
count := lower.GetSegmentCount()
segBitCount := lower.GetBitsPerSegment()
maxSegValue := ^(^SegInt(0) << uint(segBitCount))
totalPrefix := BitCount(0)
for i := 0; i < count; i++ {
lowerSeg := lower.GetGenericSegment(i)
upperSeg := upper.GetGenericSegment(i)
segPrefix := getPrefixLenForSingleBlock(DivInt(lowerSeg.GetSegmentValue()), DivInt(upperSeg.GetSegmentValue()), segBitCount)
if segPrefix == nil {
return nil
}
dabits := segPrefix.bitCount()
totalPrefix += dabits
if dabits < segBitCount {
//remaining segments must be full range or we return nil
for i++; i < count; i++ {
lowerSeg = lower.GetGenericSegment(i)
upperSeg = upper.GetGenericSegment(i)
if lowerSeg.GetSegmentValue() != 0 {
return nil
} else if upperSeg.GetSegmentValue() != maxSegValue {
return nil
}
}
}
}
return cacheBitCount(totalPrefix)
}
// GetMinPrefixLenForBlock returns the smallest prefix length such that this includes the block of addresses for that prefix length.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use GetPrefixLenForSingleBlock to avoid the case of multiple prefix values.
func (rng *SequentialRange[T]) GetMinPrefixLenForBlock() BitCount {
rng = rng.init()
lower := rng.lower
upper := rng.upper
count := lower.GetSegmentCount()
totalPrefix := lower.GetBitCount()
segBitCount := lower.GetBitsPerSegment()
for i := count - 1; i >= 0; i-- {
lowerSeg := lower.GetGenericSegment(i)
upperSeg := upper.GetGenericSegment(i)
segPrefix := getMinPrefixLenForBlock(DivInt(lowerSeg.GetSegmentValue()), DivInt(upperSeg.GetSegmentValue()), segBitCount)
if segPrefix == segBitCount {
break
} else {
totalPrefix -= segBitCount
if segPrefix != 0 {
totalPrefix += segPrefix
break
}
}
}
return totalPrefix
}
// IsZero returns whether this sequential range spans from the zero address to itself.
func (rng *SequentialRange[T]) IsZero() bool {
return rng.IncludesZero() && !rng.IsMultiple()
}
// IncludesZero returns whether this sequential range's lower value is the zero address.
func (rng *SequentialRange[T]) IncludesZero() bool {
return rng.init().lower.IsZero()
}
// IsMax returns whether this sequential range spans from the max address, the address whose bits are all ones, to itself.
func (rng *SequentialRange[T]) IsMax() bool {
return rng.IncludesMax() && !rng.IsMultiple()
}
// IncludesMax returns whether this sequential range's upper value is the max value, the value whose bits are all ones.
func (rng *SequentialRange[T]) IncludesMax() bool {
return rng.init().upper.IsMax()
}
// IsFullRange returns whether this address range covers the entire address space of this IP address version.
//
// This is true if and only if both IncludesZero and IncludesMax return true.
func (rng *SequentialRange[T]) IsFullRange() bool {
return rng.IncludesZero() && rng.IncludesMax()
}
// GetCount returns the count of addresses that this sequential range spans.
//
// Use IsMultiple if you simply want to know if the count is greater than 1.
func (rng *SequentialRange[T]) GetCount() *big.Int {
if rng == nil {
return bigZero()
}
return rng.init().getCachedCount(true)
}
// IsMultiple returns whether this range represents a range of multiple addresses.
func (rng *SequentialRange[T]) IsMultiple() bool {
return rng != nil && rng.isMultiple
}
// String implements the [fmt.Stringer] interface,
// returning the lower address canonical string, followed by the default separator " -> ",
// followed by the upper address canonical string.
// It returns "<nil>" if the receiver is a nil pointer.
func (rng *SequentialRange[T]) String() string {
if rng == nil {
return nilString()
}
return rng.ToString(T.String, DefaultSeqRangeSeparator, T.String)
}
// Format implements [fmt.Formatter] interface.
//
// It prints the string as "lower -> upper" where lower and upper are the formatted strings for the lowest and highest addresses in the range, given by GetLower and GetUpper.
// The formats, flags, and other specifications supported are those supported by Format in IPAddress.
func (rng SequentialRange[T]) Format(state fmt.State, verb rune) {
rngPtr := rng.init()
rngPtr.lower.Format(state, verb)
_, _ = state.Write([]byte(DefaultSeqRangeSeparator))
rngPtr.upper.Format(state, verb)
}
// ToString produces a customized string for the address range.
func (rng *SequentialRange[T]) ToString(lowerStringer func(T) string, separator string, upperStringer func(T) string) string {
if rng == nil {
return nilString()
}
rng = rng.init()
builder := strings.Builder{}
str1, str2, str3 := lowerStringer(rng.lower), separator, upperStringer(rng.upper)
builder.Grow(len(str1) + len(str2) + len(str3))
builder.WriteString(str1)
builder.WriteString(str2)
builder.WriteString(str3)
return builder.String()
}
// ToNormalizedString produces a normalized string for the address range.
// It has the format "lower -> upper" where lower and upper are the normalized strings for the lowest and highest addresses in the range, given by GetLower and GetUpper.
func (rng *SequentialRange[T]) ToNormalizedString() string {
return rng.ToString(T.ToNormalizedString, DefaultSeqRangeSeparator, T.ToNormalizedString)
}
// ToCanonicalString produces a canonical string for the address range.
// It has the format "lower -> upper" where lower and upper are the canonical strings for the lowest and highest addresses in the range, given by GetLower and GetUpper.
func (rng *SequentialRange[T]) ToCanonicalString() string {
return rng.ToString(T.ToCanonicalString, DefaultSeqRangeSeparator, T.ToCanonicalString)
}
// GetLowerIPAddress satisfies the IPAddressRange interface, returning the lower address in the range, same as GetLower.
func (rng *SequentialRange[T]) GetLowerIPAddress() *IPAddress {
return rng.GetLower().ToIP()
}
// GetUpperIPAddress satisfies the IPAddressRange interface, returning the upper address in the range, same as GetUpper.
func (rng *SequentialRange[T]) GetUpperIPAddress() *IPAddress {
return rng.GetUpper().ToIP()
}
// GetLower returns the lowest address in the range, the one with the lowest numeric value.
func (rng *SequentialRange[T]) GetLower() T {
return rng.init().lower
}
// GetUpper returns the highest address in the range, the one with the highest numeric value.
func (rng *SequentialRange[T]) GetUpper() T {
return rng.init().upper
}
// GetBitCount returns the number of bits in each address in the range.
func (rng *SequentialRange[T]) GetBitCount() BitCount {
return rng.GetLower().GetBitCount()
}
// GetByteCount returns the number of bytes in each address in the range.
func (rng *SequentialRange[T]) GetByteCount() int {
return rng.GetLower().GetByteCount()
}
// GetNetIP returns the lower IP address in the range as a net.IP.
func (rng *SequentialRange[T]) GetNetIP() net.IP {
return rng.GetLower().GetNetIP()
}
// GetUpperNetIP returns the upper IP address in the range as a net.IP.
func (rng *SequentialRange[T]) GetUpperNetIP() net.IP {
return rng.GetUpper().GetUpperNetIP()
}
// GetNetNetIPAddr returns the lowest address in this address range as a netip.Addr.
func (rng *SequentialRange[T]) GetNetNetIPAddr() netip.Addr {
return rng.GetLower().GetNetNetIPAddr()
}
// GetUpperNetNetIPAddr returns the highest address in this address range as a netip.Addr.
func (rng *SequentialRange[T]) GetUpperNetNetIPAddr() netip.Addr {
return rng.GetUpper().GetUpperNetNetIPAddr()
}
// CopyNetIP copies the value of the lower IP address in the range into a net.IP.
//
// If the value can fit in the given net.IP slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (rng *SequentialRange[T]) CopyNetIP(bytes net.IP) net.IP {
return rng.GetLower().CopyNetIP(bytes) // this changes the arg to 4 bytes if 16 bytes and ipv4
}
// CopyUpperNetIP copies the upper IP address in the range into a net.IP.
//
// If the value can fit in the given net.IP slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (rng *SequentialRange[T]) CopyUpperNetIP(bytes net.IP) net.IP {
return rng.GetUpper().CopyUpperNetIP(bytes) // this changes the arg to 4 bytes if 16 bytes and ipv4
}
// Bytes returns the lowest address in the range, the one with the lowest numeric value, as a byte slice.
func (rng *SequentialRange[T]) Bytes() []byte {
return rng.GetLower().Bytes()
}
// CopyBytes copies the value of the lowest address in the range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (rng *SequentialRange[T]) CopyBytes(bytes []byte) []byte {
return rng.GetLower().CopyBytes(bytes)
}
// UpperBytes returns the highest address in the range, the one with the highest numeric value, as a byte slice.
func (rng *SequentialRange[T]) UpperBytes() []byte {
return rng.GetUpper().UpperBytes()
}
// CopyUpperBytes copies the value of the highest address in the range into a byte slice.
//
// If the value can fit in the given slice, the value is copied into that slice and a length-adjusted sub-slice is returned.
// Otherwise, a new slice is created and returned with the value.
func (rng *SequentialRange[T]) CopyUpperBytes(bytes []byte) []byte {
return rng.GetUpper().CopyUpperBytes(bytes)
}
// Contains returns whether this range contains all addresses in the given address or subnet.
func (rng *SequentialRange[T]) Contains(other IPAddressType) bool {
if rng == nil {
return other == nil || other.ToAddressBase() == nil
} else if other == nil {
return true
}
otherAddr := other.ToIP()
if otherAddr == nil {
return true
}
rng = rng.init()
return compareLowIPAddressValues(otherAddr.GetLower(), rng.lower) >= 0 &&
compareLowIPAddressValues(otherAddr.GetUpper(), rng.upper) <= 0
}
// ContainsRange returns whether all the addresses in the given sequential range are also contained in this sequential range.
func (rng *SequentialRange[T]) ContainsRange(other IPAddressSeqRangeType) bool {
if rng == nil {
return other == nil || other.ToIP() == nil
} else if other == nil {
return true
}
rng = rng.init()
otherRange := other.ToIP()
if otherRange == nil {
return true
}
return compareLowIPAddressValues(otherRange.GetLower(), rng.lower) >= 0 &&
compareLowIPAddressValues(otherRange.GetUpper(), rng.upper) <= 0
}
// Equal returns whether the given sequential address range is equal to this sequential address range.
// Two sequential address ranges are equal if their lower and upper range boundaries are equal.
func (rng *SequentialRange[T]) Equal(other IPAddressSeqRangeType) bool {
if rng == nil {
return other == nil || other.ToIP() == nil
} else if other == nil {
return false
}
rng = rng.init()
otherRange := other.ToIP()
if otherRange == nil {
return false
}
return rng.lower.Equal(otherRange.GetLower()) && rng.upper.Equal(otherRange.GetUpper())
}
// Compare returns a negative integer, zero, or a positive integer if this sequential address range is less than, equal, or greater than the given item.
// Any address item is comparable to any other. All address items use CountComparator to compare.
func (rng *SequentialRange[T]) Compare(item AddressItem) int {
if rng != nil {
rng = rng.init()
}
return CountComparator.Compare(rng, item)
}
// CompareSize compares the counts of two address ranges or items, the number of individual addresses or items within each.
//
// Rather than calculating counts with GetCount, there can be more efficient ways of determining whether this range spans more individual addresses than another item.
//
// CompareSize returns a positive integer if this range has a larger count than the item given, zero if they are the same, or a negative integer if the other has a larger count.
func (rng *SequentialRange[T]) CompareSize(other AddressItem) int {
if rng == nil {
if isNilItem(other) {
return 0
}
// we have size 0, other has size >= 1
return -1
}
return compareCount(rng, other)
}
// GetValue returns the lowest address in the range, the one with the lowest numeric value, as an integer.
func (rng *SequentialRange[T]) GetValue() *big.Int {
return rng.GetLower().GetValue()
}
// GetUpperValue returns the highest address in the range, the one with the highest numeric value, as an integer.
func (rng *SequentialRange[T]) GetUpperValue() *big.Int {
return rng.GetUpper().GetValue()
}
// Iterator provides an iterator to iterate through the individual addresses of this address range.
//
// Call GetCount for the count.
func (rng *SequentialRange[T]) Iterator() Iterator[T] {
if rng == nil {
return nilIterator[T]()
}
rng = rng.init()
lower := rng.lower
if !rng.isMultiple {
return &singleIterator[T]{original: lower}
}
divCount := lower.GetSegmentCount()
return lower.rangeIterator(
rng.upper,
false,
nil,
(*IPAddress).GetSegment,
func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment] {
return seg.Iterator()
},
func(addr1, addr2 *IPAddress, index int) bool {
return addr1.getSegment(index).getSegmentValue() == addr2.getSegment(index).getSegmentValue()
},
divCount-1,
divCount,
nil)
}
type segPrefData struct {
prefLen PrefixLen
shift BitCount
}
// PrefixBlockIterator provides an iterator to iterate through the individual prefix blocks of the given prefix length,
// one for each prefix of that length in the address range.
func (rng *SequentialRange[T]) PrefixBlockIterator(prefLength BitCount) Iterator[T] {
rng = rng.init()
lower := rng.lower
if !rng.isMultiple {
return &singleIterator[T]{original: lower.ToPrefixBlockLen(prefLength)}
}
prefLength = checkSubnet(lower, prefLength)
bitsPerSegment := lower.GetBitsPerSegment()
bytesPerSegment := lower.GetBytesPerSegment()
segCount := lower.GetSegmentCount()
segPrefs := make([]segPrefData, segCount)
networkSegIndex := getNetworkSegmentIndex(prefLength, bytesPerSegment, bitsPerSegment)
for i := networkSegIndex; i < segCount; i++ {
segPrefLength := getPrefixedSegmentPrefixLength(bitsPerSegment, prefLength, i)
segPrefs[i] = segPrefData{segPrefLength, bitsPerSegment - segPrefLength.bitCount()}
}
hostSegIndex := getHostSegmentIndex(prefLength, bytesPerSegment, bitsPerSegment)
return lower.rangeIterator(
rng.upper,
true,
cacheBitCount(prefLength),
(*IPAddress).GetSegment,
func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment] {
return seg.Iterator()
},
func(addr1, addr2 *IPAddress, index int) bool {
segPref := segPrefs[index]
if segPref.prefLen == nil {
return addr1.GetSegment(index).GetSegmentValue() == addr2.GetSegment(index).GetSegmentValue()
}
shift := segPref.shift
return addr1.GetSegment(index).GetSegmentValue()>>uint(shift) == addr2.GetSegment(index).GetSegmentValue()>>uint(shift)
},
networkSegIndex,
hostSegIndex,
func(seg *IPAddressSegment, index int) Iterator[*IPAddressSegment] {
segPref := segPrefs[index]
segPrefLen := segPref.prefLen
if segPrefLen == nil {
return seg.Iterator()
}
return seg.PrefixedBlockIterator(segPrefLen.bitCount())
},
)
}
// PrefixIterator provides an iterator to iterate through the individual prefixes of the given prefix length in this address range,
// each iterated element spanning the range of values for its prefix.
//
// It is similar to the prefix block iterator, except for possibly the first and last iterated elements, which might not be prefix blocks,
// instead constraining themselves to values from this range.
//
// Since a range between two arbitrary addresses cannot always be represented with a single IPAddress instance,
// the returned iterator iterates through SequentialRange instances.
//
// For instance, if iterating from "1.2.3.4" to "1.2.4.5" with prefix 8, the range shares the same prefix of value 1,
// but the range cannot be represented by the address "1.2.3-4.4-5" which does not include "1.2.3.255" or "1.2.4.0" both of which are in the original range.
// Nor can the range be represented by "1.2.3-4.0-255" which includes "1.2.4.6" and "1.2.3.3", both of which were not in the original range.
// A SequentialRange is thus required to represent that prefixed range.
func (rng *SequentialRange[T]) PrefixIterator(prefLength BitCount) Iterator[*SequentialRange[T]] {
rng = rng.init()
lower := rng.lower
if !rng.isMultiple {
return &singleIterator[*SequentialRange[T]]{original: rng}
}
prefLength = checkSubnet(lower, prefLength)
return &sequRangeIterator[T]{
rng: rng,
creator: newSequRange[T],
prefixBlockIterator: rng.PrefixBlockIterator(prefLength),
prefixLength: prefLength,
}
}
// Overlaps returns true if this sequential range overlaps with the given sequential range.
func (rng *SequentialRange[T]) Overlaps(other *SequentialRange[T]) bool {
rng = rng.init()
return compareLowIPAddressValues(other.GetLower(), rng.upper) <= 0 &&
compareLowIPAddressValues(other.GetUpper(), rng.lower) >= 0
}
// Intersect returns the intersection of this range with the given range, a range which includes those addresses found in both.
func (rng *SequentialRange[T]) Intersect(other *SequentialRange[T]) *SequentialRange[T] {
rng = rng.init()
other = other.init()
otherLower, otherUpper := other.GetLower(), other.GetUpper()
lower, upper := rng.lower, rng.upper
if compareLowIPAddressValues(lower, otherLower) <= 0 {
if compareLowIPAddressValues(upper, otherUpper) >= 0 { // l, ol, ou, u
return other
}
comp := compareLowIPAddressValues(upper, otherLower)
if comp < 0 { // l, u, ol, ou
return nil
}
return newSequRangeUnchecked(otherLower, upper, comp != 0) // l, ol, u, ou
} else if compareLowIPAddressValues(otherUpper, upper) >= 0 {
return rng
}
comp := compareLowIPAddressValues(otherUpper, lower)
if comp < 0 {
return nil
}
return newSequRangeUnchecked(lower, otherUpper, comp != 0)
}
// CoverWithPrefixBlock returns the minimal-size prefix block that covers all the addresses in this range.
// The resulting block will have a larger count than this, unless this range already directly corresponds to a prefix block.
func (rng *SequentialRange[T]) CoverWithPrefixBlock() T {
return rng.GetLower().CoverWithPrefixBlockTo(rng.GetUpper())
}
// SpanWithPrefixBlocks returns an array of prefix blocks that spans the same set of addresses as this range.
func (rng *SequentialRange[T]) SpanWithPrefixBlocks() []T {
return rng.GetLower().SpanWithPrefixBlocksTo(rng.GetUpper())
}
// SpanWithSequentialBlocks produces the smallest slice of sequential blocks that cover the same set of addresses as this range.
// This slice can be shorter than that produced by SpanWithPrefixBlocks and is never longer.
func (rng *SequentialRange[T]) SpanWithSequentialBlocks() []T {
res := rng.GetLower().SpanWithSequentialBlocksTo(rng.GetUpper())
return res
}
// Join joins the receiver with the given ranges into the fewest number of ranges.
// The returned array will be sorted by ascending lowest range value.
// Nil ranges are tolerated, and ignored.
func (rng *SequentialRange[T]) Join(ranges ...*SequentialRange[T]) []*SequentialRange[T] {
ranges = append(append(make([]*SequentialRange[T], 0, len(ranges)+1), ranges...), rng)
return joinRanges(ranges)
}
// JoinTo joins this range to the other if they are contiguous. If this range overlaps with the given range,
// or if the highest value of the lower range is one below the lowest value of the higher range,
// then the two are joined into a new larger range that is returned.
// Otherwise, nil is returned.
func (rng *SequentialRange[T]) JoinTo(other *SequentialRange[T]) *SequentialRange[T] {
rng = rng.init()
other = other.init()
otherLower, otherUpper := other.GetLower(), other.GetUpper()
lower, upper := rng.lower, rng.upper
lowerComp := compareLowIPAddressValues(lower, otherLower)
if !rng.Overlaps(other) {
if lowerComp >= 0 {
if otherUpper.Increment(1).Equal(lower) {
return newSequRangeUnchecked[T](otherLower, upper, true)
}
} else {
if upper.Increment(1).Equal(otherLower) {
return newSequRangeUnchecked[T](lower, otherUpper, true)
}
}
return nil
}
upperComp := compareLowIPAddressValues(upper, otherUpper)
var lowestLower, highestUpper T
if lowerComp >= 0 {
if lowerComp == 0 && upperComp == 0 {
return rng
}
lowestLower = otherLower
} else {
lowestLower = lower
}
if upperComp >= 0 {
highestUpper = upper
} else {
highestUpper = otherUpper
}
return newSequRangeUnchecked(lowestLower, highestUpper, true)
}
// Extend extends this sequential range to include all address in the given range.
// If the argument has a different IP version than this, nil is returned.
// Otherwise, this method returns the range that includes this range, the given range, and all addresses in-between.
func (rng *SequentialRange[T]) Extend(other *SequentialRange[T]) *SequentialRange[T] {
rng = rng.init()
other = other.init()
if !rng.lower.GetIPVersion().Equal(other.lower.GetIPVersion()) {
return nil
}
otherLower, otherUpper := other.GetLower(), other.GetUpper()
lower, upper := rng.lower, rng.upper
lowerComp := compareLowIPAddressValues(lower, otherLower)
upperComp := compareLowIPAddressValues(upper, otherUpper)
if lowerComp > 0 { //
if upperComp <= 0 { // ol l u ou
return other
}
// ol l ou u or ol ou l u
return newSequRangeUnchecked(otherLower, upper, true)
}
// lowerComp <= 0
if upperComp >= 0 { // l ol ou u
return rng
}
return newSequRangeUnchecked(lower, otherUpper, true) // l ol u ou or l u ol ou
}
// Subtract subtracts the given range from the receiver range, to produce either zero, one, or two address ranges that contain the addresses in the receiver range and not in the given range.
// If the result has length 2, the two ranges are ordered by ascending lowest range value.
func (rng *SequentialRange[T]) Subtract(other *SequentialRange[T]) []*SequentialRange[T] {
rng = rng.init()
other = other.init()
otherLower, otherUpper := other.GetLower(), other.GetUpper()
lower, upper := rng.lower, rng.upper
if compareLowIPAddressValues(lower, otherLower) < 0 {
if compareLowIPAddressValues(upper, otherUpper) > 0 { // l ol ou u
return []*SequentialRange[T]{
newSequRangeCheckSize(lower, otherLower.Increment(-1)),
newSequRangeCheckSize(otherUpper.Increment(1), upper),
}
} else {
comp := compareLowIPAddressValues(upper, otherLower)
if comp < 0 { // l u ol ou
return []*SequentialRange[T]{rng}
} else if comp == 0 { // l u == ol ou
return []*SequentialRange[T]{newSequRangeCheckSize(lower, upper.Increment(-1))}
}
return []*SequentialRange[T]{newSequRangeCheckSize(lower, otherLower.Increment(-1))} // l ol u ou
}
} else if compareLowIPAddressValues(otherUpper, upper) >= 0 { // ol l u ou
return make([]*SequentialRange[T], 0, 0)
} else {
comp := compareLowIPAddressValues(otherUpper, lower)
if comp < 0 {
return []*SequentialRange[T]{rng} // ol ou l u
} else if comp == 0 {
return []*SequentialRange[T]{newSequRangeCheckSize(lower.Increment(1), upper)} // ol ou == l u
}
return []*SequentialRange[T]{newSequRangeCheckSize(otherUpper.Increment(1), upper)} // ol l ou u
}
}
// ToKey creates the associated address range key.
// While address ranges can be compared with the Compare or Equal methods as well as various provided instances of AddressComparator,
// they are not comparable with Go operators.
// However, SequentialRangeKey instances are comparable with Go operators, and thus can be used as map keys.
func (rng *SequentialRange[T]) ToKey() SequentialRangeKey[T] {
return newSequentialRangeKey(rng.init())
}
// IsIPv4 returns true if this sequential address range is an IPv4 sequential address range. If so, use ToIPv4 to convert to the IPv4-specific type.
func (rng *SequentialRange[T]) IsIPv4() bool { // returns false when lower is nil
if rng != nil {
t := any(rng.GetLower())
if _, ok := t.(*IPv4Address); ok {
return true
} else if addr, ok := t.(*IPAddress); ok {
return addr.IsIPv4()
}
}
return false
}
// IsIPv6 returns true if this sequential address range is an IPv6 sequential address range. If so, use ToIPv6 to convert to the IPv6-specific type.
func (rng *SequentialRange[T]) IsIPv6() bool { // returns false when lower is nil
if rng != nil {
t := any(rng.GetLower())
if _, ok := t.(*IPv6Address); ok {
return true
} else if addr, ok := t.(*IPAddress); ok {
return addr.IsIPv6()
}
}
return false
}
// ToIPv4 converts to a SequentialRange[*IPv4Address] if this address range is an IPv4 address range.
// If not, ToIPv4 returns nil.
//
// ToIPv4 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (rng *SequentialRange[T]) ToIPv4() *SequentialRange[*IPv4Address] {
if rng != nil {
if ipv4, ok := any(rng).(*SequentialRange[*IPv4Address]); ok {
return ipv4
} else {
t := any(rng.GetLower())
if addr, ok := t.(*IPAddress); ok && addr.IsIPv4() {
t = any(rng.GetUpper())
return newSequRangeUnchecked(addr.ToIPv4(), t.(*IPAddress).ToIPv4(), rng.isMultiple)
}
}
}
return nil
}
// ToIPv6 converts to a SequentialRange[*IPv6Address] if this address range is an IPv6 address range.
// If not, ToIPv6 returns nil.
//
// ToIPv6 can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (rng *SequentialRange[T]) ToIPv6() *SequentialRange[*IPv6Address] {
if rng != nil {
if ipv6, ok := any(rng).(*SequentialRange[*IPv6Address]); ok {
return ipv6
} else {
t := any(rng.GetLower())
if addr, ok := t.(*IPAddress); ok && addr.IsIPv6() {
t = any(rng.GetUpper())
return newSequRangeUnchecked(addr.ToIPv6(), t.(*IPAddress).ToIPv6(), rng.isMultiple)
}
}
}
return nil
}
// ToIP converts to a SequentialRange[*IPAddress], a polymorphic type usable with all IP address sequential ranges.
//
// ToIP can be called with a nil receiver, enabling you to chain this method with methods that might return a nil pointer.
func (rng *SequentialRange[T]) ToIP() *SequentialRange[*IPAddress] {
if rng != nil {
if ip, ok := any(rng).(*SequentialRange[*IPAddress]); ok {
return ip
}
return newSequRangeUnchecked(rng.GetLower().ToIP(), rng.GetUpper().ToIP(), rng.isMultiple)
}
return nil
}
func newSequRangeUnchecked[T SequentialRangeConstraint[T]](lower, upper T, isMult bool) *SequentialRange[T] {
return &SequentialRange[T]{
lower: lower,
upper: upper,
isMultiple: isMult,
cache: &rangeCache{},
}
}
func newSequRangeCheckSize[T SequentialRangeConstraint[T]](lower, upper T) *SequentialRange[T] {
return newSequRangeUnchecked(lower, upper, !lower.equalsSameVersion(upper))
}
func newSequRange[T SequentialRangeConstraint[T]](first, other T) *SequentialRange[T] {
var lower, upper T
var isMult bool
if f := first.Contains(other); f || other.Contains(first) {
var addr T
if f {
addr = first.WithoutPrefixLen()
} else {
addr = other.WithoutPrefixLen()
}
lower = addr.GetLower()
if isMult = addr.IsMultiple(); isMult {
upper = addr.GetUpper()
} else {
upper = lower
}
} else {
// We find the lowest and the highest from both supplied addresses
firstLower := first.GetLower()
otherLower := other.GetLower()
firstUpper := first.GetUpper()
otherUpper := other.GetUpper()
if comp := compareLowIPAddressValues(firstLower, otherLower); comp > 0 {
isMult = true
lower = otherLower
} else {
isMult = comp < 0
lower = firstLower
}
if comp := compareLowIPAddressValues(firstUpper, otherUpper); comp < 0 {
isMult = true
upper = otherUpper
} else {
isMult = isMult || comp > 0
upper = firstUpper
}
if isMult = isMult || compareLowIPAddressValues(lower, upper) != 0; isMult {
lower = lower.WithoutPrefixLen()
upper = upper.WithoutPrefixLen()
} else {
if lower.IsPrefixed() {
if upper.IsPrefixed() {
lower = lower.WithoutPrefixLen()
upper = lower
} else {
lower = upper
}
} else {
upper = lower
}
}
}
return newSequRangeUnchecked(lower, upper, isMult)
}
// NewSequentialRange creates a sequential range from the given addresses.
// If the type of T is *IPAddress and the versions of lower and upper do not match (one is IPv4, one IPv6), then nil is returned.
// Otherwise, the range is returned.
func NewSequentialRange[T SequentialRangeConstraint[T]](lower, upper T) *SequentialRange[T] {
var t T
if lower == t && upper == t { // nil for pointers
lower = nilConvert[T]()
} else if lower != t && upper != t {
// this check only matters when T is *IPAddress
if lower.getAddrType() != upper.getAddrType() {
// when both are zero-type, we do not go in here
// but if only one is, we return nil. zero-type is "indeterminate", so we cannot "infer" a different version for it
// However, nil is the absence of a version/type so we can and do
return nil
}
}
return newSequRange(lower, upper)
}
// NewIPSeqRange creates an IP sequential range from the given addresses.
// It is here for backwards compatibility. NewSequentialRange is recommended instead.
// If the type of T is *IPAddress and the versions of lower and upper do not match (one is IPv4, one IPv6), then nil is returned.
// Otherwise, the range is returned.
func NewIPSeqRange(lower, upper *IPAddress) *SequentialRange[*IPAddress] { // for backwards compatibility
if lower == nil && upper == nil {
lower = zeroIPAddr
} else if lower != nil && upper != nil {
if lower.getAddrType() != upper.getAddrType() {
// when both are zero-type, we do not go in here
// but if only one is, we return nil. zero-type is "indeterminate", so we cannot "infer" a different version for it
// However, nil is the absence of a version/type so we can and do
return nil
}
}
return newSequRange(lower, upper)
}
// NewIPv4SeqRange creates an IPv4 sequential range from the given addresses.
// It is here for backwards compatibility. NewSequentialRange is recommended instead.
func NewIPv4SeqRange(lower, upper *IPv4Address) *SequentialRange[*IPv4Address] { // for backwards compatibility
if lower == nil && upper == nil {
lower = zeroIPv4
}
return newSequRange(lower, upper)
}
// NewIPv6SeqRange creates an IPv6 sequential range from the given addresses.
// It is here for backwards compatibility. NewSequentialRange is recommended instead.
func NewIPv6SeqRange(lower, upper *IPv6Address) *SequentialRange[*IPv6Address] { // for backwards compatibility
if lower == nil && upper == nil {
lower = zeroIPv6
}
return newSequRange(lower, upper)
}
func joinRanges[T SequentialRangeConstraint[T]](ranges []*SequentialRange[T]) []*SequentialRange[T] {
// nil entries are automatic joins
joinedCount := 0
rangesLen := len(ranges)
for i, j := 0, rangesLen-1; i <= j; i++ {
if ranges[i] == nil {
joinedCount++
for ranges[j] == nil && j > i {
j--
joinedCount++
}
if j > i {
ranges[i] = ranges[j]
ranges[j] = nil
j--
}
}
}
rangesLen = rangesLen - joinedCount
ranges = ranges[:rangesLen]
joinedCount = 0
sort.Slice(ranges, func(i, j int) bool {
return LowValueComparator.CompareRanges(ranges[i], ranges[j]) < 0
})
for i := 0; i < rangesLen; {
rng := ranges[i]
currentLower, currentUpper := rng.GetLower(), rng.GetUpper()
var isMultiJoin, didJoin bool
j := i + 1
for ; j < rangesLen; j++ {
rng2 := ranges[j]
nextLower := rng2.GetLower()
doJoin := compareLowIPAddressValues(currentUpper, nextLower) >= 0
if !doJoin && nextLower.GetIPVersion().Equal(currentUpper.GetIPVersion()) {
doJoin = currentUpper.Increment(1).Equal(nextLower)
isMultiJoin = true
}
if doJoin {
//Join them
joinedCount++
nextUpper := rng2.GetUpper()
if compareLowIPAddressValues(currentUpper, nextUpper) < 0 {
currentUpper = nextUpper
}
ranges[j] = nil
isMultiJoin = isMultiJoin || rng.isMultiple || rng2.isMultiple
didJoin = true
} else {
break
}
}
if didJoin {
ranges[i] = newSequRangeUnchecked(currentLower, currentUpper, isMultiJoin)
}
i = j
}
finalLen := rangesLen - joinedCount
if finalLen > 0 {
for i, j := 0, 0; ; i++ {
rng := ranges[i]
if rng == nil {
continue
}
ranges[j] = rng
j++
if j >= finalLen {
break
}
}
}
ret := ranges[:finalLen]
return ret
}
func compareLowIPAddressValues(one, two AddressType) int {
return LowValueComparator.CompareAddresses(one, two)
}
// getMinPrefixLenForBlock returns the smallest prefix length such that the upper and lower values span the block of values for that prefix length.
// The given bit count indicates the bits that matter in the two values, the remaining bits are ignored.
//
// If the entire range can be described this way, then this method returns the same value as GetPrefixLenForSingleBlock.
//
// There may be a single prefix, or multiple possible prefix values in this item for the returned prefix length.
// Use getPrefixLenForSingleBlock to avoid the case of multiple prefix values.
func getMinPrefixLenForBlock(lower, upper DivInt, bitCount BitCount) BitCount {
if lower == upper {
return bitCount
} else if lower == 0 {
maxValue := ^(^DivInt(0) << uint(bitCount))
if upper == maxValue {
return 0
}
}
result := bitCount
lowerZeros := bits.TrailingZeros64(lower)
if lowerZeros != 0 {
upperOnes := bits.TrailingZeros64(^upper)
if upperOnes != 0 {
var prefixedBitCount int
if lowerZeros < upperOnes {
prefixedBitCount = lowerZeros
} else {
prefixedBitCount = upperOnes
}
result -= BitCount(prefixedBitCount)
}
}
return result
}
// getPrefixLenForSingleBlock returns a prefix length for which the given lower and upper values share the same prefix,
// and the range spanned by those values matches exactly the block of all values for that prefix.
// The given bit count indicates the bits that matter in the two values, the remaining bits are ignored.
//
// If the range can be described this way, then this method returns the same value as GetMinPrefixLenForBlock.
//
// If no such prefix length exists, returns nil.
//
// If lower and upper values are the same, this returns the bit count.
func getPrefixLenForSingleBlock(lower, upper DivInt, bitCount BitCount) PrefixLen {
prefixLen := getMinPrefixLenForBlock(lower, upper, bitCount)
if prefixLen == bitCount {
if lower == upper {
return cacheBitCount(prefixLen)
}
} else {
shift := bitCount - prefixLen
if lower>>uint(shift) == upper>>uint(shift) {
return cacheBitCount(prefixLen)
}
}
return nil
}
type (
IPAddressSeqRange = SequentialRange[*IPAddress]
IPv4AddressSeqRange = SequentialRange[*IPv4Address]
IPv6AddressSeqRange = SequentialRange[*IPv6Address]
)
|